Volatizing Patents (Class 423/59)
  • Patent number: 8889257
    Abstract: An article having: a nonconductive fiber and a RuO2 coating. A method of: immersing a nonconductive article in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; and warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article. An article having: a nonconductive fiber and a coating. The coating is made by electroless deposition, sputtering, atomic-layer deposition, chemical vapor deposition, or physical vapor deposition.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R Rolison, Jeffrey W Long, Christopher N. Chervin, Justin C Lytle, Katherine A. Pettigrew
  • Patent number: 8268267
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 18, 2012
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas
  • Patent number: 8163258
    Abstract: A method of removing lead sulfide contained in refined molybdenite powder concentrates (major component; MoS2) is provided. More specifically, in order to solve the problems associated with a leaching method using a leaching agent that is employed for conventional hydrometallurgical process, oxygen-free inert gas is circulated in a furnace for pyrometallurgical treatment to evaporate lead sulfide at high temperature, followed by condensing process to recover lead sulfide at low temperature. The method is characterized in that, it can reduce environmental contamination and can easily recover sulfides of valuable metals such as lead, indium, zinc and the like.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: April 24, 2012
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Young-Yoon Choi, Sang-Bae Kim, Byung-Su Kim, Hoo-In Lee
  • Patent number: 7854908
    Abstract: This invention relates to an apparatus and process that utilizes high-temperature oxidation and sublimation techniques for the recovery of molybdenum from spent catalysts or other feedstocks that contain molybdenum. A preferred embodiment uses a counter-rotating vortex reactor and a cyclonic entrained-flow reactor to rapidly heat and oxidize the spent catalyst feedstock, such as carbon, sulfur, and molybdenum compounds, at temperatures in the range of about 2100° F. to 2900° F., resulting in a gas-solid stream containing molybdenum trioxide vapor. A high-temperature cyclone separator is utilized to separate the residue from this stream before this stream is rapidly quenched to a temperature sufficient to effect the condensation of solid molybdenum trioxide without condensing arsenic or phosphoric oxides. The condensed molybdenum trioxide material is separated from this stream by passing through a high-temperature filtration system.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 21, 2010
    Inventors: James G. Hnat, Mark A. Schaffer
  • Publication number: 20100047141
    Abstract: This invention relates to an apparatus and process that utilizes high-temperature oxidation and sublimation techniques for the recovery of molybdenum from spent catalysts or other feedstocks that contain molybdenum. A preferred embodiment uses a counter-rotating vortex reactor and a cyclonic entrained-flow reactor to rapidly heat and oxidize the spent catalyst feedstock, such as carbon, sulfur, and molybdenum compounds, at temperatures in the range of about 2100° F. to 2900° F., resulting in a gas-solid stream containing molybdenum trioxide vapor. A high-temperature cyclone separator is utilized to separate the residue from this stream before this stream is rapidly quenched to a temperature sufficient to effect the condensation of solid molybdenum trioxide without condensing arsenic or phosphoric oxides. The condensed molybdenum trioxide material is separated from this stream by passing through a high-temperature filtration system.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Inventors: James G. Hnat, Mark A. Schaffer
  • Patent number: 7622098
    Abstract: Method for producing nano-particles includes vaporizing a precursor material to produce a vapor, directing the vapor into an isolation chamber, combining a quench fluid in a gaseous state with a quench fluid in a liquid state to form a quench fluid stream, contacting the vapor contained in the isolation chamber with the quench fluid stream thereby cooling the vapor to produce the nano-particles in a carrier stream, and removing the nano-particles from the isolation chamber.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 24, 2009
    Assignee: Cyprus Amax Minerals Company
    Inventors: Joel A. Taube, Mohamed H. Khan, James A. Cole
  • Patent number: 7118724
    Abstract: Nanophase WC powder is produced by preparing a precursor including tungsten; producing gas by vaporizing or sublimating the precursor; carbonizing the gas in the atmosphere without oxygen while maintaining pressure below atmospheric pressure; and condensing the carbonized gas
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: October 10, 2006
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Byung Kee Kim, Jin Chun Kim, Gook Hyun Ha, Chul Jin Choi
  • Patent number: 7115240
    Abstract: The present invention relates to a method of producing nanophase powder, which can be used as materials for high-strength and wear-resistance cemented carbide. It purports to provide a method of producing WC powder of a 10˜20 nm grade by using vapor phase reaction with a precursor containing tungsten. For achieving said objectives, the method of producing WC-based powder according to the present invention comprises preparing a precursor containing tungsten; producing gas by vaporizing said precursor in a reactor; and carburizing said gas in a non-oxidizing atmosphere. The nanophase WC powder produced as such has high-strength and excellent wear-resistance, which can be suitably used as materials for carbide tools, carbide cement, wear-resistance components, or metal molds.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 3, 2006
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Byung Kee Kim, Gook Hyun Ha
  • Patent number: 6723876
    Abstract: Process for the combined preparation of urea and ammonia reactant by steps of providing ammonia synthesis gas containing carbon dioxide and conversion of the synthesis gas to the ammonia reactant, reacting the ammonia reactant with the carbon dioxide in the synthesis gas to ammonium carbamate and to urea product, which process comprises further steps of prior to the conversion of the synthesis gas to the ammonia reactant, (i) washing the synthesis gas with an aqueous solution of the ammonia reactant and forming a solution being rich in ammonium carbamate; (ii) removing excess of ammonia reactant from the washed synthesis gas by washing with water and withdrawing an aqueous solution of ammonia reactant; (iii) purifying the water washed synthesis gas by removing remaining amounts of water and ammonia; and (iv) passing the purified synthesis gas to the conversion of the gas to ammonia reactant.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: April 20, 2004
    Assignee: Haldor Topsoe A/S
    Inventor: Christian Speth
  • Patent number: 6375908
    Abstract: A process is disclosed for recovering raw materials, in particular heavy metals such as chromium, zinc, copper, lead, or nickel, by separation from waste and residues, wherein a liquid or viscous starting mixture and/or a starting mixture composed of crushed or ground components is first prepared. The invention is characterized in that the raw materials are separated by a thermochemical treatment. The liquid, viscous and/or solid starting mixture is first mixed with additives, depending on its composition, then subjected to a thermal treatment in an oven. The atmosphere in the oven flows through the starting mixture and the suspended materials thus generated as flakes or dust are conveyed out of the oven through a filter installation with several stages in which they are separated from the waste gas. The first filter is designed as a hot filter, after which the waste gas is cooled and after flowing through at least a second filter, pre-heated and then burnt at a high temperature.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: April 23, 2002
    Inventors: Melania Kaszas-Savos, Tiberiu Kaszas
  • Publication number: 20020025283
    Abstract: A process is disclosed for recovering raw materials, in particular heavy metals such as chromium, by separation from waste and residues, wherein a liquid or viscous starting mixture and/or a starting mixture composed of crushed or ground components is first prepared. The invention is characterized in that the raw materials are separated by a thermochemical treatment. The liquid, viscous and/or solid starting mixture is first mixed with additives, depending on its composition, then subjected to a thermal treatment in an oven. The atmosphere in the oven flows through the starting mixture and the suspended materials thus generated as flakes or dust are conveyed out of the oven through a filter installation with several stages in which they are separated from the waste gas. The first filter is designed as a hot filter, after which the waste gas is cooled and after flowing through at least a second filter, pre-heated and then burnt at a high temperature.
    Type: Application
    Filed: October 28, 1999
    Publication date: February 28, 2002
    Inventors: MELANIA KASZAS-SAVOS, TIBERIU KASZAS
  • Patent number: 5972301
    Abstract: Formation of hexavalent chromium is reduced during incineration/combustion of materials containing hexavalent chromium by adding to the waste prior to or during combustion a small amount of sulfur. The sulfur can be added as elemental sulfur, as sulfur dioxide, or as high sulfur fuels or high sulfur waste.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: October 26, 1999
    Assignee: The United States of America as represented by the Environmental Protection Agency
    Inventors: William P. Linak, Jost O. L. Wendt
  • Patent number: 5802438
    Abstract: An improved method for producing .sup.99m Tc compositions. .sup.100 Mo metal is irradiated with photons in a particle (electron) accelerator to produce .sup.99 Mo metal which is dissolved in a solvent. A solvated .sup.99 Mo product is then dried to generate a supply of .sup.99 MoO.sub.3 crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized .sup.99m TcO.sub.3 and vaporized .sup.99m TcO.sub.2 but will not cause the production of vaporized .sup.99 MoO.sub.3. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline .sup.99 MoO.sub.3 starting materials with segregated .sup.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: September 1, 1998
    Assignee: Lockheed Martin Idaho Technologies Company
    Inventors: Ralph G. Bennett, Jerry D. Christian, Robert J. Kirkham, Troy J. Tranter
  • Patent number: 5802439
    Abstract: An improved method for producing .sup.99m Tc compositions from .sup.99 Mo compounds. .sup.100 Mo metal or .sup.100 MoO.sub.3 is irradiated with photons in a particle (electron) accelerator to ultimately produce .sup.99 MoO.sub.3. This composition is then heated in a reaction chamber to form a pool of molten .sup.99 MoO.sub.3 with an optimum depth of 0.5-5 mm. A gaseous mixture thereafter evolves from the molten .sup.99 MoO.sub.3 which contains vaporized .sup.99 MoO.sub.3, vaporized .sup.99m TcO.sub.3, and vaporized .sup.99m TcO.sub.2. This mixture is then combined with an oxidizing gas (O.sub.2(g)) to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7 and vaporized .sup.99 MoO.sub.3. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized .sup.99 MoO.sub.3. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: September 1, 1998
    Assignee: Lockheed Martin Idaho Technologies Company
    Inventors: Ralph G. Bennett, Jerry D. Christian, S. Blaine Grover, David A. Petti, William K. Terry, Woo Y. Yoon
  • Patent number: 5776848
    Abstract: An aqueous epoxidation process stream containing molybdenum and sodium values is incinerated and an aqueous solution containing molybdenum and sodium is recovered, acidified and reacted with a calcium compound without first adding base to form solid CaMoO.sub.4 which is separated.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: July 7, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Thomas I. Evans, Robert L. Cannon
  • Patent number: 5585077
    Abstract: An aqueous epoxidation process stream containing molybdenum and sodium values and organics is treated for organics removal as by incineration and an aqueous solution containing molybdenum and sodium is recovered, acidified and reacted with a calcium compound to form solid CaMoO.sub.4 which is separated.
    Type: Grant
    Filed: August 3, 1995
    Date of Patent: December 17, 1996
    Assignee: ARCO Chemical Technology, L.P.
    Inventors: Thomas I. Evans, Stephen H. Harris
  • Patent number: 5512264
    Abstract: An amorphous, blue molybdenum oxide having a particle size distibution of from 2 to 100 nm, and which is used advantageously in the preparation of toners for electrophotography.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: April 30, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Jorg Adel, Erwin Czech
  • Patent number: 5328668
    Abstract: Semiconductor grade tungsten hexafluoride (WF.sub.6) is produced by reacting tungsten metal with a recirculating flow of gaseous WF.sub.6 containing a small concentration of fluorine in a heated reactor. The high purity WF.sub.6 produced is useful for deposition of tungsten metallization in fabricating VLSI integrated circuitry.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: July 12, 1994
    Assignee: Bandgap Chemical Corporation
    Inventors: Bruce J. Sabacky, Robert E. Doane
  • Patent number: 5298227
    Abstract: A process and apparatus for the separation of vaporous heavy metal compounds from a carrier gas wherein the heavy metal compounds are cooled and desublimed. An apparatus for carrying out this process has a melting furnace with a discharge opening for a gas/ vapor mixture, which leads to a cooling device.Vaporous heavy metal compounds can be separated from a carrier gas on a large industrial scale. In addition, the apparatus for carrying out this process is easy to operate. The gas/vapor mixture is turbulently mixed immediately after the discharge from the furnace in a mixing section with cold air and is thus cooled. During this cooling, the vaporous heavy metal compounds desublime and are filtered as particles in a filter.
    Type: Grant
    Filed: August 18, 1989
    Date of Patent: March 29, 1994
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Michael Hirth, Joachim Jochum, Harald Jodeit, Christian Wieckert
  • Patent number: 5259866
    Abstract: Chromium carbide powder and/or powder of an easily sulfidable metal are added to powdered crude metallic chromium to form a mixture thereof, which is then heated in vacuum to remove S, N and O by degassing so that consequently the crude metallic chromium is free from impurities to a possible maximum extent.Alternatively, powdered crude metallic chromium is heated in an atmosphere of inert gas to temperature between 800 and 1,400.degree. C. and then an easily sulfidable metal is added thereto to form a mixture thereof. Subsequently, the mixture is, directly or after adding carbon or chromium carbide, heated again in vacuum or in an atmosphere of inert gas to eliminate S, N and O by degassing so that the crude metallic chromium is free from impurities to a possible maximum extent.Still alternatively, powdered crude metallic chromium is washed with inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid or organic acid such as acetic acid to remove metal impurities such as Fe.
    Type: Grant
    Filed: June 24, 1991
    Date of Patent: November 9, 1993
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Kenichi Kobayashi, Tatsuhiko Fujinuma
  • Patent number: 5234679
    Abstract: A method of refining tungsten hexafluoride containing molybdenum hexafluoride as an impurity includes the step of contacting the tungsten hexafluoride with at least one metal selected from the group consisting of Mo, W, Cu, Ni, Fe, Co, Zn, Ti, Al, Ca and Mg at a temperature ranging from 100.degree. to 500.degree. C. Molybdenum hexafluoride is efficiently removed from the tungsten hexafluoride by the method.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: August 10, 1993
    Assignee: Central Glass Company, Limited
    Inventors: Takashi Suenaga, Mitsuya Ohashi, Takashi Yoneda, Yoshiyuki Kobayashi
  • Patent number: 5223234
    Abstract: A method and apparatus for producing molybdenum trioxide from raw materials containing molybdenum disulfide including melting the raw materials in an oxidizing atmosphere volatilizing a major portion of the raw materials as molybdenum trioxide with the remainder bonded in a molten slag as MoO.sub.4 and directing an oxidizing gas onto the molten slag to convert the MoO.sub.4 to molybdenum trioxide with the volatilization gas and the gas from the slag being united, the gas cooled and the molybdenum trioxide condensed from the gas into solid form (undesirable admixtures are separated from molybdenum trioxide raw oxides hydrometallurgically).
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: June 29, 1993
    Assignees: Kloeckner-Humboldt-Deutz AG, Corporacion Nacional del Cobre de Chile
    Inventors: Gerhard Melcher, Friedrich Megerle, Claudio Q. Diaz, Gerardo A. Herrera
  • Patent number: 5104445
    Abstract: The present invention is a process to recover metals from refractory ores. It involves the chlorination of an ore concentrate in the presence of solid salt at a temperature between 300.degree. and 650.degree. C. Thereafter, an oxidation step can be used to convert iron chloride to iron oxide. Subsequent separation steps remove the salt, gangue, and iron oxides. Separate pathways are described for precious and base metal recovery.
    Type: Grant
    Filed: February 8, 1990
    Date of Patent: April 14, 1992
    Assignee: Chevron Research & Technology Co.
    Inventors: Michael Dubrovsky, Paul J. Marcantonio
  • Patent number: 4981658
    Abstract: Process for the fine purification of fission molybdenum, dissolved in ionic form together with ions of the fission products of I, Sn, Ce, Ru and Zr in aqueous mineral acid solution, in which the fission molybdenum is fixed by a metal oxide in a sorption step and is then released in a desorption step, comprising: (a) passing the aqueous solution over an amphoteric oxide to sorb the ions of Mo, I, Ce, Ru, Sn and Zr, (b) drying the resulting charged oxide and thereafter heating the dried oxide to a temperature of about 1200.degree. C. to about 1300.degree. C. to sublimate the Mo, and at the same time passing a carrier stream containing water vapor and oxygen over the charged oxide to take up the Mo, and (c) desublimating Mo out of the carrier gas stream by cooling to a temperature below 600.degree. C., and followed by further cooling to room temperature, dissolving the resulting Mo residue in an aqueous solution of a strong alkali to form a molybdate solution.
    Type: Grant
    Filed: May 9, 1989
    Date of Patent: January 1, 1991
    Assignee: Kernforschungezentrum Karlsruhe GmbH
    Inventors: Sameth A. H. Ali, Jochen Buerck
  • Patent number: 4961805
    Abstract: A preheater assembly for softening a selected portion of plastic stock material prior to severing and edge sealing is disclosed. The preheater assembly includes a pair of opposed preheaters, each having a heater tip connected to a source of heated air. The air flows through the tip to maintain it at a preselected temperature. The preheaters are mounted on opposite sides of the stock material for motion toward the material to engage it on opposite sides to heat and soften it, and away from the material to release it. Clamp elements engage the stock material during the heating and softening process.
    Type: Grant
    Filed: May 17, 1989
    Date of Patent: October 9, 1990
    Assignee: Com-Pac International, Inc.
    Inventor: Lester D. Siebert
  • Patent number: 4842832
    Abstract: Ultra-fine spherical particles of a metal oxide having an average particle diameter of 40 nm or smaller can be prepared by a method in which a vaporizable metal compound is vaporized and decomposed under heating to give ultra-fine particles of a metal oxide followed by immediate cooling down to a temperature at which coalescence of the fine particles are prevented from coalescence. The fine particles have characteristics such as an excellent power of ultraviolet scattering.
    Type: Grant
    Filed: March 21, 1988
    Date of Patent: June 27, 1989
    Assignee: Idemitsu Kosan Company Limited
    Inventors: Hakuai Inoue, Hiroshi Komiyama
  • Patent number: 4687647
    Abstract: Molybdenite, MoS.sub.2, is completely converted into molybdenum dioxide, MoO.sub.2, by mixing MoS.sub.2 with petroleum or coal tar pitches and heating in air at 400.degree.-600.degree. F.
    Type: Grant
    Filed: January 8, 1987
    Date of Patent: August 18, 1987
    Inventor: Lloyd Berg
  • Patent number: 4629606
    Abstract: The present invention provides a process for recovering a tungsten compound from a waste liquor containing a high-boiling organic compound and the tungsten compound, which process comprises the steps of spray-burning said waste liquor at an air ratio of 1.05 or higher under conditions of a temperature and a residence time which lie within the region of a pentagon defined by points A, B, C, D, and E in FIG. 1; quenching the combustion product by immediately bringing it into direct contact with water; and recovering the tungsten compound.
    Type: Grant
    Filed: July 16, 1985
    Date of Patent: December 16, 1986
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yoshiyuki Imagire, Teruhiko Hirabayashi, Nobuo Nonaka, Toshifumi Kitagawa, Yasukazu Murakami, Iwao Abe, Shinzo Uda, Osamu Ohshima, Etsuo Takemoto
  • Patent number: 4608235
    Abstract: A process is disclosed for recovering cobalt from an alloy containing other metals as chromium, tungsten, etc. The process involves first adding the alloy to fused sodium hydroxide at a temperature of from about 750.degree. C. to about 1000.degree. C. to form a reaction mixture, the amount of sodium hydroxide being sufficient to subsequently form sodium salts which are essentially those of chromium and tungsten and hydroxides which are essentially those of cobalt and nickel. The reaction mixture is then heated at a sufficient temperature for a sufficient time while introducing an oxidizing gas into the reaction mixture to form a melt which consists essentially of the sodium salts and the hydroxides, followed by cooling the melt. The cooled melt is then contacted with sufficient water to form a solution containing the major portion of the sodium salts and a solid containing the major portion of the hydroxides, followed by separating the solid from the solution.
    Type: Grant
    Filed: March 21, 1985
    Date of Patent: August 26, 1986
    Assignee: GTE Products Corporation
    Inventors: Clarence D. Vanderpool, Richard A. Scheithauer, Richard G. W. Gingerich
  • Patent number: 4604265
    Abstract: A process is disclosed for recovering tungsten and rhenium from a tungsten and rhenium source. The process involves firing the source in an oxidizing atmosphere at a sufficient temperature for a sufficient time to convert the tungsten and rhenium to their respective oxides, to remove a portion of the rhenium as volatilized oxide, and to form a first fired material containing essentially all of the tungsten and the remaining portion of the rhenium, increasing the surface area of the resulting oxidized tungsten, and firing the first fired material in an oxidizing atmosphere at a sufficient temperature for a sufficient time to remove essentially all of the remaining portion of the rhenium as volatilized oxidized rhenium and to form an essentially rhenium-free oxidized tungsten.
    Type: Grant
    Filed: August 22, 1985
    Date of Patent: August 5, 1986
    Assignee: GTE Products Corporation
    Inventors: Alan D. Douglas, Kenneth T. Reilly, John E. Landmesser, Richard E. Landry, Martin B. MacInnis
  • Patent number: 4576636
    Abstract: A process for the beneficiation of an iron-containing material is carried out by first chlorinating the iron-containing material. Oxidation of ferrous chloride in the effluent gas from the chlorination is carried out under controlled conditions of oxygen supply so that more than 50% but less than 100% of the ferrous chloride is oxidized. In this way chlorine gas is separated from the process stream in a relatively pure form which can be utilized in a continuous process by recycle to another chlorination.
    Type: Grant
    Filed: February 17, 1981
    Date of Patent: March 18, 1986
    Assignee: SCM Chemicals Limited
    Inventors: Michael Robinson, Harry B. Wilson
  • Patent number: 4560539
    Abstract: A process is disclosed for removing ammonia from a sodium tungstate solution. The process involves heating the solution at from about 80.degree. C. to about 95.degree. C., while at the same time maintaining the pH above about 9.4 by addition of sodium hydroxide to the sodium tungstate solution. The heating is carried out for a period of time sufficient to allow the essentially complete removal of the ammonia.
    Type: Grant
    Filed: January 11, 1985
    Date of Patent: December 24, 1985
    Assignee: GTE Products Corporation
    Inventors: Tai K. Kim, Robin W. Munn, Carl W. Boyer, Martin C. Vogt
  • Patent number: 4555387
    Abstract: A process and system are provided for flash-roasting molybdenum sulfide containing slag-forming constituents. The process comprises feeding a pneumatically suspended stream of particulate molybdenum sulfide and a mixture of fuel and oxidizing gases through a nozzle into a confined furnace chamber, the fuel gas-oxidizing gas mixture exiting from the nozzle being ignited to provide a flame thereof, the flame being maintained at a condition to provide a temperature in the furnace chamber sufficient to oxidize the molybdenum sulfide and form a volatile gas comprising molybdenum trioxide. The temperature is at least sufficient to melt the slag-forming constituents such that the slag formed is sufficiently liquid to separate from the gaseous mixture and collect at a selected portion of said chamber for removal therefrom.
    Type: Grant
    Filed: February 27, 1984
    Date of Patent: November 26, 1985
    Assignee: Amax Inc.
    Inventors: Bruce J. Sabacky, Malcolm T. Hepworth
  • Patent number: 4551312
    Abstract: A process for converting molybdenite to molybdenum oxide by a flash roasting process wherein the molybdenum calcine produced in the flash roasting process is subsequently treated with a free chlorine-containing aqueous solution.
    Type: Grant
    Filed: November 13, 1984
    Date of Patent: November 5, 1985
    Assignee: Atlantic Richfield Company
    Inventor: William A. Yuill
  • Patent number: 4551313
    Abstract: A process and system are provided for flash-sublimation of molybdic oxide containing slag-forming constituents. The process comprises feeding a pneumatically suspended stream of particulate molybdic oxide and a mixture of fuel and oxidizing gases through a nozzle into a confined furnace chamber, the fuel gas-oxidizing gas mixture exiting from the nozzle being ignited to provide a flame thereof, the flame being maintained at a condition to provide a temperature in the furnace chamber in excess of that required to sublime molybdic oxide. The temperature is preferably at least sufficient to melt slag-forming constituents contained in said molybdic oxide such that the slag formed is sufficiently liquid to separate from the gaseous mixture and collect at a selected portion of the chamber for removal therefrom.
    Type: Grant
    Filed: February 27, 1984
    Date of Patent: November 5, 1985
    Assignee: Amax Inc.
    Inventors: Bruce J. Sabacky, Malcolm T. Hepworth
  • Patent number: 4519987
    Abstract: In the fluidized bed chlorination of oxidic materials, for example minerals such as bauxite, tantalite, columbite, wolframite or scheelite, the separation of metal values giving vaporous chlorides at the reaction temperature is enhanced by maintaining a zone substantially free of chlorine in the fluidized bed, for example a zone at least 0.25 m in depth measured from the expanded bed surface. A high aspect ratio bed and counter current movement of the bed matter and the chlorine within the bed are preferably used.
    Type: Grant
    Filed: September 12, 1983
    Date of Patent: May 28, 1985
    Assignee: Laporte Industries Limited
    Inventor: Michael Robinson
  • Patent number: 4455283
    Abstract: A process for recovering molybdenum values from a spent catalyst solution obtained from a crude reaction product of a molybdenum catalyzed epoxidation of an olefin with an organic hydroperoxide from which crude reaction product epoxide and alcohol corresponding to the hydroperoxide is removed, which process comprises vacuum evaporation without suppressed vaporization of the spent catalyst solution feed.
    Type: Grant
    Filed: May 24, 1982
    Date of Patent: June 19, 1984
    Assignee: Atlantic Richfield Company
    Inventor: Norman H. Sweed
  • Patent number: 4421727
    Abstract: Salts of the formula NF.sub.4.sup.+ MF.sub.7.sup.- are produced by the fowing reactionNF.sub.4 HF.sub.2 nHF+MF.sub.6 .fwdarw.NF.sub.4 MF.sub.7 +(n+1)HFwherein M is uranium (U) or tungsten (W).
    Type: Grant
    Filed: June 25, 1982
    Date of Patent: December 20, 1983
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William W. Wilson, Karl O. Christe
  • Patent number: 4226836
    Abstract: A process for separating molybdenum values from sea nodules which includes sulfation of the sea nodules, volatilization of the molybdenum values from the sea nodules and collection of the volatile molybdenum values.
    Type: Grant
    Filed: January 3, 1979
    Date of Patent: October 7, 1980
    Assignee: University Patents, Inc.
    Inventors: Harry Zeitlin, Quintus Fernando
  • Patent number: 4123498
    Abstract: A process for the separation and collection of molybdenum-99 from an irradiated uranium-containing target material utilizes thermal chromatographic separation. The irradiated target material containing the molybdenum-99 is heated in an oxidizing atmosphere to form an oxidized target material and gaseous molybdenum-99 trioxide. The gaseous molybdenum-99 trioxide is carried by the oxidizing atmosphere along with other vaporized materials to a cooling zone for progressive condensation and collection of the molybdenum-99 trioxide and the other materials in the form of separate deposits.
    Type: Grant
    Filed: February 17, 1977
    Date of Patent: October 31, 1978
    Assignee: General Electric Company
    Inventors: Herman S. Rosenbaum, Douglas R. Packard, Harry A. Levin
  • Patent number: 4017583
    Abstract: A novel process and an apparatus are herein disclosed for separating molybdenum-99 from irradiated uranium.
    Type: Grant
    Filed: January 31, 1975
    Date of Patent: April 12, 1977
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Kenji Motojima, Matae Iwasaki, Kazuya Suzuki, Yoshihide Komaki, Katsuaki Ichiyanagi
  • Patent number: 3997465
    Abstract: Process for dehalogenation of particulate compositions containing halide impurities including metallic oxides and metallic halides such as metallic fluorides to produce metallic oxides by contacting the compositions in a heated atmosphere containing vaporized alcohol. A second gas including inert gases and active dehalogenating gases can be mixed with the vaporized alcohol. A preferred practice has agitation of the particulate compositions containing halide impurities during the dehalogenation process. The metallic oxide produced by dehalogenation can be freed from any hydrocarbon residues where desired by a subsequent heating step in a reducing atmosphere. The halide ions from the dehalogenation can be recovered as an acid by passing the dehalogenation atmosphere through water. A preferred practice of this invention uses propyl alcohol as no hydrocarbon residues are found in the dehalogenated powder.
    Type: Grant
    Filed: July 23, 1973
    Date of Patent: December 14, 1976
    Assignee: General Electric Company
    Inventors: Leonard N. Grossman, Donald A. Brigham
  • Patent number: 3937794
    Abstract: An improved method of making finely divided, dry metal halides and sulfides, such as chromium chloride and chromium sulfide which are suitable for use as lubricants and wear-proof and corrosion-proof agents for metals.
    Type: Grant
    Filed: August 2, 1973
    Date of Patent: February 10, 1976
    Assignee: Kabushiki Kaisha Kito
    Inventors: Norio Kanetake, Ikuo Maruyama, Katsuyuki Morita