Carbon Monoxide Patents (Class 423/418.2)
  • Patent number: 10427138
    Abstract: The invention provides a use of metal ferrite oxygen carrier for converting carbon dioxide to carbon monoxide or synthesis gas via three processes: catalytic dry reforming of methane, chemical looping dry reforming of fuel and promoting coal gasification with CO2. The metal ferrite oxygen carrier comprises MzFexOy, where MzFexOy is a chemical composition with 0<x?4, z>0 and 0<y?6 and M is one of Ca, Ba, and/or combinations thereof. For example, MzFexOy may be one of CaFe2O4, BaFe2O4, MgFe2O4, SrFe2O4 and/or combinations thereof. In catalytic dry reforming, methane and carbon dioxide react in the presence of metal ferrites generating a product stream comprising at least 50 vol. % CO and H2. In another embodiment, chemical looping dry reforming process where metal ferrite is reduced with a fuel and then oxidized with carbon dioxide is used for production of CO from carbon dioxide. In another embodiment, the metal ferrite is used as a promoter to produce CO continuously from coal gasification with CO2.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: October 1, 2019
    Assignee: U.S. Department of Energy
    Inventor: Ranjani V. Siriwardane
  • Patent number: 10207924
    Abstract: Methods and devices are provided for producing syngas with an adjustable molar CO/H2 ratio. Syngas can have different proportions of CO and H2 (molar CO/H2 ratio) depending on the type and composition of starting materials. To set the desired molar CO/H2 ratio, a first sub-process is combined with at least one additional sub-process selected from: a sub-process T2 by which a second syngas B is generated from the starting material, the syngas having a molar ratio (V2) of CO to H2, wherein V1?V2; a sub-process T3 by which the hydrocarbon(s) of the hydrocarbon-containing starting material is/are split substantially into solid carbon and hydrogen; and a sub-process T4 based on the reaction equation: CO+H2O?2CO2+H2. The methods and devices are suitable for producing syngas useful as a starting material in a plurality of chemical syntheses, for example oxo, Fischer-Tropsch, or Reppe syntheses.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: February 19, 2019
    Inventor: Ralf Spitzl
  • Patent number: 10106407
    Abstract: Materials, methods to prepare, and methods of use for partial oxidation of methane. Embodiments include delivering a metal ferrite oxygen carrier to a fuel reactor, wherein the metal ferrite oxygen carrier comprises MFexOy where 1?x?3 and 3?y?5, and where M comprise a Group II alkali earth metals; and delivering a gaseous stream that contains methane to the metal ferrite oxygen carrier in the fuel reactor and maintaining the fuel reactor at a reducing temperature sufficient to reduce some portion of the metal ferrite oxygen carrier and oxidize some portion of the methane containing gas stream. Embodiments further include generating gaseous products containing H2 and CO gas in the fuel reactor; withdrawing a product stream from the fuel reactor, where the gaseous products comprise the product stream, and where at least >50 vol.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 23, 2018
    Assignee: U.S. Department of Energy
    Inventors: Ranjani V. Siriwardane, Yueying Fan
  • Patent number: 10040951
    Abstract: A method for heating or cooling a carbon containing reducing gas having a carbon monoxide content of at least 0.5 vol %, wherein the gas is heated to a temperature of at least 400° C. or wherein the gas is cooled from a temperature exceeding 400° C., wherein the gas is passed along a surface of a heating or cooling unit having a heat conductive metal or metal alloy body and a protective layer, which protective layer provides said surface, and which protective layer is made from a coating composition including colloidal amorphous silicate and crystalline oxide particles.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: August 7, 2018
    Assignee: TECHNIP FRANCE
    Inventors: Izaak Jacobus Risseeuw, Franciscus Arnoldus Maria Jeunink
  • Patent number: 9988586
    Abstract: The present disclosure provides a Fischer-Tropsch tail gas recycling system, including: a Fischer-Tropsch reactor providing a source of tail gas; a first preheater for preheating the tail gas to between about 200 and 300 degrees C.; a hydrogenator for hydrogenating the tail gas; an expansion device for reducing the pressure of the tail gas to between about 2.5 and 5 bar; a second preheater for preheating a feed gas comprising the tail gas and steam to between about 500 and 600 degrees C.; and a catalytic reformer for reforming the feed gas in the presence of a catalyst, wherein the catalytic reformer operates at about 2 bar and about 1000 degrees C., for example. Optionally, CO2 and/or natural gas are also added to the tail gas and/or steam to form the feed gas.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 5, 2018
    Assignee: MIDREX TECHNOLOGIES, INC.
    Inventors: Robert B. Cheeley, Gary E. Metius, David C. Meissner
  • Patent number: 9688593
    Abstract: Techniques for synthesizing methanol are provided. In an exemplary embodiment, the processes include obtaining a syngas mixture from an integrated carbon dioxide hydrogenation process and a methane steam reforming process, and contacting the syngas mixture with a methanol catalyst to obtain a product stream comprising methanol.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 27, 2017
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aghaddin Mamedov, Clark Rea
  • Patent number: 9567226
    Abstract: Apparatus for making at least 99.99% pure gaseous carbon monoxide comprising a reactor vessel, a cooling vessel, a compressor and optionally a chiller, a dryer or a pressurized cylinder. The chiller can be adapted to chill the scrubbed carbon monoxide gas to a temperature in the range of ?30° C. to ?90° C. to remove impurities. The dryer can be adapted to dry the scrubbed gaseous carbon monoxide to remove impurities. The pressurized cylinder can be adapted to store the compressed gaseous carbon monoxide.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: February 14, 2017
    Assignee: MALLINCKRODT HOSPITAL PRODUCTS IP LIMITED
    Inventors: Tammer Mosa, Gerard T. Taylor
  • Patent number: 9557053
    Abstract: The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFexOy on an inert support, where MFexOy is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFexOy may be one of MgFe2O4, CaFe2O4, SrFe2O4, BaFe2O4, CoFe2O4, MnFeO3, and combinations thereof. The MFexOy is supported on an inert support. The inert support disperses the MFexOy oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFexOy comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe2O3, and improved oxidation rates over CuO.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: January 31, 2017
    Assignee: U.S. Department of Energy
    Inventors: Ranjani V. Siriwardane, Yueying Fan
  • Patent number: 9556024
    Abstract: The invention relates to an integrated method for gasification and indirect combustion of a solid hydrocarbon feedstock in a chemical loop, comprising: contacting solid hydrocarbon feedstock (1) with water (2) in a gasification reaction zone RG in order to discharge ashes (9) and to produce a gaseous effluent (3) comprising syngas and water, supplying reduction reaction zone RR of a redox chemical loop with at least part of gaseous effluent (3) produced in the gasification reaction zone in order to produce a CO2 and H2O-concentrated gaseous effluent (4), reoxidizing the oxygen-carrying solid particles from reduction reaction zone RR of the chemical loop in oxidation reaction zone RO by means of an oxidizing gas (6) and discharging fumes (7). The invention also relates to a plant allowing said integrated method to be implemented.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: January 31, 2017
    Assignees: TOTAL SA, IFP ENERGIES NOUVELLES
    Inventors: Mahdi Yazdanpanah, Ann Forret, Thierry Gauthier
  • Patent number: 9364791
    Abstract: Carbon monoxide and oxygen gas can be produced from carbon dioxide by introducing a supply of CO2-containing gas to a CO2 permeable porous media. The CO2 permeates through the media to separate the CO2 from other species in the CO2-containing gas supply. An oxygen-deficient ferrite material, disposed on a surface of the CO2 permeable porous media, contacts with the separated CO2 at decomposition reaction conditions to produce CO and O2. Corresponding devices for treating exhaust gases from a CO2 exhaust gas-producing apparatus are also provided.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: June 14, 2016
    Assignee: Gas Technology Institute
    Inventor: Qinbai Fan
  • Patent number: 9249079
    Abstract: The invention relates to a process for increasing the carbon monoxide content of a feed gas mixture comprising carbon dioxide, hydrogen and carbon monoxide via a catalytic reversed water gas shift reaction, comprising the steps of (1) heating the feed gas mixture having an initial feed temperature of at most 350° C. in a first zone to a temperature within a reaction temperature range in the presence of a first catalyst; and (2) contacting the heated feed gas in a second zone within the reaction temperature range with a second catalyst. This process shows relatively high conversion of carbon dioxide, and virtually no methane or coke is being formed, allowing stable operation.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 2, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aggadin Kh. Mamedov, Mubarak Bashir
  • Patent number: 9206042
    Abstract: The present disclosure is directed to methods of catalytically reducing carbon dioxide, each method comprising: contacting a composition comprising a spinel-type transition iron oxide with an alkali metal carbonate, bicarbonate, or mixture thereof at a first temperature to form CO, and an alkali metal ion-transition metal oxide; hydrolytically extracting at least a portion of alkali metal ions from the alkali metal ion-transition metal oxide by the reaction with CO2 and liquid H2O at a second temperature; and thermochemically reducing the transition metal composition of the second step at a third temperature, with the associated formation of O2.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: December 8, 2015
    Assignee: California Institute of Technology
    Inventors: Mark E. Davis, Bingjun Xu, Yashodhan Bhawe
  • Patent number: 9079167
    Abstract: The invention relates to a catalyst able to exhibit an NOX purification performance at a low temperature and/or in an oxidizing atmosphere, that is, a nitrogen oxide purification catalyst including gold atoms and nickel atoms in a solid and a state of close proximity.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 14, 2015
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Mayuko Osaki, Hirohito Hirata, Naoyuki Hara, Brian Johnson, Andrew Wheatley, Helen Skelton, Muriel Lepage
  • Publication number: 20150147260
    Abstract: The present invention relates to a catalyst for the thermochemical generation of hydrogen from water and/or the thermochemical generation of carbon monoxide from carbon dioxide comprising a solid solution of cerium dioxide and uranium dioxide.
    Type: Application
    Filed: July 24, 2013
    Publication date: May 28, 2015
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Hicham Idriss, Ibraheam Al-Shankiti, Yong Man Choi, Fasia Mohammed Al-Otaibi
  • Patent number: 9011814
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 21, 2015
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Patent number: 8999283
    Abstract: In one embodiment, carbon dioxide is converted into a chemical feedstock by providing a mixture of plasmonic material and oxygen-conducting material, exposing the mixture to sunlight so that solar energy is absorbed by the plasmonic material which then heats the oxygen-conducting material so that oxygen vacancies are generated, passing carbon dioxide through the mixture, and the oxygen-conducting material removing oxygen atoms from the carbon dioxide to form carbon monoxide.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: April 7, 2015
    Assignee: University of South Floria
    Inventors: John Norbert Kuhn, Venkat R. Bhethanabotla, Yolanda Andreina Daza, Debosruti Dutta
  • Patent number: 8961829
    Abstract: The invention relates to a process of making a syngas mixture containing hydrogen, carbon monoxide and carbon dioxide, comprising a step of contacting a gaseous feed mixture containing carbon dioxide and hydrogen with a catalyst, which catalyst substantially consists of Mn oxide and an oxide of at least one member selected from the group consisting of Cr, Ni, La, Ce, W, and Pt. This process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream; like methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 24, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin M. Kh. Mamedov, Abdulaziz A. M. Al-Jodai, Ijaz C. Ahmed, Mubarak Bashir
  • Publication number: 20150044123
    Abstract: Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.
    Type: Application
    Filed: November 21, 2012
    Publication date: February 12, 2015
    Inventors: Wojciech Lipinski, Jane Holloway Davidson, Thomas Richard Chase
  • Patent number: 8945351
    Abstract: A method of removing organic components from a mixture containing organic and inorganic components which method involves providing an induction heated screw conveyor having an auger and passing the mixture through the induction heated screw conveyor while inductively heating the auger so as to heat the mixture in the induction heated screw conveyor primarily from the center of the induction heated screw conveyor. The mixture is heated to a temperature that is sufficient to cause the organic components in the mixture to separate from the mixture as a vapor. The oxygen concentration in the induction heated screw conveyor is controlled so as to gasify the organic components. The gasified organic components are removed and the remaining inorganic components are collected.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 3, 2015
    Assignee: Heritage Environmental Services LLC
    Inventors: James E. Bratina, David Bowering, Anthony Kriech, Perry Eyster, Thomas Roberts
  • Patent number: 8940263
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: January 27, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Patent number: 8926931
    Abstract: The present invention generally relates to a catalytic gasification of coal. Catalytic gasification of a Wyodak low-sulfur sub-bituminous coal from the Powder River Basin of Wyoming was investigated using an inexpensive sodium carbonate catalyst applied via incipient wetness impregnation. Experiments in an atmospheric pressure fixed-bed laboratory gasifier were performed to evaluate the effects of reaction temperature, feed gas steam content, and Na2CO3 loading on the catalytic gasification of the Wyodak coal. The temperature range investigated (700-900° C.) was selected with consideration of the Na2CO3 melting point (850° C.) to reduce the loss by volatilization of sodium. Sodium was found to be active during both pyrolysis and gasification steps. The catalyst was most cost-effective at addition levels of approximately 3 wt %. The random pore model provided a good fit to the conversion versus time data collected under both the catalytic and the uncatalytic conditions.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 6, 2015
    Inventors: Maohong Fan, Morris Argyle, Tiberiu Popa
  • Publication number: 20140356744
    Abstract: In one aspect, a method to convert a fuel into energy and specialized fuel includes, in a reactor, dissociating a fuel to produce hot carbon and hydrogen, the hot carbon having a temperature state in a range of 700 to 1500° C., in which the dissociating includes providing heat and/or electric energy to produce the hot carbon and the hydrogen; and removing the hot carbon and the hydrogen from the reactor, the removing including depositing the hot carbon to a chamber, in which the hot carbon includes an increased chemical potential energy and is capable of storing energy from an external source. In some implementations, the method can further include supplying an oxygen- and hydrogen-containing reactant to contact the hot carbon to produce carbon monoxide (CO) and hydrogen (H2); and obtaining the produced CO and H2, which, after the supplying, remaining deposited carbon forms a durable carbon-based good or product.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: MCALISTER TECHNOLOGIES, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20140322123
    Abstract: The invention provides novel Zr MOFs, in particular compounds having a surface area of at least 1020 m2/g or if functionalized, having a surface area of at least 500 m2/g.
    Type: Application
    Filed: December 30, 2013
    Publication date: October 30, 2014
    Applicant: Universitetet i Oslo
    Inventors: Jasmina HAFIZOVIC, Unni OLSBYE, Karl Petter LlLLERUD, Soren JAKOBSEN, Nathalie GUILLOU
  • Patent number: 8865100
    Abstract: The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Bruce T. Kelley, Harry W. Deckman, Stephen Mark Davis, Frank Hershkowitz
  • Publication number: 20140286927
    Abstract: A engineered composition and method of delivery of said composition providing effective therapy for the treatment of ulcerative colitis, and Crohn's disease.
    Type: Application
    Filed: June 19, 2012
    Publication date: September 25, 2014
    Inventor: Peter Edward Smith
  • Publication number: 20140275297
    Abstract: Processes, systems and equipment can be used to convert carbonaceous fuel to an output gas stream that includes CO as a primary C-containing product. In some embodiments, the processes and systems also can produce H2 in a separate reaction, with the H2 advantageously being capable of being combined with the CO from a partial oxidation process to provide syngas which, in turn, can be used to produce fuels and chemicals. The processes and systems can be tuned so as to not produce significant amounts of CO2 and do not require an air separation unit.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Luis G Velazquez-Vargas, Thomas J. Flynn, Bartev B. Sakadjian, Douglas J. DeVault, David L. Kraft
  • Publication number: 20140256006
    Abstract: The present invention relates to processes for producing industrial products such as hydrocarbon products from non-polar lipids in a vegetative plant part. Preferred industrial products include alkyl esters which may be blended with petroleum based fuels.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Thomas Vanhercke, James Robertson Petrie, Anna El Tahchy, Surinder Pal Singh, Qing Liu
  • Publication number: 20140239231
    Abstract: An environmentally beneficial process for the production of fuels and chemicals employs carbon dioxide from a natural source or from an artificial chemical source that would otherwise be discharged into the environment. The carbon dioxide is converted to formic acid and the formic acid is then non-biologically converted to fuels and/or chemicals without the intermediate process of hydrogenating the formic acid to methanol or reacting the formic acid with ammonia to form formamide. In the present process, formic acid is converted to one of seven primary feedstocks: formaldehyde, acrylic acid, methane, ethylene, propylene, syngas, and C5-C7 carbohydrates. The formaldehyde, acrylic acid, methane, ethylene, propylene, syngas and/or short chain carbohydrates can either be used directly, or can be converted into a wealth of other products.
    Type: Application
    Filed: February 24, 2013
    Publication date: August 28, 2014
    Applicant: DIOXIDE MATERIALS, INC.
    Inventors: Richard I. Masel, Zheng Richard Ni, Qingmei Chen, Brian A. Rosen
  • Patent number: 8790614
    Abstract: ZnO structures comprising crystalline ZnO micro or nanorods and methods for making and using these ZnO structures are provided. The side surface of the central portion of each rod may comprise planes of the form {1 0 ?1 0}, {0 1 ?1 0}, {?1 1 0 0}, {?1 0 1 0}, {0 ?1 1 0} or {1 ?1 0 0}, with central edge regions including a crystallographic plane of the form {2 ?1 ?1 0} or {?2 1 1 0}. The tip of the rod may comprise planes of the form {1 0 ?1 1} {0 1 ?1 1}, {?1 1 0 1}, {?1 0 1 1}, {0 ?1 1 1} or {1 ?1 0 1} with tip edge regions including a crystallographic plane of the form {2 ?1 ?1 2} or {?2 1 1 2}. The rods may be joined at or near their bases to form a “flower-like” morphology. In an embodiment, a synthesis mixture is prepared by dissolving a zinc salt in an alcohol solvent, followed by addition of at least two additives. The zinc salt may be zinc nitrate hexahydrate, the first additive may be benzyl alcohol and the second additive may be urea.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 29, 2014
    Assignee: Colorado School of Mines
    Inventors: Ryan M. Richards, Lifang Chen, Juncheng Hu
  • Publication number: 20140194658
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Patent number: 8771636
    Abstract: Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials and associated systems and methods. A representative process includes dissociating a hydrogen donor into dissociation products by adding energy to the hydrogen donor, wherein the energy includes waste heat generated by a process other than dissociating the hydrogen donor. The process can further include providing, from the dissociation products, a structural building block and/or a hydrogen-based fuel, with the structural building block based on carbon, nitrogen, boron, silicon, sulfur, and/or a transition metal.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 8, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8764965
    Abstract: Electrochemical processes to convert alkali sulfates into useful chemical products, such as syngas, alkali hydroxide, and sulfur are disclosed. An alkali sulfate is reacted with carbon to form carbon monoxide and alkali sulfide. In one embodiment, the alkali sulfide is dissolved in water and subjected to electrochemical reaction to form alkali hydroxide, hydrogen, and sulfur. In another embodiment, the alkali sulfide is reacted with iodine to form alkali iodide sulfur in a non-aqueous solvent, such as methyl alcohol. The alkali iodide is electrochemically reacted to form alkali hydroxide, hydrogen, and iodine. The iodine may be recycled to react with additional alkali sulfide. The hydrogen and carbon monoxide from both embodiments may be combined to form syngas. The alkali hydroxide from both embodiments may be recovered as a useful industrial chemical.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Ceramatec,Inc.
    Inventor: Ashok V. Joshi
  • Publication number: 20140178287
    Abstract: Method and apparatus of making 99.99% pure gaseous carbon monoxide comprising the steps of degassing liquid formic acid producing degassed liquid formic acid; reacting the degassed liquid formic acid or a degassed gaseous formic acid with a liquid mineral acid at an elevated temperature producing a gas phase comprising carbon monoxide gas and water vapor and a liquid phase; condensing the gas phase producing liquid water and gaseous carbon monoxide; scrubbing the carbon monoxide gas producing a gaseous 99.99% pure carbon monoxide having a purity of at least 99.99%, and, compressing the gaseous 99.99% pure carbon monoxide producing the 99.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: INO Therapeutics LLC
    Inventors: Tammer Mosa, Gerard T. Taylor
  • Patent number: 8758713
    Abstract: The invention provides a method for oxidizing carbon monoxide present in an oxygen-containing gas phase to carbon dioxide which comprises: adsorbing the carbon monoxide onto porous silica; and irradiating the porous silica with ultraviolet ray. In the invention, mesoporous silica or amorphous silica is used as the porous silica. In particular, silica gel that is amorphous silica is preferably used.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 24, 2014
    Assignee: The Honjo Chemical Corporation
    Inventors: Gohei Yoshida, Yuuichi Hayashi
  • Patent number: 8741239
    Abstract: A power generating apparatus including a gas turbine engine combusting a fuel in air to produce shaft power and producing a flow of exhaust gases including oxides of nitrogen (NOx), carbon monoxide (CO) and hydrocarbons (HC). An emissions treatment apparatus includes in the exhaust gas flowpath a CO oxidation catalyst disposed at a location with an exhaust gas temperature for which the CO oxidation catalyst advantageously limits NO2 production. The emissions treatment apparatus further includes an ammonia injection apparatus, a mixing section, and a selective catalytic reduction element disposed downsteam of the ammonia injection apparatus and adapted for reduction of NOx.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventor: Gilbert O. Kraemer
  • Publication number: 20140141963
    Abstract: According to the invention there is provided a zeolite having a porous structure produced by forming the zeolite on a porous carbon substrate which has been substantially or completely removed, wherein (i) the zeolite was formed on the substrate at a loading of at least 8% by weight and/or (ii) the zeolite has a reinforcing layer.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 22, 2014
    Inventors: Susan Jones, Paul Sermon
  • Patent number: 8728425
    Abstract: A method for performing an energy efficient desulphurization and decarbonization of a flue gas comprising sulphur oxides and carbon dioxide includes (a) starting a reaction between an electropositive metal and the sulphur oxides and the carbon dioxide of said flue gas; (b) reducing the sulphur oxides and the carbon dioxide of said flue gas simultaneously in an exothermic reaction with an electropositive metal and thereby generating reduced gaseous carbon products and solid reaction products while cooling; (c) extracting the solid reaction products of the reducing step (a) in a solvent to generate a first suspension comprising suspended carbon containing reaction products and sulphur containing reaction products; (d) oxidizing the first suspension obtained in step (b) to generate a second suspension comprising suspended carbon containing reaction products and oxidized sulphur containing reaction products; and (e) separating the oxidized sulphur containing reaction products from the suspended carbon containing
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 20, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Günter Schmid, Dan Taroata, Manfred Baldauf, Elena Arvanitis, Frank Walachowicz
  • Publication number: 20140113811
    Abstract: Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 24, 2014
    Inventors: Nicholas P. STADIE, Brent T. FULTZ, Channing AHN, Maxwell MURIALDO
  • Patent number: 8703089
    Abstract: Method and apparatus of making 99.99% pure gaseous carbon monoxide comprising the steps of degassing liquid formic acid producing degassed liquid formic acid; reacting the degassed liquid formic acid or a degassed gaseous formic acid with a liquid mineral acid at an elevated temperature producing a gas phase comprising carbon monoxide gas and water vapor and a liquid phase; condensing the gas phase producing liquid water and gaseous carbon monoxide; scrubbing the carbon monoxide gas producing a gaseous 99.99% pure carbon monoxide having a purity of at least 99.99%, and, compressing the gaseous 99.99% pure carbon monoxide producing the 99.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 22, 2014
    Assignee: INO Therapeutics LLC
    Inventors: Tammer Mosa, Gerard T. Taylor
  • Publication number: 20140100296
    Abstract: A ceramic material, methods for adsorbing and converting carbon dioxide are provided. The ceramic material is represented by a chemical formula M1xM2yOz, wherein M1 is selected from a group consisting of Nd, Sm, Gd, Yb, Sc, Y, La, Ac, Al, Ga, In, Tl, V, Nb, Ta, Fe, Co, Ni, Cu, Ca, Sr, Na, Li and K; M2 is selected from a group consisting of Ce, Zn, Ti, Zr and Si; O represents oxygen atom; x<0.5, y>0.5, x+y=1.0, z<2.0; and the ceramic material has an adsorption capacity of not less than 20 ?mol/g for CO2 at 50° C.
    Type: Application
    Filed: January 16, 2013
    Publication date: April 10, 2014
    Applicant: National Taiwan University of Sciences and Technology
    Inventors: Sheng-Chiang Yang, Wei-Nien Su, Bing-Joe Hwang
  • Publication number: 20140086818
    Abstract: A method of obtaining purified hydrogen and purified carbon monoxide from crude synthesis gas. A first crude synthesis gas stream is passed through a first separation zone to separate a hydrogen stream from a stream comprising carbon monoxide and methane. The carbon monoxide and methane are subjected to thermal reforming to produce a second crude synthesis gas, which is passed through a second separation zone to separate carbon monoxide from the second crude synthesis gas stream.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Inventors: Richard Peter Glynn Jewell, Melissa Gaucher, Louis Denomme
  • Patent number: 8679441
    Abstract: The invention relates to a method for controlling a fume treatment center (FTC) (23), scrubbing the baking fumes from a rotary baking furnace (1), in which the fumes are drawn in through at least one suction manifold (11) of the baking furnace (1) and collected in a duct (20, 20?) that conveys said fumes to the fume treatment center (23). The fume treatment center includes a tower (24) which sprays water into the fumes in order to cool same and a least one reactor (25) for the physico-chemical neutralization of the fumes, comprising contact with a reagent powder, such as alumina, followed by filtering (36) of the loaded reagent and the fume dust and recycling in the reactor (25) of at least one fraction of the filtered reagent and mixing of the same with fresh reagent.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 25, 2014
    Assignees: Solios Environnement, Solios Carbone
    Inventors: Pierre Mahieu, Thierry Malard
  • Patent number: 8652436
    Abstract: A material for water gas contains polyhydric alcohol, and hydroxycarboxylic acid.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: February 18, 2014
    Assignee: Kao Corporation
    Inventors: Yasuo Amishige, Takeshi Shirasawa
  • Patent number: 8652222
    Abstract: Particulate compositions are described comprising an intimate mixture of a biomass, such as switchgrass or hybrid poplar, a non-biomass carbonaceous material, such as petroleum coke or coal, and a gasification catalyst, where the gasification catalyst is loaded onto at least one of the biomass or non-biomass for gasification in the presence of steam to yield a plurality of gases including methane and at least one or more of hydrogen, carbon monoxide, and other higher hydrocarbons are formed. Processes are also provided for the preparation of the particulate compositions and converting the particulate composition into a plurality of gaseous products.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 18, 2014
    Assignee: GreatPoint Energy, Inc.
    Inventors: Pattabhi K. Raman, Edwin J. Hippo, Nelson Yee
  • Publication number: 20140026485
    Abstract: A process for converting carbon dioxide (CO2) gas into a medium BTU gas is disclosed. The CO2 gas may be injected into a reactor alone or simultaneously with a hydrocarbon gas and converted into a gas product suitable for further processing. The conversion process may include molten layers of iron and reactive slag in an upwardly flowing reactor operated under oxygen lean conditions.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: Co2Fuel, LLC
    Inventors: John JASBINSEK, Paul G. Katona
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20130331622
    Abstract: Techniques, systems, apparatus and material are disclosed for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Application
    Filed: November 26, 2012
    Publication date: December 12, 2013
    Inventor: Roy Edward McAlister
  • Publication number: 20130266502
    Abstract: A method and apparatus for gas-phase reduction/oxidation is disclosed. The apparatus includes a reactor including at least one reactor tube or containment vessel with active redox material within the reactor tube or containment vessel, a first reactant gas or vacuum for reducing the active redox material, and a second reactant gas for oxidizing the active redox material. The method may be run under substantially isothermal conditions and/or energy supplied to the apparatus may include solar energy, which may be concentrated.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Inventor: The Regents of the University of Colorado, a body corporate
  • Patent number: 8551434
    Abstract: A method for making a syngas mixture is accomplished by introducing a gaseous feed mixture containing carbon dioxide and hydrogen into a reactor containing a non-zinc catalyst. The catalyst contacts the gaseous feed mixture to form syngas mixture reaction products. The reaction takes place in the presence of nickel-containing and/or iron-containing materials. The gaseous feed mixture is introduced into the reactor at a reactor inlet temperature of from 700° C. to 800° C., with the reaction being carried out at substantially adiabatic conditions or wherein the syngas mixture reaction products are removed from the reactor at a reactor outlet temperature of from 500° C. to 600° C.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 8, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Aghaddin Mammadov, Mike Huckman, Clark Rea, Xiankuan Zhang, Shahid N. Shaikh
  • Patent number: 8540898
    Abstract: There are provided a catalyst for reverse shift reaction which has excellent durability at a high temperature, can suppress generation of a methanation reaction, and can efficiently generate a reverse shift reaction to produce a synthesis gas including carbon monoxide and unreacted hydrogen with a reduced methane content, and a method for producing a synthesis gas using the catalyst for reverse shift reaction. The composition of the catalyst for the reverse shift reaction includes a composite oxide containing at least one alkali earth metal selected from the group consisting of Ca, Sr and Ba and at least one transition metal selected from the group consisting of Ti and Zr. A raw material gas containing carbon dioxide and hydrogen is contacted with the catalyst for reverse shift reaction at a temperature of 700° C. or higher.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 24, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshinori Saito