Nitrogen Containing Patents (Class 423/290)
  • Patent number: 11673840
    Abstract: A complex composite particle is made of a coal dust and binder composite that is pyrolyzed. Constituent portions of the composite react together causing the particles to increase in density and reduce in size during pyrolyzation, yielding a particle suitable for use as a proppant or in a composite structure.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 13, 2023
    Assignee: Dynamic Material Systems LLC
    Inventors: Arnold Hill, William Easter, Walter Sherwood
  • Patent number: 11581572
    Abstract: Solid-state lithium ion electrolytes of lithium metal nitride based compounds are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium metal nitride based composites are also provided.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 14, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Alexander Epstein, Chen Ling, Ying Zhang
  • Patent number: 11145522
    Abstract: A method of forming a boron-based film includes forming the boron-based film mainly containing boron on a substrate by plasma CVD using plasma of a processing gas including a boron-containing gas; and controlling film stress of the formed boron-based film by adjusting a process parameter.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 12, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yoshimasa Watanabe, Masahiro Oka, Hirokazu Ueda, Yuuki Yamamoto
  • Patent number: 10961449
    Abstract: Nanodiamonds are grown under conditions where diamond-like organic seed molecules do not decompose. This permits engineered growth of fluorescent nanodiamonds wherein a custom designed seed molecule can be incorporated at the center of a nanodiamond. By substituting atoms at particular locations in the seed molecule it is possible to achieve complex multi-atom diamond color centers or even to engineer complete quantum registers. In addition, it is possible to grow ultra-small nanodiamonds, wherein each nanodiamond, no matter how small, can have at least one bright and photostable fluorescent emitter.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: March 30, 2021
    Assignees: The Texas A&M University System, Carnegie Institution of Washington
    Inventors: Philip Hemmer, Todd Zapata, Viktor Struzhkin, Yingwei Fei
  • Patent number: 10829417
    Abstract: Provided are formed bodies comprising hexagonal boron nitride wherein the formed body has a Brinell hardness of at least 2 HBW 2,5/2, and wherein the formed body is obtainable by a process at temperatures of at most 100° C., and wherein the Brinell hardness is measured according to DIN EN ISO 6506-1 (2013). Further provided are processes for making said formed body.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 10, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Krishna B. Uibel, Jan C. Zimmer, Christoph Lesniak, Robert M. Schädel
  • Patent number: 10618038
    Abstract: Disclosed is a catalyst comprising: a composition having a formula BNxMyOz wherein B represents boron, N represents nitrogen, M comprises a metal or metalloid, and O represents oxygen, x ranges from 0 to 1, y ranges from 0.01 to 5.5; and z ranges from 0 to 16.5. The catalyst may be suitable for converting alkanes to olefins.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 14, 2020
    Assignee: SABIC Global Technologies B.V.
    Inventors: Paulette N. Hazin, Zhun Zhao, Ashwin Patel, Jason Loiland, Dick Alan Nagaki
  • Patent number: 10576463
    Abstract: Disclosed is a catalyst comprising: a composition having a formula BNxMyOz wherein B represents boron, N represents nitrogen, M comprises a metal or metalloid, and O represents oxygen, x ranges from 0 to 1, y ranges from 0.01 to 5.5; and z ranges from 0 to 16.5. The catalyst may be suitable for converting alkanes to olefins.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: March 3, 2020
    Assignee: SABIC Global Technologies B.V.
    Inventors: Paulette N. Hazin, Zhun Zhao, Ashwin Patel, Jason Loiland, Dick Alan Nagaki
  • Patent number: 10526250
    Abstract: The invention relates to boron nitride agglomerates, comprising lamellar, hexagonal boron nitride primary particles, which are agglomerated with one another with a preferred orientation, the agglomerates formed being flake-shaped. The invention also relates to a method for producing said boron nitride agglomerates, characterized in that lamellar, hexagonal boron nitride primary particles are agglomerated in such a way that they line up with one another with a preferred orientation. The flake-shaped agglomerates according to the invention are suitable as filler for polymers for making polymer-boron nitride composites and for hot pressing of boron nitride sintered compacts.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: January 7, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin Engler, Krishna Uibel, Jens Eichler
  • Patent number: 10442691
    Abstract: High quality, catalyst-free boron nitride nanotubes (BNNTs) that are long, flexible, have few wall molecules and few defects in the crystalline structure, can be efficiently produced by a process driven primarily by Direct Induction. Secondary Direct Induction coils, Direct Current heaters, lasers, and electric arcs can provide additional heating to tailor the processes and enhance the quality of the BN-NTs while reducing impurities. Heating the initial boron feed stock to temperatures causing it to act as an electrical conductor can be achieved by including refractory metals in the initial boron feed stock, or providing additional heat via lasers or electric arcs. Direct Induction processes may be energy efficient and sustainable for indefinite periods of time. Careful heat and gas flow profile management may be used to enhance production of high quality BNNT at significant production rates.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: October 15, 2019
    Assignee: BNNT, LLC
    Inventors: Michael W. Smith, Kevin C. Jordan, Jonathan C. Stevens, R. Roy Whitney
  • Patent number: 10231332
    Abstract: An inorganic filler includes surface-modified boron nitride having a surface on which a polycyclic aromatic hydrocarbon having a functional group is provided.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: March 12, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sanga Ju, Jina Gu, Se Woong Na, Sung Jin Yun
  • Patent number: 10202308
    Abstract: Composite material comprising aluminum nitride (AlN) material, less than 80 weight percent cubic boron nitride (cBN) grains dispersed within the AlN material and less that 5 weight percent sinter promotion material, the composite material including no more than about 1.5 percent porosity.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 12, 2019
    Assignee: ELEMENT SIX LIMITED
    Inventors: Leif Sandström, Selim Dagdag, Lars-Ivar Nilsson, Karolina Hannersjö
  • Patent number: 10173931
    Abstract: The invention relates to boron nitride agglomerates, comprising lamellar, hexagonal boron nitride primary particles, which are agglomerated with one another with a preferred orientation, the agglomerates formed being flake-shaped. The invention also relates to a method for producing said boron nitride agglomerates, characterized in that lamellar, hexagonal boron nitride primary particles are agglomerated in such a way that they line up with one another with a preferred orientation. The flake-shaped agglomerates according to the invention are suitable as filler for polymers for making polymer-boron nitride composites and for hot pressing of boron nitride sintered compacts.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: January 8, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin Engler, Krishna Uibel, Jens Eichler
  • Patent number: 10093585
    Abstract: A method of preparing a fiber for use in forming a ceramic matrix composite material comprises the steps of removing an organic sizing from a fiber to provide pyrolyzed remnants on the fiber, and using the pyrolyzed remnants as a reactant to provide an interface coating on the fiber.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 9, 2018
    Assignee: United Technologies Corporation
    Inventors: Paul Sheedy, Neal Magdefrau
  • Patent number: 10035705
    Abstract: Described herein are processes and apparatus for the large-scale synthesis of boron nitride nanotubes (BNNTs) by induction-coupled plasma (ICP). A boron-containing feedstock may be heated by ICP in the presence of nitrogen gas at an elevated pressure, to form vaporized boron. The vaporized boron may be cooled to form boron droplets, such as nanodroplets. Cooling may take place using a condenser, for example. BNNTs may then form downstream and can be harvested.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 31, 2018
    Assignee: BNNT, LLC
    Inventors: Michael W. Smith, Kevin C. Jordan, Jonathan C. Stevens
  • Patent number: 10005668
    Abstract: Methods that facilitate exfoliation of hexagonal boron nitride (hBN), exfoliated hBN, and associated intermediate products are disclosed. Such a method can include the acts of mixing a sample of hBN with an activation agent (e.g., NaF, etc.) and a selected set of chemicals (e.g., a metal chloride) and intercalating the set of chemicals into the hBN to obtain intercalated hBN. Additionally, such a method can include the acts of hydrating the set of chemicals (i.e., the intercalates), and converting the set of chemicals to a set of oxide nanoparticles when exfoliating the intercalated hBN. The exfoliated hBN can be washed (e.g., with HCl, etc.) to remove remaining nanoparticles.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: June 26, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ching-cheh Hung, Janet B. Hurst
  • Patent number: 9862163
    Abstract: In order to provide a sintered, hexagonal boron nitride body (2a, 2b), same is produced by at least one pressing process and subsequent sintering process from a powder (P) made of a hexagonal boron nitride, its density being deliberately set to a value of <1.6 g/cm3. Studies have shown that, due to the selection of this lower density, the boron nitride body (2a, 2b) exhibits very high isotropy, when compared with conventional hexagonal boron nitride bodies. This relates in particular to thermal conductivity and the coefficient of thermal expansion, which are also largely temperature-independent.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: January 9, 2018
    Assignee: KENNAMETAL INC.
    Inventors: Rudolf K. Grau, Rodrigue N. Yappi, Hubert J. Schweiger
  • Patent number: 9862604
    Abstract: A process for producing boron nitride nanotubes (BNNTs) involves providing a one or more sources of boron, nitrogen and hydrogen to a stable induction plasma to form a reaction mixture of boron, nitrogen and hydrogen in the plasma, and cooling the reaction mixture to form BNNTs. The process is capable of very efficiently producing small (10 nm or less diameter), reasonably pure BNNTs continuously in high yield at or around atmospheric pressure without the need to use metals as the catalyst. The process may be further modified by providing one or more sources of carbon to produce BNNTs doped with carbon (e.g. BCNNT).
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: January 9, 2018
    Inventors: Keun Su Kim, Christopher T Kingston, Benoit Simard
  • Patent number: 9840591
    Abstract: A process for preparing benzoxazine-thiol polymer film is described comprising forming a rolling bank of a curable composition comprising a polybenzoxazine and a polythiol, wherein the rolling bank contacts first and second carrier substrates; passing the first and second substrates with the curable composition therebetween through a nip; and at least partially curing the curable composition to provide the corresponding polymeric layer. The compositions are useful in coating, sealants, adhesive and many other applications.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 12, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Ilya Gorodisher, Michael A. Johnson
  • Patent number: 9822294
    Abstract: To provide a composition for a three-dimensional integrated circuit capable of forming a filling interlayer excellent in thermal conductivity also in a thickness direction, using agglomerated boron nitride particles excellent in the isotropy of thermal conductivity, disintegration resistance and kneading property with a resin. A composition for a three-dimensional integrated circuit, comprising agglomerated boron nitride particles which have a specific surface area of at least 10 m2/g, the surface of which is constituted by boron nitride primary particles having an average particle size of at least 0.05 ?m and at most 1 ?m, and which are spherical, and a resin (A) having a melt viscosity at 120° C. of at most 100 Pa·s.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: November 21, 2017
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masanori Yamazaki, Mari Abe, Tomohide Murase, Yasuhiro Kawase, Makoto Ikemoto, Hideki Kiritani, Yasunori Matsushita
  • Patent number: 9783722
    Abstract: To provide a composition for a three-dimensional integrated circuit capable of forming a filling interlayer excellent in thermal conductivity also in a thickness direction, using agglomerated boron nitride particles excellent in the isotropy of thermal conductivity, disintegration resistance and kneading property with a resin. A composition for a three-dimensional integrated circuit, comprising agglomerated boron nitride particles which have a specific surface area of at least 10 m2/g, the surface of which is constituted by boron nitride primary particles having an average particle size of at least 0.05 ?m and at most 1 ?m, and which are spherical, and a resin (A) having a melt viscosity at 120° C. of at most 100 Pa·s.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: October 10, 2017
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masanori Yamazaki, Mari Abe, Tomohide Murase, Yasuhiro Kawase, Makoto Ikemoto, Hideki Kiritani, Yasunori Matsushita
  • Patent number: 9776378
    Abstract: A graphene sheet including an intercalation compound and 2 to about 300 unit graphene layers, wherein each of the unit graphene layers includes a polycyclic aromatic molecule in which a plurality of carbon atoms in the polycyclic aromatic molecule are covalently bonded to each other; and wherein the intercalation compound is interposed between the unit graphene layers.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: October 3, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jae-Young Choi
  • Patent number: 9650249
    Abstract: A method for producing nanowires from piezoelectric aluminum nitride is provided. Nanowires formed from cubic AIN having a diameter of 10-20 A and a length of 1000-1500 A are obtained from a batch of AI+2-10% by volume AIH3 at a temperature of 1500-2300 K in a gaseous environment of N2+(3-5% by volume NH3) at a pressure of 200-2000 MPa.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 16, 2017
    Inventor: Alexander Potemkin
  • Patent number: 9562287
    Abstract: Provided is a method for producing a high-quality boron nitride film grown by using a borazine oligomer as a precursor through a metal catalyst effect. The method solves the problems, such as control of a gaseous precursor and vapor pressure control, occurring in CVD (Chemical vapor deposition) according to the related art, and a high-quality hexagonal boron nitride film is obtained through a simple process at low cost. In addition, the hexagonal boron nitride film may be coated onto various structures and materials. Further, selective coating is allowed so as to carry out coating in a predetermined area and scale-up is also allowed. Therefore, the method may be useful for coating applications of composite materials and various materials.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 7, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung Jong Kim, Sungchan Park, Hyunjin Cho, Sukang Bae, Jin-Hyung Park, Jung Ho Kang, Sang Ook Kang, Changhyup Lee
  • Patent number: 9487402
    Abstract: The present invention relates to a method, which essentially comprises the steps of performing crude boron nitride nanotube (BNNT) synthesis (110) and purifying BNNTs obtained in the crude form (120), and wherein direct BNNT production is provided with the use of colemanite that is a borate mineral.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: November 8, 2016
    Assignee: YEDITEPE UNIVERSITESI
    Inventor: Mustafa Culha
  • Patent number: 9412584
    Abstract: A thin film containing boron and a borazine ring structure is formed on a substrate by performing a cycle a predetermined number of times under a condition where the borazine ring structure is preserved in a borazine compound. The cycle includes: supplying a source gas containing boron and a halogen element to the substrate; and supplying a reactive gas including a borazine compound to the substrate.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: August 9, 2016
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Atsushi Sano, Yoshiro Hirose
  • Publication number: 20150147520
    Abstract: In order to provide a sintered, hexagonal boron nitride body (2a, 2b), same is produced by at least one pressing process and subsequent sintering process from a powder (P) made of a hexagonal boron nitride, its density being deliberately set to a value of <1.6 g/cm3. Studies have shown that, due to the selection of this lower density, the boron nitride body (2a, 2b) exhibits very high isotropy, when compared with conventional hexagonal boron nitride bodies. This relates in particular to thermal conductivity and the coefficient of thermal expansion, which are also largely temperature-independent.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventors: Rudolf K. Grau, Rodrigue N. Yappi, Hubert J. Schweiger
  • Publication number: 20150129089
    Abstract: A hydrogen-free amorphous dielectric insulating film having a high material density and a low density of tunneling states is provided. The film is prepared by e-beam deposition of a dielectric material on a substrate having a high substrate temperature Tsub under high vacuum and at a low deposition rate. In an exemplary embodiment, the film is amorphous silicon having a density greater than about 2.18 g/cm3 and a hydrogen content of less than about 0.1%, prepared by e-beam deposition at a rate of about 0.1 nm/sec on a substrate having Tsub=400° C. under a vacuum pressure of 1×10?8 Torr.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Daniel R. Queen, Frances Hellman
  • Publication number: 20150126355
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Applicant: AMASTAN TECHNOLOGIES LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20150125374
    Abstract: Described herein are processes and apparatus for the large-scale synthesis of boron nitride nanotubes (BNNTs) by induction-coupled plasma (ICP). A boron-containing feedstock may be heated by ICP in the presence of nitrogen gas at an elevated pressure, to form vaporized boron. The vaporized boron may be cooled to form boron droplets, such as nanodroplets. Cooling may take place using a condenser, for example. BNNTs may then form downstream and can be harvested.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Michael W. Smith, Kevin C. Jordan, Jonathan C. Stevens
  • Publication number: 20150086460
    Abstract: Provided is a method for producing a high-quality boron nitride film grown by using a borazine oligomer as a precursor through a metal catalyst effect. The method solves the problems, such as control of a gaseous precursor and vapor pressure control, occurring in CVD(Chemical vapor deposition) according to the related art, and a high-quality hexagonal boron nitride film is obtained through a simple process at low cost. In addition, the hexagonal boron nitride film may be coated onto various structures and materials. Further, selective coating is allowed so as to carry out coating in a predetermined area and scale-up is also allowed. Therefore, the method may be useful for coating applications of composite materials and various materials.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 26, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung Jong KIM, Sungchan PARK, Hyunjin CHO, Sukang BAE, Jin-Hyung PARK, Jung Ho KANG, Sang Ook KANG, Changhyup LEE
  • Publication number: 20150041225
    Abstract: A method of making a body of polycrystalline superhard material comprising placing an aggregated mass of grains of superhard material into a canister, placing a ceramic layer either in direct contact with the aggregated mass of grains of superhard material or in indirect contact therewith, the ceramic layer being spaced from the grains by an interlayer of material when present, the ceramic layer having a surface with surface topology, the surface topology imprinting a pattern in the aggregated mass of grains of superhard material complementary to the surface topology, the ceramic material and the material of the interlayer being such that they do not react chemically with the superhard material and/or a sinter catalyst material for the grains of superhard material. The aggregated mass of grains of superhard material and ceramic layer are subjected to a pressure of greater than 5.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 12, 2015
    Inventors: Cornelis Roelof Jonker, Roger William Nigel Nilen, Maweja Kasonde, Stig Åke Andersin
  • Patent number: 8951496
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Amastan Technologies LLC
    Inventors: Kamal Hadidi, Makhlouf Redjdal
  • Publication number: 20150023858
    Abstract: In some embodiments, the present disclosure pertains to methods of forming a reinforcing material by: (1) depositing a first material onto a catalyst surface; and (2) forming a second material on the catalyst surface, where the second material is derived from and associated with the first material. In some embodiments, the first material includes, without limitation, carbon nanotubes, graphene nanoribbons, boron nitride nanotubes, chalcogenide nanotubes, carbon onions, and combinations thereof. In some embodiments, the formed second material includes, without limitation, graphene, hexagonal boron nitride, chalcogenides, and combinations thereof. In additional embodiments, the methods of the present disclosure also include a step of separating the formed reinforcing material from the catalyst surface, and transferring the separated reinforcing material onto a substrate without the use of polymers.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Zheng Yan, Zhiwei Peng, Robert H. Hauge, Yilun Li
  • Patent number: 8933157
    Abstract: A boron nitride composition comprising at least two different boron nitride powder materials having different properties, e.g., surface areas, particle size, tap density, etc.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: January 13, 2015
    Assignee: Momentive Performance Materials Inc.
    Inventors: Paulo Meneghetti, Chandrashekar Raman
  • Publication number: 20150004087
    Abstract: This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 1, 2015
    Inventors: Alexander K. Zettl, Michael Rousseas, Anna P. Goldstein, William Mickelson, Marcus A. Worsley, Leta Woo
  • Publication number: 20140349105
    Abstract: To provide a composition for a three-dimensional integrated circuit capable of forming a filling interlayer excellent in thermal conductivity also in a thickness direction, using agglomerated boron nitride particles excellent in the isotropy of thermal conductivity, disintegration resistance and kneading property with a resin. A composition for a three-dimensional integrated circuit, comprising agglomerated boron nitride particles which have a specific surface area of at least 10 m2/g, the surface of which is constituted by boron nitride primary particles having an average particle size of at least 0.05 ?m and at most 1 ?m, and which are spherical, and a resin (A) having a melt viscosity at 120° C. of at most 100 Pa·s.
    Type: Application
    Filed: May 29, 2014
    Publication date: November 27, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masanori YAMAZAKI, Mari ABE, Tomohide MURASE, Yasuhiro Kawase, Makoto IKEMOTO, Hideki KIRITANI, Yasunori MATSUSHITA
  • Publication number: 20140338962
    Abstract: Graphene layers, hexagonal boron nitride layers, as well as other materials made of primarily sp2 bonded atoms and associated methods are disclosed. In one aspect, for example, a method of forming a graphene layer is provided. Such a method may include mixing a carbon source with a horizontally oriented molten solvent, precipitating the carbon source from the molten solvent to form a graphite layer across the molten solvent, and separating the graphite layer into a plurality of graphene layers.
    Type: Application
    Filed: March 31, 2014
    Publication date: November 20, 2014
    Inventor: Chien-Min Sung
  • Publication number: 20140314652
    Abstract: The present invention provides a process for continuously producing crystalline hexagonal boron nitride powder having a large particle size and high crystalline. The present invention relates to a process comprising: the first step of heating a boron-containing material and a nitrogen-containing material to obtain crude boron nitride powder having boron nitride content of 80% by weight or higher, and the second step of feeding the crude boron nitride powder and a boron-containing flux component in the content satisfying the following formula (1) with a heat-resistant container, and heating the container including the crude boron nitride powder and the boron-containing flux component at 1550 to 2400° C. in a continuous furnace under the atmosphere of nitrogen gas, to grow hexagonal boron nitride in the form of crystal: formula (1): boron content contained in boron-containing flux component/crude boron nitride content ?1.4 % by weight.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 23, 2014
    Applicant: KANEKA CORPORATION
    Inventors: Kazuaki Matsumoto, Toshiyuki Kawaguchi, Masashi Sakaguchi
  • Publication number: 20140255286
    Abstract: A method for manufacturing a cubic boron nitride (c-BN) thin film includes: applying a pulse-type bias voltage to a substrate; and forming the cubic boron nitride thin film by bombarding the substrate with ions using the pulse-type bias voltage. To control the compressive residual stress of the cubic boron nitride thin film, ON/OFF time ratio of the pulse-type bias voltage may be controlled. The compressive residual stress that is applied to the thin film can be minimized by using the pulse-type voltage as a negative bias voltage applied to the substrate. In addition, the deposition of the c-BN thin film can be performed in a low ion energy region by increasing the ion/neutral particle flux ratio through the control of the ON/OFF time ratio of the pulse-type voltage.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 11, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Joon BAIK, Jong-Keuk PARK, Wook Seong LEE
  • Publication number: 20140230893
    Abstract: High performance photovoltaic devices are provided. Certain embodiments relate to the use of Boron-Nitride (BN) thin films as anti-reflection coating (ARC) material on Si and GaAs solar cells. A low and wide reflectance window covering a large energy range of the solar spectrum is available. For a large part of the useful solar spectrum, the index of refraction of the grown BN thin films remains constant at about 2.8. In another embodiment, a BN ARC is applied directly on ordinary window glass providing the device's mechanical strength.
    Type: Application
    Filed: April 23, 2014
    Publication date: August 21, 2014
    Applicant: The University of Houston
    Inventors: Nacer Badi, Alex Freundlich, Abdelhak Bensaoula, Andenet Alemu
  • Publication number: 20140182511
    Abstract: A susceptor for supporting a crucible includes a body with an interior surface defining a cavity. A coating is disposed on the interior surface to provide a barrier for preventing contact between the body of the susceptor and the crucible disposed within the cavity.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Inventors: Shailendra B. Rathod, Richard J. Phillips
  • Patent number: 8753578
    Abstract: An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: June 17, 2014
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of NASA
    Inventors: Michael W. Smith, Kevin Jordan
  • Publication number: 20140155249
    Abstract: Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Inventors: Kamal HADIDI, Makhlouf REDJDAL
  • Patent number: 8734748
    Abstract: A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: May 27, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ching-Cheh Hung, Janet Hurst
  • Patent number: 8703023
    Abstract: A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 22, 2014
    Assignee: The Regents of the University of California
    Inventors: Toby Sainsbury, Takashi Ikuno, Alexander K. Zettl
  • Patent number: 8680190
    Abstract: A boron nitride composition comprising at least two different boron nitride powder materials having different properties, e.g., surface areas, particle size, tap density, etc.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: March 25, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Paulo Meneghetti, Chandrashekar Raman
  • Patent number: 8657893
    Abstract: A method for producing a highly uniform and highly dense sintered cubic boron nitride compact having high hardness by sintering at a milder condition without a binder, is provided. The method includes deflocculating secondary particles in cubic boron nitride starting powders by dispersing the starting powders in a solution of a deflocculant; molding the green compact after removing the solution of the deflocculant from the starting powders; and then sintering the green compact in the presence of a supercritical fluid source in a supercritical state by pressing and heating the green compact together with the supercritical fluid source. The supercritical fluid source can be one or more selected from a group consisted of polyvinylidene chloride, polyvinyl chloride, polyethylene, polypropylene, polystyrene, a polyester and an ABS resin. In the sintering, the pressure is 5 GPa or higher, and the temperature is 1400° C. or higher.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: February 25, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Akhmadi Eko Wardoyo, Itsurou Tajima, Minoru Akaishi
  • Patent number: RE45803
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: November 17, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch
  • Patent number: RE45923
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: March 15, 2016
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch, Thomas M. Clere, Eugene A. Pruss
  • Patent number: RE47635
    Abstract: The present invention relates to a method for making a hexagonal boron nitride slurry and the resulting slurry. The method involves mixing from about 0.5 wt. % to about 5 wt. % surfactant with about 30 wt. % to about 50 wt. % hexagonal boron nitride powder in a medium under conditions effective to produce a hexagonal boron nitride slurry. The present invention also relates to a method for making a spherical boron nitride powder and a method for making a hexagonal boron nitride paste using a hexagonal boron nitride slurry. Another aspect of the present invention relates to a hexagonal boron nitride paste including from about 60 wt. % to about 80 wt. % solid hexagonal boron nitride. Yet another aspect of the present invention relates to a spherical boron nitride powder, a polymer blend including a polymer and the spherical hexagonal boron nitride powder, and a system including such a polymer blend.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 8, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Vimal K. Pujari, William T. Collins, Jeffrey J. Kutsch