Nitric Acid Patents (Class 423/390.1)
  • Patent number: 9731969
    Abstract: This invention relates generally to new findings to improve a method of thermal energy storage or heat pump, i.e. increase the thermal energy from an external heat source, using a reversible condensation reaction with an inorganic oxoacid compound. It accordingly provides components to be used in said improved process as well as the use thereof in the aforementioned method, including the use in the manufacture of products of the condensation products or in the manufacture of the hydrolysis products.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: August 15, 2017
    Assignees: Universiteit Gent, Caloritum NV
    Inventors: Wouter Ducheyne, Christian Stevens
  • Publication number: 20140357893
    Abstract: An example system includes a combustion chamber including at least one inlet and at least one outlet, and at least one reflective surface to direct shock waves in a pattern that meets at a midline nodal point. The example system also includes an ignition source to generate high enthalpy colliding and reverberating shock pressure waves and detonation gasses for dynamic pressurization. An example method for using high enthalpy colliding and/or reverberating shock pressure waves for chemical and material processing. The example method includes providing a combustion chamber including at least one inlet and at least one outlet, and at least one reflective surface to direct shock waves in a pattern that meets at a midline nodal point. The example method also includes colliding reflected or opposing combustion-induced or detonation-induced wave fronts within the combustion chamber.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 4, 2014
    Inventor: Bruce H. Peters
  • Publication number: 20140186254
    Abstract: In various embodiments, the present disclosure provides a method of fixing nitrogen. An amount of titania catalyst is provided and contacted with a feed stream that includes nitrogen. The titania catalyst is heated. The heated titania catalyst fixes nitrogen in the feed stream to form nitrogen products, such as nitrates. The nitrogen products are then removed from the titania catalyst. In some examples, the titania catalyst is treated with a base. In further examples, the catalytic process is carried out in the absence of light for photochemically activating the titania catalyst.
    Type: Application
    Filed: November 7, 2013
    Publication date: July 3, 2014
    Applicant: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Glenn C. Miller, Ahmed A. Al-Taani
  • Patent number: 8568677
    Abstract: The present invention relates to the use of a zeolite catalyst comprising at least one transition metal and in addition sulfur and/or phosphorus atoms for reducing the content of nitrogen oxides in a gas, and also to a process for reducing the content of nitrogen oxides in a gas by bringing this gas into contact with such a zeolite catalyst.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 29, 2013
    Assignee: BASF SE
    Inventors: Stephan Deuerlein, Tobias Rosendahl
  • Publication number: 20120295812
    Abstract: The invention provides a method for extracting a Staphylococcus aureus antigen which comprises using an extraction reagent with a pH of no higher than 5.0, containing one or more acids selected from among hydrochloric acid, acetic acid, citric acid, phosphoric acid, sulfuric acid and nitric acid, to extract a Staphylococcus aureus antigen comprising a methicillin-resistant Staphylococcus aureus antigen and/or a methicillin-sensitive Staphylococcus aureus antigen, from Staphylococcus aureus in a specimen. The invention further provides a method for assessing Staphylococcus aureus.
    Type: Application
    Filed: December 22, 2010
    Publication date: November 22, 2012
    Inventor: Kazuki Shiga
  • Patent number: 8293678
    Abstract: A metal fiber based on one or several elements from the group of platinum, palladium, rhodium, ruthenium, and iridium with 0 to 30% by weight of one or several additional alloy elements from the group of nickel, cobalt, gold, rhenium, molybdenum, and tungsten, contains 1 to 500 ppm by weight of boron or phosphorus. A non-woven material or netting, in particular for the production of nitrogen oxide or for the production of hydrocyanic acid, is made of such fibers. For the production of fibers based on noble metals having up to 30% by weight of additional alloy metals by drawing the fibers from a melt, the melting point of the metal is reduced by at least 400 ° C., before drawing of the fibers, by additionally alloying with boron or phosphorus, and the boron or the phosphorus is removed again from the fibers.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 23, 2012
    Assignee: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Uwe Jantsch, David Francis Lupton, Harald Manhardt, Stefan Vorberg
  • Patent number: 8282903
    Abstract: A processes for the regeneration of a silver nitrate and nitric acid based electrolyte as used in certain silver refining processes is based on the hydrolytic removal of undesired metal-based compounds such as water insoluble hydrolysable base metal cations and water insoluble hydrolysable base metal nitrates from which the soluble silver nitrate and nitric acid based electrolyte may be separated. Water is added slowly to a dewatered electrolyte melt held at a predetermined, elevated, temperature while allowing nitric acid thereby formed to evolve and be separated from the melt while the water insoluble base metal salts are formed. The melt is then diluted with water to dilute the silver nitrate contained therein and the insoluble base metal salts are separated from the mixture by filtration.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 9, 2012
    Assignee: Royal Canadian Mint
    Inventors: Bryn Harris, Carl White, Vicken Aprahamian
  • Publication number: 20120251429
    Abstract: Systems and methods of producing chemical compounds are disclosed. An example chemical production system includes an intake chamber having intake ports for entry of a gas mixture. An igniter ignites the gas mixture in the intake chamber. A nozzle restricts exit of the ignited gas mixture from the intake chamber. An expansion chamber cools the ignited gas with a cooling agent. The expansion chamber has an exhaust where the cooled gas exits the expansion chamber. A chemical compound product is formed in the expansion chamber.
    Type: Application
    Filed: August 30, 2011
    Publication date: October 4, 2012
    Inventor: Bruce H. Peters
  • Patent number: 8263036
    Abstract: The present invention relates to a method for manufacturing nitric acid wherein a gaseous mixture, including air and ammonia, is transported on a catalyst including platinum to carry out catalytic oxidation of the ammonia, and is characterized in that a sulfurated component is added to the gaseous mixture.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Paul-Guillaume Schmitt
  • Publication number: 20120014860
    Abstract: A processes for the regeneration of a silver nitrate and nitric acid based electrolyte as used in certain silver refining processes is based on the hydrolytic removal of undesired metal-based compounds such as water insoluble hydrolysable base metal cations and water insoluble hydrolysable base metal nitrates from which the soluble silver nitrate and nitric acid based electrolyte may be separated. Water is added slowly to a dewatered electrolyte melt held at a predetermined, elevated, temperature while allowing nitric acid thereby formed to evolve and be separated from the melt while the water insoluble base metal salts are formed. The melt is then diluted with water to dilute the silver nitrate contained therein and the insoluble base metal salts are separated from the mixture by filtration.
    Type: Application
    Filed: June 23, 2008
    Publication date: January 19, 2012
    Applicant: ROYAL CANADIAN MINT
    Inventors: Bryn Harris, Carl White, Vicken Aprahamian
  • Publication number: 20110243829
    Abstract: A method for decomposing N2O is described. The method uses, as a catalyst, an oxide based on cerium and lanthanum, which further includes at least one oxide of an element chosen from zirconium and rare earths other than cerium and lanthanum. This catalyst is stable, enabling it to be used at high temperatures.
    Type: Application
    Filed: September 28, 2009
    Publication date: October 6, 2011
    Applicant: Rhodia Operations
    Inventors: Christian Hamon, Emmanuel Rohart
  • Publication number: 20110104034
    Abstract: This invention is directed to compositions of matter comprising a hydride ion having a binding energy greater than about 0.8 eV. The claimed hydride ions may be combined with cations, including a proton, to form novel hydrides.
    Type: Application
    Filed: May 21, 2008
    Publication date: May 5, 2011
    Inventor: Randell L. Mills
  • Publication number: 20100234550
    Abstract: In this disclosure, a system is described, comprising a shear device with at least one inlet and at least one outlet and a mixing vessel with at least one inlet and at least one outlet, wherein an inlet of the shear device is in fluid communication with an outlet of the mixing vessel. In certain embodiments, the shear device and the mixing vessel form a loop for fluid communication. Also disclosed herein is a method of high shear oxidation, comprising mixing an oxidant with a substrate to form a substrate-oxidant mixture and applying shear to the substrate-oxidant mixture to form a product. The product includes ethylene oxide, propylene oxide, terephthalic acid, phenol, acrylonitrile, maleic anhydride, phthalic anhydride, nitric acid, caprolactam, oxidized polyethylene, oxidized polypropylene, oxidized polyethylene copolymers, and oxidized polypropylene copolymers. Suitable oxidant includes air, oxygen, ozone, peroxide, organic peroxide, halogen, oxygen-containing gas, and halogen-containing gas.
    Type: Application
    Filed: December 14, 2009
    Publication date: September 16, 2010
    Applicant: H R D CORPORATION
    Inventors: Abbas Hassan, Harshad M. Bhatt, Aziz Hassan, Gregory G. Borsinger
  • Patent number: 7161037
    Abstract: The invention relates to a process for preparing nitric acid by treating an aqueous medium containing organic compounds and phosphate, said process comprising: feeding the aqueous medium to a nitric acid synthesis zone; forming nitric acid by contacting the aqueous medium with a gaseous medium in said nitric acid synthesis zone, said gaseous medium containing NO2; discharging an off-gas from said nitric acid synthesis zone; wherein the total organic carbon concentration in the aqueous medium entering the nitric acid synthesis zone is less than 0.03 wt. %.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: January 9, 2007
    Assignee: DSM IP Assets B.V.
    Inventors: Arno Herald Benneker, Hendrik Oevering, Johannes Antonius Leonardus Brouwers
  • Patent number: 6969446
    Abstract: Process for producing a nitric acid of a concentration from 75 to 99.9% from a more diluted nitric acid, wherein a nitric acid of a concentration of about 45 to 70% is rectified in contact with a liquid extraction medium to prevent the formation of a nitric acid-water-azeotropic mixture, and the vapors of the concentrated nitric acid are condensed and a concentrated nitric acid is obtained and wherein additionally the extraction medium is reconstituted through reconcentration and returned into the extractive rectification, wherein the nitric acid to be concentrated is fed as a boiling liquid or partially vaporized to the extractive rectification preferably carried out in two columns (K 1.0, K 1.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: November 29, 2005
    Assignee: QVF Engineering GmbH
    Inventors: Gottfried Dichtl, Frank Dorstewitz, Manfred Sassenberg, Ulrich Walter
  • Patent number: 6737034
    Abstract: A method process to convert inhibited red fuming nitric acid (IRFNA) and/or nitrogen tetraoxide to either dilute or concentrated (98%+) nitric acid. The method describes a process to remove all of the normal inhibitors (if required), that have been reported to been used in IRFNA. The process described will provide nitric acid free of contaminates which are undesirable when using the nitric acid in reactions to produce other products.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: May 18, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Barry D. Allan
  • Patent number: 6649134
    Abstract: A process and a device for reducing the nitrous oxide which is formed during the catalytic combustion of ammonia and oxygen to form nitrogen oxides. A catalyst system including at least one first catalyst mesh element and at least one second catalyst mesh element is used for the catalytic combustion of ammonia and oxygen to form nitrogen oxides, where the minimum of one first catalyst mesh element is a platinum-rhodium mesh and the minimum of one second, downstream catalyst mesh element is a palladium-rhodium mesh with 2-4 wt. % of rhodium.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: November 18, 2003
    Assignee: W. C. Heraeus GmbH & Co. KG
    Inventors: Marek Gorywoda, David Francis Lupton, Jonathan Lund
  • Patent number: 6508915
    Abstract: A distilling apparatus and method use a two step distillation and purification process for processing a waste liquid, such as an impure sulfuric acid solution, to form a highly concentrated sulfuric acid solution. First, the waste liquid is stored in a concentrating column, where it is heated. A condenser, which uses the waste liquid as a cooling medium, condenses the vapor generated by the heater. The condensed vapor is passed through a filter, which separates impurities out of the waste liquid, prior to feeding the waste liquid back into the concentrating column. Water is then removed from the waste liquid via a distilling process. The resulting concentrated liquid is then fed to a purifying column, where it is again heated, to remove residue, and condensed, resulting in a highly pure waste liquid.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: January 21, 2003
    Assignee: Fujitsu Limited
    Inventors: Hiroshi Osuda, Toru Matoba, Daisuke Adachi, Masataka Fukuizumi
  • Patent number: 6495112
    Abstract: Oxygen is removed from natural gas by contacting oxygen-containing natural gas with nitric oxide under conditions sufficient to produce nitrogen dioxide.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 17, 2002
    Assignee: Phillips Petroleum Company
    Inventors: David V. Duchane, William R. Parrish, Douglas W. Hausler
  • Patent number: 6355223
    Abstract: A method for oxidizing HCl to produce pure chlorine gas by reacting HCl with a mixture of sulfuric and nitric acids. Chlorine gas is evolved. Spent nitric and sulfuric acids are first regenerated by contact with air or oxygen. After regeneration, the entire stream of regenerated acid, or major portion thereof, is reconcentrated. The concentration of sulfuric acid occurs at lower strengths (60%-80%) and temperatures. The concentrated acid may be used to oxidize more HCl. Heat evolved by the regeneration of the spent acids is carried into the acid concentration stage.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: March 12, 2002
    Assignee: Noram Engineering & Constructors, Ltd.
    Inventors: Warren M. Wolfs, Eric W. Evanson, Clive M.H. Brereton
  • Patent number: 6264909
    Abstract: An improved process for either the manufacturing of nitric acid, recycling of nitric acid, or recovering of nitric acid, comprising the steps of: providing a source of NOx; reacting NO from the source of NOx with HNO3 in the presence of NO2− to produce a resulting product; and reacting the resulting product with O2 and H2O to produce nitric acid.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: July 24, 2001
    Assignee: Drinkard Metalox, Inc.
    Inventor: William F. Drinkard, Jr.
  • Patent number: 6231824
    Abstract: Nitric oxide is removed from a gas stream by contacting the gas stream with oxygen in the presence of a metal-cation exchanged zeolite, thereby oxidizing the nitric oxide to nitrogen dioxide, then contacting the resulting nitrogen dioxide-containing gas stream with ozone, thereby converting the nitrogen dioxide to nitric acid, nitric acid precursors or mixtures thereof, then contacting the gas stream with an aqueous liquid, thereby scrubbing the nitric acid, nitric acid precursors or mixtures thereof from the gas stream. Contact of the gas stream with oxygen in the presence of a zeolite is carried out at a temperature above the temperature at which significant adsorption of nitrogen dioxide occurs, and the aqueous liquid used as scrubbing agent preferably has a pH greater than 7.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: May 15, 2001
    Assignee: The BOC Group, Inc.
    Inventors: James K. Tseng, Mark H. Anderson, Shuen-Cheng Hwang, Robert Francis Workosky