Zinc, Cadmium, Or Mercury Containing (e.g., Zincate, Etc.) Patents (Class 423/594.14)
  • Patent number: 9765195
    Abstract: The present invention aims to provide a chlorinated vinyl chloride-based resin composition with excellent thermal stability and a molded body thereof. The present invention relates to a resin composition for molding, including a chlorinated vinyl chloride-based resin, a thermal stabilizer, and a polyalcohol and/or a partial ester of a polyalcohol. The chlorinated vinyl chloride-based resin has a chlorine content of 65% by weight or more and less than 72% by weight. The chlorinated vinyl chloride-based resin has, based on the total number of moles of a structural unit (a) —CCl2—, a structural unit (b) —CHCl—, and a structural unit (c) —CH2—, a proportion of the structural unit (a) of 17.5 mol % or less, a proportion of the structural unit (b) of 46.0 mol % or more, and a proportion of the structural unit (c) of 37.0 mol % or less.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 19, 2017
    Assignees: SEKISUI CHEMICAL CO., LTD., TOKUYAMA SEKISUI CO., LTD.
    Inventors: Kenichi Matsumura, Atsushi Seiki, Ryota Yamasugi
  • Patent number: 9758633
    Abstract: The present invention aims to provide a chlorinated vinyl chloride-based resin composition with excellent thermal stability and a molded body thereof. The present invention relates to a resin composition for molding, including a chlorinated vinyl chloride-based resin, a thermal stabilizer, and a polyalcohol and/or a partial ester of a polyalcohol. The chlorinated vinyl chloride-based resin has a chlorine content of 65% by weight or more and less than 72% by weight. The chlorinated vinyl chloride-based resin has, based on the total number of moles of a structural unit (a) —CCl2—, a structural unit (b) —CHCl—, and a structural unit (c) —CH2—, a proportion of the structural unit (a) of 17.5 mol % or less, a proportion of the structural unit (b) of 46.0 mol % or more, and a proportion of the structural unit (c) of 37.0 mol % or less.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 12, 2017
    Assignees: SEKISUI CHEMICAL CO., LTD., TOKUYAMA SEKISUI CO., LTD.
    Inventors: Kenichi Matsumura, Atsushi Seiki, Norikazu Mashino, Kei Yoshiyama, Atsushi Kawano
  • Patent number: 9611373
    Abstract: The present invention aims to provide a chlorinated vinyl chloride-based resin composition with excellent thermal stability and a molded body thereof. The present invention relates to a resin composition for molding, including a chlorinated vinyl chloride-based resin, a thermal stabilizer, and a polyalcohol and/or a partial ester of a polyalcohol. The chlorinated vinyl chloride-based resin has a chlorine content of 65% by weight or more and less than 72% by weight. The chlorinated vinyl chloride-based resin has, based on the total number of moles of a structural unit (a) —CCl2—, a structural unit (b) —CHCl—, and a structural unit (c) —CH2—, a proportion of the structural unit (a) of 17.5 mol % or less, a proportion of the structural unit (b) of 46.0 mol % or more, and a proportion of the structural unit (c) of 37.0 mol % or less.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 4, 2017
    Assignees: SEKISUI CHEMICAL CO., LTD., TOKUYAMA SEKISUI CO., LTD.
    Inventors: Kenichi Matsumura, Atsushi Seiki, Norikazu Mashino, Kei Yoshiyama, Atsushi Kawano
  • Patent number: 9611374
    Abstract: The present invention aims to provide a chlorinated vinyl chloride-based resin composition with excellent thermal stability and a molded body thereof. The present invention relates to a resin composition for molding, including a chlorinated vinyl chloride-based resin, a thermal stabilizer, and a polyalcohol and/or a partial ester of a polyalcohol. The chlorinated vinyl chloride-based resin has a chlorine content of 65% by weight or more and less than 72% by weight. The chlorinated vinyl chloride-based resin has, based on the total number of moles of a structural unit (a) —CCl2—, a structural unit (b) —CHCl—, and a structural unit (c) —CH2—, a proportion of the structural unit (a) of 17.5 mol % or less, a proportion of the structural unit (b) of 46.0 mol % or more, and a proportion of the structural unit (c) of 37.0 mol % or less.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 4, 2017
    Assignees: SEKISUI CHEMICAL CO., LTD., TOKUYAMA SEKISUI CO., LTD.
    Inventors: Kenichi Matsumura, Atsushi Seiki, Ryota Yamasugi
  • Patent number: 9334580
    Abstract: A manganese oxide particle having a hexagonal crystal structure or an analogous hexagonal crystal structure with an a-axis length of 8.73±1 ? and a c-axis length of 14.86±1 ?. The manganese oxide particle is preferably produced by a process including mixing an aqueous solution containing manganese (II) and an organic compound having a hydroxyl group while in a heated state with an alkali.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 10, 2016
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Mami Yoshida, Kenji Suzuoka, Kazuhiko Kato, Yasunori Tabira, Isamu Yashima
  • Publication number: 20150075850
    Abstract: The object of the present invention is to provide an etching solution composition for etching a metal oxide containing In and a metal oxide containing Zn and In used as a transparent electrode or an oxide semiconductor of an electronic device such as a semiconductor element or a flat panel display (FPD), the etching solution composition being controllable to give a practical etching rate, having high dissolving power toward Zn, and enabling a long solution life due to suppressed variation of the formulation during use. The object is solved by an etching solution composition that enables microfabrication to be carried out for a metal oxide containing In and a metal oxide containing Zn and In used as a transparent electrode or an oxide semiconductor of an electronic device such as a semiconductor element or an FPD, the composition containing water and at least one type of acid, excluding hydrohalic acids, perhalic acids, etc., having an acid dissociation constant pKan at 25° C.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Applicant: Kanto Kagaku Kabushiki Kaisha
    Inventors: Takuo Ohwada, Toshikazu Shimizu
  • Publication number: 20150075603
    Abstract: A coating is described. The coating includes a metal oxide layer, which in turn includes a surface having a water contact angle greater than 90 degrees. A metal-oxide coating composition is also described. The composition includes effective amounts of a first type and a second of metals and an effective amount of oxygen to react with the first type and the second type of metals to produce a first type and a second type of metal oxides, both of which produce a structure that is greater than about 50% (by volume) amorphous.
    Type: Application
    Filed: March 21, 2013
    Publication date: March 19, 2015
    Inventors: Mark Allen George, Ching-Lin Chang, Ravi Prasad
  • Patent number: 8976321
    Abstract: The present invention relates to a fluorescent powder mixture, a manufacturing method for the same, and a corresponding liquid crystal display device. The fluorescent powder mixture is a mixture of a conductive powder and a fluorescent powder, wherein the conductive powder is aluminum zinc oxide, gallium zinc oxide, or indium tin oxide. The fluorescent powder mixture, the manufacturing method for the same, and the corresponding liquid crystal display device of the present invention increase the conductivity of the fluorescent powder, and further weaken the electron enrichment phenomenon on the surface of the fluorescent powder, so as to increase the illumination performance of the fluorescent powder.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Yewen Wang
  • Publication number: 20140361210
    Abstract: [Problem] The present invention relates to: a heat ray shielding adhesive which is used in bonding to a windowpane and the like and shields neat rays; a heat ray shielding transparent adhesive sheet; and a method for producing the heat ray shielding adhesive. The present invention provides a heat ray shielding transparent adhesive sheet which has nigh transmittance in the visible light region, low haze and more excellent transparency. [Solution] Transparency and heat ray shielding properties can be imparted in a simpler manner by using a heat ray shielding adhesive composition which contains fine heat ray shielding particles that have a half-value width of the first main peak of from. 0.01° to 0.80° (inclusive) as determined by X-ray diffraction pattern, and a heat ray shielding transparent adhesive sheet is therefore able to be produced at low cost.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 11, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Chihiro Takahashi, Hideomi Sakai, Yukihiro Hara, Michiharu Arifuku
  • Patent number: 8877090
    Abstract: There is provided a novel positive electrode active material for a secondary battery. A positive electrode active material for a secondary battery according to the present exemplary embodiment is represented by the following formula (I):Lia(NixCryMn2-x-y-zM1z)O4(I) wherein 0<x, 0<y, 0<z, x+y+z<2, and 0?a?2; and M1 contains at least one selected from the group consisting of Na and Mg. A positive electrode for a secondary battery according to the present exemplary embodiment has the positive electrode active material for a secondary battery according to the present exemplary embodiment.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: November 4, 2014
    Assignee: Nec Corporation
    Inventors: Takehiro Noguchi, Hideaki Sasaki, Makiko Uehara
  • Patent number: 8828280
    Abstract: The paste composition for forming a back electrode of solar cell 10 provided by the present invention contains, as solids, an aluminum powder, a glass powder and a composite powder composed of a particulate composite of a metal oxide with a silicon-containing organic or inorganic compound. This composite powder is contained in an amount of at least 0.01 mass % but less than 0.45 mass % given 100 mass % as the total of the composite powder, the aluminum powder and the glass powder.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: Noritake Co., Ltd
    Inventors: Kosuke Ochi, Shinji Senda, Masao Yamagishi, Mamiko Kume
  • Publication number: 20140241978
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Publication number: 20140212354
    Abstract: A method of selecting a corrosion-inhibiting substance includes selecting a corrosion-inhibiting substance to include a non-tungstate anodic corrosion inhibitor with respect to an amount of zinc in an aluminum alloy substrate that is to be coated with the corrosion-inhibiting substance.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Inventors: Sarah Arsenault-Preece, James T. Beals, Mark R. Jaworowski
  • Patent number: 8715612
    Abstract: Zinc peroxide nanoparticles, used for arsenic and chromium removal, were synthesized using zinc acetate di-hydrate as precursors in ammonical water medium at room temperature.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 6, 2014
    Assignee: Council of Scientific & Industrial Research
    Inventors: Nahar Singh, Rashmi, Sukhvir Singh, Renu Pashricha, Prabhat Kumar Gupta, Daya Soni
  • Publication number: 20140063368
    Abstract: One embodiment of the present invention provides a conductive oxide film having high conductivity and high transmittance of visible light. The conductive oxide film having high conductivity and high transmittance of visible light can be obtained by forming a conductive oxide film at a high substrate temperature in the film formation and subjecting the conductive oxide film to nitrogen annealing treatment. The conductive oxide film has a crystal structure in which c-axes are aligned in a direction perpendicular to a surface of the film.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Masashi OOTA
  • Patent number: 8609146
    Abstract: The present invention relates to the field of polymer chemistry and more particularly to multiblock copolymers and micelles comprising the same. Compositions herein are useful for drug-delivery applications.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Intezyne Technologies, Inc.
    Inventors: Kevin Sill, Habib Skaff
  • Publication number: 20130270109
    Abstract: The oxides for semiconductor layers of thin-film transistors according to the present invention include: In; Zn; and at least one element (X group element) selected from the group consisting of Al, Si, Ta, Ti, La, Mg and Nb. The present invention makes it possible to provide oxides for semiconductor layers of thin-film transistors, in which connection thin-film transistors with In—Zn—O oxide semiconductors not containing Ga have favorable switching characteristics and high stress resistance, and in particular, show a small variation of the threshold voltage before and after positive bias stress tests, thereby having high stability.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Aya Miki, Satoshi Yasuno, Toshihiro Kugimiya, Tomoya Kishi
  • Patent number: 8454860
    Abstract: ZnAlO series thermoelectric conversion materials have large thermal conductivity ? about 40 W/mK at room temperature, thus the dimensionless figure of merit ZT remains around 0.3 at 1000 deg C, which is a third of the value required in practical application. An n-type thermoelectric conversion material, comprising aluminum including zinc oxide, which is represented by a general formula: Zn1-x-yAlxGayO (wherein 0.01?x?0.04, 0.01?y?0.03, 0.9?x/y?2.0). ZT value not less than 0.6 can be realized at 1000 deg C. By co-doping Al and Ga into ZnO, the thermal conductivity ? can be significantly reduced maintaining a large electric conductivity ?, resulting in a significant improvement of the thermoelectric performance.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 4, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Michitaka Ohtaki, Kazuhiko Araki
  • Publication number: 20130087739
    Abstract: A scintillator material is made of a zinc-oxide single crystal grown on a +C surface or a ?C surface of a plate-shaped seed crystal of zinc oxide including a C surface as a main surface. The zinc-oxide single crystal contains In and Li. In response to an incident radiation, the scintillator material emits fluorescence of less than 20-ps fluorescence lifetime.
    Type: Application
    Filed: June 17, 2011
    Publication date: April 11, 2013
    Applicant: DAISHINKU CORPORATION
    Inventors: Masataka Kano, Akira Wakamiya, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Dirk Ehrentraut, Tsuguo Fukuda
  • Patent number: 8409543
    Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: April 2, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Keitaro Fujii
  • Publication number: 20130056691
    Abstract: Materials and structures for improving the performance of semiconductor devices include ZnBeO alloy materials, ZnCdOSe alloy materials, ZnBeO alloy materials that may contain Mg for lattice matching purposes, and BeO material. The atomic fraction x of Be in the ZnBeO alloy system, namely, Zn1-xBexO, can be varied to increase the energy band gap of ZnO to values larger than that of ZnO. The atomic fraction y of Cd and the atomic fraction z of Se in the ZnCdOSe alloy system, namely, Zn1-yCdyO1-zSez, can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped, or p-type or n-type doped, by use of selected dopant elements.
    Type: Application
    Filed: October 25, 2012
    Publication date: March 7, 2013
    Applicant: Moxtronics, Inc.
    Inventor: Moxtronics, Inc.
  • Patent number: 8388928
    Abstract: Provided is an apparatus for producing magnesium-containing zinc oxide, including: zinc vapor producing means 11 which produces zinc vapor by heating metallic zinc; magnesium vapor producing means 15 which produces magnesium vapor by heating metallic magnesium; mixed vapor producing means 20 which produces mixed vapor by mixing the zinc vapor and the magnesium vapor; and oxidizing gas contact means 19 which produces magnesium-containing zinc oxide by bringing an oxidizing gas into contact with the mixed vapor. The content of zinc in the mixed vapor is adjusted to be higher than that of magnesium.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 5, 2013
    Assignee: Ube Material Industries, Ltd
    Inventor: Koji Shibata
  • Patent number: 8372429
    Abstract: An agent for treating ulcer containing, as an effective component, a particulate composite hydrotalcite obtained by solidly dissolving a small amount of zinc in the particulate hydrotalcite, exhibiting excellent effect for treating the peptic ulcer and, further, working as a Zn-supplying agent. The agent for treating the ulcer is represented by the following formula (1), (MgaZnb)1-xAlx(OH)2(An?)x/n.mH2O??(1) wherein An? is CO32?, SO42? or Cl?, n is 1 or 2, and x, a, b and m are values that satisfy the following conditions, 0.18?x?0.4, 0.1?a<1, 0<b?0.5, 0?m<1.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 12, 2013
    Assignee: Kyowa Chemical Industry Co., Ltd.
    Inventors: Keiko Katsuki, Akira Okada
  • Publication number: 20130034490
    Abstract: A method is provided for producing separated substances, particularly metal compounds, the dopant element amounts of which have been controlled by the use of an apparatus that processes fluid between the processing surfaces of a processing member that can be made to approach/separate and which rotate relative to each other. The substance to be separated is separated by mixing a raw material solution, wherein the substance to be separated is solubilized in a solvent, with the solvent for separation and with the dopant element or dopant element-containing substance solubilized in at least one solvent selected from the solvent of said raw material solution, said solvent for separation or a solvent other than that of said raw material solution or said solution for separation. Separated substances with controlled dopant element amounts are obtained by controlling the solubility of the dopant element or dopant element-containing substance in the solvent for separation.
    Type: Application
    Filed: May 25, 2010
    Publication date: February 7, 2013
    Applicant: M. TECHNIQUE CO., LTD.
    Inventor: Masakazu Enomura
  • Publication number: 20130009111
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Toshihiro Kugiyama, Takeaki Maeda, Satoshi Yasuno, Yasuaki Terao, Aya Miki
  • Patent number: 8329129
    Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: December 11, 2012
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Publication number: 20120216710
    Abstract: An oxide including indium (In), gallium (Ga) and zinc (Zn), wherein diffraction peaks are observed at positions corresponding to incident angles (2?) of 7.0° to 8.4°, 30.6° to 32.0°, 33.8° to 35.8°, 53.5° to 56.5° and 56.5° to 59.5° in an X-ray diffraction measurement (CuK? rays), and one of diffraction peaks observed at positions corresponding to incident angles (2?) of 30.6° to 32.0° and 33.8° to 35.8° is a main peak and the other is a sub peak.
    Type: Application
    Filed: November 17, 2010
    Publication date: August 30, 2012
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Koki Yano, Masayuki Itose, Hirokazu Kawashima
  • Patent number: 8236277
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 8216608
    Abstract: A novel particulate composite hydrotalcite which offers antacidic effect comparable to that of a particulate hydrotalcite so far used as a gastric antacid and, further, offers excellent stomach inner wall protection effect. A particulate composite hydrotalcite represented by the following formula (1), (MgaZnb)1-xAlx(OH)2(An?)x/n.mH2O??(1) wherein An? is CO32?, SO42? or Cl?, n is 1 or 2, and x, a, b and m are values that satisfy the following conditions, 0.18?x?0.4, 0.5?a<1, 0<b?0.5, 0?m<1, and a gastric antacid using the particulate composite hydrotalcite as an effective component. When used as a gastric antacid, the particulate composite hydrotalcite suppresses the occurrence of damage in the mucous membranes of stomach and intestines.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 10, 2012
    Assignee: Kyowa Chemical Industry Co., Ltd.
    Inventors: Akira Okada, Keiko Katsuki
  • Publication number: 20120104318
    Abstract: Provided is an apparatus for producing magnesium-containing zinc oxide, including: zinc vapor producing means 11 which produces zinc vapor by heating metallic zinc; magnesium vapor producing means 15 which produces magnesium vapor by heating metallic magnesium; mixed vapor producing means 20 which produces mixed vapor by mixing the zinc vapor and the magnesium vapor; and oxidizing gas contact means 19 which produces magnesium-containing zinc oxide by bringing an oxidizing gas into contact with the mixed vapor. The content of zinc in the mixed vapor is adjusted to be higher than that of magnesium.
    Type: Application
    Filed: June 4, 2010
    Publication date: May 3, 2012
    Applicant: Ube Material Industries, Ltd.
    Inventor: Koji Shibata
  • Publication number: 20120093712
    Abstract: A sputtering target including oxide A shown below and indium oxide (In2O3) having a bixbyite crystal structure: Oxide A: an oxide which includes an indium element (In), a gallium element (Ga) and a zinc element (Zn) in which diffraction peaks are observed at positions corresponding to incident angles (2?) of 7.0° to 8.4°, 30.6° to 32.0°, 33.8° to 35.8°, 53.5° to 56.5° and 56.5° to 59.5° in an X-ray diffraction measurement (CuK? rays).
    Type: Application
    Filed: November 18, 2010
    Publication date: April 19, 2012
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Masayuki Itose, Mami Nishimura
  • Patent number: 8147793
    Abstract: Nano-sized metal-bearing powders and doped-powders are synthesized by means of a process whereby a non-volatile metal-bearing precursor powder or powder mixture is dispersed in a hot gas stream at relatively low temperatures. A first volatile reactant is added, converting the metal in the precursor into a volatile metal compound. Subsequently a second volatile reactant is injected into the gas stream, converting the volatile metal compound into a solid, which condenses as a nano-sized metal-bearing powder upon quenching. Finally, the vapour/metal-bearing powder mixture is separated from the gas stream.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: April 3, 2012
    Assignee: Umicore
    Inventors: Stijn Put, Yves Van Rompaey, Sylvain Van Den Rul
  • Patent number: 8137844
    Abstract: A method for manufacturing a cathode active material for a lithium rechargeable battery, including: selecting a first metal compound from a group consisting of a halide, a phosphate, a hydrogen phosphate and a sulfate of Mg or Al; selecting a second metal compound from a group consisting of an oxide, a hydroxide and a carbonate of Mg or Al; combining the first metal compound and the second metal compound to obtain a metal compound, the metal compound containing either Mg or Al atoms; mixing a lithium compound, a transition metal compound and the metal compound to obtain a mixture; and sintering the mixture.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 20, 2012
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Hidekazu Awano, Minoru Fukuchi, Yuuki Anbe
  • Patent number: 8088349
    Abstract: Disclosed is a clean method for preparing layered double hydroxides (LDHs), in which hydroxides of different metals are used as starting materials for production of LDHs by atom-economical reactions. The atom efficiency of the reaction is 100% in each case because all the atoms of the reactants are converted into the target product since only M2+(OH)2, M3+(OH)3, and CO2 or HnAn? are used, without any NaOH or other materials. Since there is no by-product, filtration or washing process is unnecessary. The consequent reduction in water consumption is also beneficial to the environment.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 3, 2012
    Assignee: Beijing University of Chemical Technology
    Inventors: Xue Duan, Dianqing Li, Zhi Lv, Yanjun Lin, Xiangyu Xu
  • Patent number: 8066969
    Abstract: This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: November 29, 2011
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jin-Woo Cheon, Jung-Wook Seo, Jae-Hyun Lee
  • Patent number: 8057780
    Abstract: Disclosed herein is a method for synthesizing a nanoparticle using a carbene derivative. More specifically, provided is a method for synthesizing a nanoparticle by adding one or more precursors to an organic solvent to grow a crystal, wherein a specific carbene derivative is used as the precursor.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Seung Uk Son
  • Patent number: 8048523
    Abstract: Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to UV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 1, 2011
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Patent number: 8048398
    Abstract: Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 1, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Kraemer, Peter Kress, Horst Miess
  • Publication number: 20110240935
    Abstract: A composite oxide sintered body includes In2Ga2ZnO7 having a homologous crystal structure, and has a relative density of 90% or more, and an average crystal grain size of 10 ?m or less.
    Type: Application
    Filed: December 3, 2009
    Publication date: October 6, 2011
    Applicant: IDEMITSU KOSAN CO., LTD
    Inventors: Koki Yano, Hirokazu Kawashima
  • Patent number: 7971585
    Abstract: Less hazardous methods for generating thermal energy for heating water, medical supplies or comestible products using improved flameless chemical heaters/flameless ration heaters by novel chemical or electrochemical means, each capable of suppressing the generation of hydrogen gas. Remote unit self-heating meals may be more rapidly heated by forming a reaction mixture comprising magnesium or a magnesium-containing alloy, and a hydrogen eliminator or suppressor, and introducing water to react the reaction mixture and generate a more rapid release of thermal energy sufficient to effectuate a more accelerated temperature rise and more rapid heating of medical supplies, water, rations or other comestible substances while simultaneously suppressing or eliminating the generation of potentially hazardous hydrogen.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 5, 2011
    Inventor: Tilak Bommaraju
  • Patent number: 7968070
    Abstract: Process for the production of a metal oxide powder having a BET surface area of at least 20 m2/g by reacting an aerosol with oxygen in a reaction space at a reaction temperature of more than 700° C. and then separating the resulting powder from gaseous substances in the reaction space, wherein the aerosol is obtained by atomisation using a multi-component nozzle of at least one starting material, as such in liquid form or in solution, and at least one atomising gas, the volume-related mean drop diameter D30 of the aerosol is from 30 to 100 ?m and the number of aerosol drops larger than 100 ?m is up to 10%, based on the total number of drops, and metal oxide powder obtainable by this process.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 28, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Michael Kraemer, Michael Kroell, Peter Kress, Edwin Staab
  • Patent number: 7964175
    Abstract: A procedure for obtaining mixed multimetallic oxides derived from hydrotalcite type compounds, characterized in that the laminar metallic hydroxides obtained are constituted by three or four metallic cations, forming part of the sheets of the hydrotalcite type material represented by the formula: [M(II)1?x?y?zM(II)?xM(III)yM(III)?z(OH)2](An?y+z/n).mH2O. by a process comprising: (1) preparing an aqueous or organic solution containing three or more cations; (2) preparing an alkaline solution; (3) slowly combining solutions (1) and (2) to cause the co-precipitation of the cations in the form of hydroxides; (4) washing the precipitate containing the hydrotalcites with water, until removal of the non-precipitated ions; (5) drying; and (6) calcining the hydrotalcites.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: June 21, 2011
    Assignee: Instituto Mexico del Petroleo
    Inventors: Jaime Sánchez Valente, Esteban López Salinas, Manuel Sánchez Cantú, Francisco Hernández Beltrán
  • Publication number: 20110097842
    Abstract: A method for preparing IGZO particles and a method for preparing an IGZO thin film by using the IGZO particles are disclosed. The method for preparing the IGZO particles comprises the following steps: (A) providing a solution of metal acid salts, which contains a zinc salt, an indium salt, and a gallium salt; (B) mixing the solution of the metal acid salts with a basic solution to obtain an oxide precursor; and (C) heating the oxide precursor to obtain IGZO particles.
    Type: Application
    Filed: December 1, 2009
    Publication date: April 28, 2011
    Applicant: National Tsing Hua University
    Inventors: Ya-Hui Yang, Sueli Sidney Yang, Chen-Yu Kao, Kan-San Chou
  • Patent number: 7897136
    Abstract: A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 ?m is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 1, 2011
    Assignee: Sud-Chemie AG
    Inventors: Max Eisgruber, Jürgen Ladebeck, Jürgen Koy, Hubert Schiessling, Wolfgang Buckl, Herrmann Ebert
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Publication number: 20110002831
    Abstract: A sol-gel process for preparing a mixture of metal-oxide-metal compounds wherein at least one metal oxide precursor is subjected to a hydrolysis treatment to obtain one or more corresponding metal oxide hydroxides, the metal oxide hydroxides so obtained are subjected to a condensation treatment to form the metal-oxide-metal compounds, which process is carried out in the presence of an encapsulated catalyst, whereby the catalytically active species is released from the encapsulating unit by exposure to an external stimulus, and wherein the catalytically active species released after exposure to such external stimulus is capable of catalyzing the condensation of the metal-hydroxide groups that are present in the metal oxide hydroxides so obtained.
    Type: Application
    Filed: December 15, 2008
    Publication date: January 6, 2011
    Inventors: Nanning Joerg Arfsten, Pascal Jozef Paul Buskens, Jens Christoph Thies
  • Patent number: 7846416
    Abstract: Anitrate-nitrogen-reducing agent for a farm product, comprising as an active ingredient a hydroxide solid solution represented by the formula (1), [(M12+)1-x(M22+)x]1-z(M3+)z(OH)2(An?)z/n·mH2O??(1) wherein M12+ represents Ca and/or Mg, M22+ represents at least one essential mineral selected from Fe, Mn, Zn, Cu, Ni and Co, M3+ represents at least one trivalent metal, An? represents an anion having a valence of n, x is a positive number in the range of 0<x<0.5, m is 0 or a positive number in the range of 0?m<10, z is a positive number in the range of 0<z<0.4, and n is a positive number in the range of 1?n?10, and/or the formula (2), (M12+)1-x(M22+)x(OH)2??(2) wherein M12+, x and M22+ are as defined in the formula (1).
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Kaisui Kagaku Kenkyujo
    Inventor: Shigeo Miyata
  • Patent number: 7833316
    Abstract: Disclosed are sorbent compositions that include a silicon dioxide porous support impregnated with a mixture comprising zinc oxide and copper material. The sorbent compositions may be utilized in systems and methods for removing sulfur compounds from gaseous streams.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 16, 2010
    Assignee: Auburn University
    Inventors: Bruce Tatarchuck, Hongyun Yang, Priyanka Dhage
  • Publication number: 20100266485
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 21, 2010
    Inventor: Timothy D. Dunbar