Vanadium, Niobium, Or Tantalum Containing (e.g., Vanadate, Niobate, Tantalate, Etc.) Patents (Class 423/594.8)
  • Patent number: 11396481
    Abstract: Provided is a dielectric composition exhibiting a high strength and a high specific dielectric constant. The dielectric composition contains composite oxide particles having a composition formula represented by (SrxBa1-x)yNb2O5+y and an Al-based segregation phase. The Al segregation phase has niobium, aluminum, and oxygen.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: July 26, 2022
    Assignee: TDK CORPORATION
    Inventor: Toshihiro Iguchi
  • Patent number: 11282642
    Abstract: Provided is a dielectric composition exhibiting a high specific dielectric constant and a high resistivity even when fired in a reducing atmosphere. The dielectric composition contains a composite oxide having a composition represented by (SrxBa1-x)yNb2O5+y, the crystal system of the composite oxide is tetragonal, and y in the composition formula is smaller than 1.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 22, 2022
    Assignee: TDK CORPORATION
    Inventor: Toshihiro Iguchi
  • Patent number: 10500610
    Abstract: A method for producing an active material composite for all-solid-state lithium secondary batteries, the active material composite having a lithium niobate-containing coating layer on an active material surface, and the production method being able to decrease the content of a nitrogen element derived from a niobic acid raw material in the coating layer of the active material composite thus produced, and to decrease the reaction resistance of an all-solid-state lithium battery using the active material composite. The active material composite production method may comprise: preparing a coating liquid containing a peroxo complex of niobium and a lithium element, by use of a niobic acid in which a content of a nitrogen element contained as an impurity is 0.1% by mass or less, and forming the lithium niobate-containing coating layer on the active material surface by use of the coating liquid.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 10, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takayuki Uchiyama
  • Patent number: 9979325
    Abstract: A power-generating system includes a heat source which is able to produce temporal temperature variation; a first device which is able to produce temporal temperature variation based on the temperature change of the heat source and in which polarization occurs; a second device for taking out a net generating power from the first device; a temperature sensor that detects the temperature of the first device; a voltage application device that applies a voltage to the first device; and a control unit for activating the voltage application device on detecting an increase in temperature of the first device and for stopping the voltage application device on detecting a decrease in temperature of the first device by the temperature sensor.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 22, 2018
    Assignees: DAIHATSU MOTOR CO., LTD., National University Corporation Nagaoka University of Technology
    Inventors: Yoonho Kim, Satoru Yamanaka, Juyoung Kim, Hirohisa Tanaka, Tadachika Nakayama, Masatoshi Takeda, Noboru Yamada, Koichi Niihara
  • Patent number: 9887419
    Abstract: An electrode active material including a vanadium oxide represented by Formula 1, VOx??Formula 1 wherein vanadium in the vanadium oxide has a mixed oxidation state of a plurality of oxidation numbers, and the oxidation numbers include an oxidation number of +3, and wherein, in Formula 1 above, 1.5<x<2.5.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: February 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ryounghee Kim, Seoksoo Lee, Dongwook Han, Anass Benayad, Jusik Kim, Wonseok Chang
  • Patent number: 9318684
    Abstract: Provided is a semiconductor ceramic element constructed by using a semiconductor ceramic that generates metal-insulator transition at a temperature of actual use and has a sufficient strength to enable easy handling. The semiconductor ceramic element has an element main body having a semiconductor ceramic made of a perovskite-type or pyrochlore-type oxide containing a rare earth element, nickel, and titanium, in which a part of the nickel is present as metal nickel; and a pair of electrodes formed to interpose the element main body therebetween. This semiconductor ceramic element shows a sharp resistance change within a temperature range of actual use, and can be used advantageously as a temperature sensor.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: April 19, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kiyohiro Koto
  • Publication number: 20150086471
    Abstract: A layered multimetallic oxide catalyst having the formula M1 M2 M3 O? wherein: M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, and mixtures thereof; M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, and mixtures thereof; M3 is selected from the group of Mo, W and Cr, and mixtures thereof; and where said multilayered metallic oxide exhibits a major X-ray diffraction peak between 5<2?<15, is prepared by a process of mixing metallic precursors of M1, M2 and M3 to form a precursor mixture, hydrothermal treatment of the resulting mixture to obtain a homogeneous solid mixture, and thermally treating the solid mixture to activate the solid mixture and obtain said catalyst.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
  • Patent number: 8986641
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region, and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments, the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: March 24, 2015
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S Mannan, Ya-Wen Chang
  • Publication number: 20150075603
    Abstract: A coating is described. The coating includes a metal oxide layer, which in turn includes a surface having a water contact angle greater than 90 degrees. A metal-oxide coating composition is also described. The composition includes effective amounts of a first type and a second of metals and an effective amount of oxygen to react with the first type and the second type of metals to produce a first type and a second type of metal oxides, both of which produce a structure that is greater than about 50% (by volume) amorphous.
    Type: Application
    Filed: March 21, 2013
    Publication date: March 19, 2015
    Inventors: Mark Allen George, Ching-Lin Chang, Ravi Prasad
  • Publication number: 20150062257
    Abstract: A sodium niobate powder includes sodium niobate particles having a shape of a cuboid and having a side average length of 0.1 ?m or more and 100 ?m or less, wherein at least one face of each of the sodium niobate particles is a (100) plane in the pseudocubic notation and a moisture content of the sodium niobate powder is 0.15 mass % or less. A method for producing a ceramic using the sodium niobate powder is provided. A method for producing a sodium niobate powder includes a step of holding an aqueous alkali dispersion liquid containing a niobium component and a sodium component at a pressure exceeding 0.1 MPa, a step of isolating a solid matter from the aqueous dispersion liquid after the holding, and a step of heat treating the solid matter at 500° C. to 700° C.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 5, 2015
    Inventors: Tomoaki Masubuchi, Toshiaki Aiba, Toshihiro Ifuku, Makoto Kubota, Takayuki Watanabe, Tatsuo Furuta, Jumpei Hayashi
  • Patent number: 8940270
    Abstract: To provide a sulfur trioxide decomposition catalyst, particularly, a sulfur trioxide decomposition catalyst capable of lowering the temperature required when producing hydrogen by an S—I cycle process. A sulfur trioxide decomposition catalyst comprising a composite oxide of vanadium and at least one metal selected from the group consisting of transition metal and rare earth elements is provided. Also, a sulfur dioxide production process comprising decomposing sulfur trioxide into sulfur dioxide and oxygen by using the sulfur trioxide decomposition catalyst above, is provided. Furthermore, a hydrogen production process, wherein the reaction of decomposing sulfur trioxide into sulfur dioxide and oxygen by an S—I cycle process is performed by the above-described sulfur dioxide production process, is provided.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 27, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Kumamoto University
    Inventors: Shinichi Takeshima, Masato Machida
  • Publication number: 20150023857
    Abstract: One embodiment provides a method, comprising: calculating, using at least one computer, a distance to a hull for an alloy XxY1-x in the range 0.01?x?0.99, where X and Y are perovskite materials; determining, using the at least one computer, a preferred phase for the alloy in the range 0.01?x?0.99; and selecting an alloy composition having the distance to the hull being less than 0.1 eV/atom and for which the preferred phase in at least a portion of the range 0.01?x?0.99 is a tetragonal phase. Piezoelectric materials as selected by the method are also provided.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Applicants: Massachusetts Institute of Technology, Central Michigan University, Robert Bosch LLC Research and Technology Center
    Inventors: Rickard Roberto ARMIENTO, Gerbrand CEDER, Marco FORNARI, Geoffroy HAUTIER, Boris KOZINSKY
  • Patent number: 8936731
    Abstract: A process for the preparation of a niobium compound of formula (I): D?Nb?E?O3-???(I) wherein D is an alkali metal (e.g. Li, Na, K, Rb, Cs and/or Fr), alkaline earth metal (such as Ba, Ca, Mg and/or Sr), La and/or Bi and may be present as a mixture of two or more metals; E is Ta, Sb and/or Fe and may be present as a mixture of two or more metals; ? is a positive number ? is a positive number ? is zero or a positive number ? is a number 0???0.5; and wherein the formula (I) has the perovskite or tungsten bronze structure; comprising spray pyrolising a solution, for example an aqueous solution, comprising metal (D) ions, Nb ions and if present, metal (E) ions.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 20, 2015
    Assignee: Cerpotech AS
    Inventors: Francesco Madaro, Tor Grande, MariAnn Einarsrud, Kjell Wiik
  • Patent number: 8920924
    Abstract: Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of particles of the fine particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. Specifically disclosed are a method of producing particulate sodium-potassium niobate represented by the formula (1): NaxK(1-x)NbO3 (1), the method including four specific steps, wherein a high-concentration alkaline solution containing Na+ ion and K+ ion is used as an alkaline solution; and particulate sodium-potassium niobate having a controlled shape and size.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: December 30, 2014
    Assignees: Sakai Chemical Industry Co., Ltd., TOHOKU University, Fuji Ceramics Corporation
    Inventors: Atsushi Muramatsu, Kiyoshi Kanie, Atsuki Terabe, Yasuhiro Okamoto, Hideto Mizutani, Satoru Sueda, Hirofumi Takahashi
  • Patent number: 8900537
    Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Vaidyanathan Subramanian, Sankaran Murugesan
  • Patent number: 8852464
    Abstract: Electrically conducting vanadium arsenate or vanadium phosphate materials are described. The materials include a vanadium arsenate or vanadium phosphate framework structure about organic template and water molecules which may be removed to leave a microporous structure. The three-dimensional vanadium framework may provide electronic conductivity, while the extra-framework constituents may provide ionic conductivity.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 7, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Victoria Soghomonian, Jean J. Heremans
  • Publication number: 20140221683
    Abstract: A process for producing a catalytically active composition being a mixture of a multielement oxide comprising the elements Mo and V and at least one oxide of molybdenum, in which spray drying of an aqueous solution or of an aqueous suspension of starting compounds comprising the elements of the multielement oxide produces a spray powder P, a pulverulent oxide of molybdenum and optionally shaping assistants are added thereto, shaped bodies are shaped from the resulting mixture and these are converted to the catalytically active composition by thermal treatment.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: BASF SE
    Inventors: Cathrin Alexandra Welker-Nieuwoudt, Cornelia Katharina Dobner, Christian Walsdorff, Klaus Joachim Mueller-Engel, Josef Macht
  • Patent number: 8771618
    Abstract: Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index Lmax is 0.10 to 25 ?m, and the length of the shortest side represented by an index Lmin is 0.050 to 15 ?m.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: July 8, 2014
    Assignees: Sakai Chemical Industry Co., Ltd., TOHOKU University, Fuji Ceramics Corporation
    Inventors: Atsushi Muramatsu, Kiyoshi Kanie, Atsuki Terabe, Yasuhiro Okamoto, Hideto Mizutani, Satoru Sueda, Hirofumi Takahashi
  • Publication number: 20140186706
    Abstract: A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N·MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Publication number: 20140177130
    Abstract: Disclosed herein are a dielectric composition including a compound represented by the following Chemical Formula A5-xB10O30-x (A necessarily includes Ba, and a portion of Ba is substituted by at least one selected from Sr and Ca; B necessarily includes Nb, and a portion of Nb is substituted by at least one selected from Ta and V; and x satisfies the following equation: 1<x<5) as a main component and a multilayered ceramic capacitor including the same as a dielectric layer.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ki Hyun PARK, Jeong Hyun PARK
  • Patent number: 8758497
    Abstract: Provided is a sputtering target of sintered Ti—Nb based oxide, wherein the sputtering target consists of titanium (Ti), niobium (Nb), and remainder being oxygen and unavoidable impurities, and the atomic ratio of Ti and Nb is 0.39?(Nb/(Ti+Nb))?0.79. The sputtering target of sintered Ti—Nb based oxide has a high refractive index and a low extinction coefficient. Also provided is a thin film of Ti—Nb based oxide obtained by using the foregoing target, which enables high-rate deposition. The thin film has superior transmittance, is subject to minimal reduction and variation of reflectivity, and is useful as an interference film or a protective film of an optical information recording medium, or as a part of a constituent layer of an optical recording medium. The thin film can also be applied to a glass substrate; that is, it can be used as a heat reflecting film, an antireflection film, or an interference filter.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 24, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 8734539
    Abstract: The first aspect of the present invention provides a method of manufacturing an active material capable of improving the discharge capacity of a lithium-ion secondary battery. The method of manufacturing an active material in accordance with the first aspect of the present invention comprises the steps of heating a phosphate source, a vanadium source, and water so as to form an intermediate containing phosphorus and vanadium and having a specific surface area of at least 0.1 m2/g but less than 25 m2/g; and heating the intermediate, a water-soluble lithium salt, and water. The second aspect of the present invention provides a method of manufacturing an active material capable of improving the rate characteristic of a lithium-ion secondary battery.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: May 27, 2014
    Assignee: TDK Corporation
    Inventors: Kouji Tokita, Keitaro Otsuki, Atsushi Sano
  • Patent number: 8716172
    Abstract: Catalyst composition represented by the general formula REVO/S wherein RE is at least one of the group of rare earth metals Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er and Yb in an amount of up to 6.0 wt.-%; V is vanadium in an amount of 0.2-2.5 wt.-%; O is oxygen in an amount of up to 3.5 wt.-%; and S is a support containing TiO2 in an amount of at least 70 wt.-%, with the rest being WO3 and optionally SiO2. This catalyst composition shows high removal efficiencies for NOx even after aging at 750° C.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 6, 2014
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Irene Begsteiger, Alessandro Trovarelli, Eliana Rocchini, Marzia Casanova
  • Publication number: 20140106170
    Abstract: Provided are methods of manufacturing an oriented ceramics containing sodium niobate and a raw material thereof. Specifically, provided is a sodium niobate powder, including cuboidal sodium niobate particles having an average side length of 0.1 ?m or more to 100 ?m or less, at least one face of the cuboid including a (100) plane in pseudo-cubic notation, in which the sodium niobate powder has a perovskite single-phase structure.
    Type: Application
    Filed: May 17, 2012
    Publication date: April 17, 2014
    Applicants: UNIVERSITY OF YAMANASHI, CANON KABUSHIKI KAISHA
    Inventors: Takayuki Watanabe, Hiroshi Saito, Jumpei Hayashi, Nobuhiro Kumada
  • Patent number: 8697019
    Abstract: Nanostructured manganese-containing compositions having reduced manganese dissolution and methods of making and using the same are provided. In one embodiment, a composition of matter comprises a nanostructured oxide or hydroxide doped with Mn4+. The composition of matter can be made by forming a nanostructured oxide or hydroxide material doped with Mn3+ and oxidizing the Mn3+ to Mn4+ to reduce dissolution of the manganese in the nanostructured oxide or hydroxide material. In another embodiment, a method of reducing dissolution of manganese present in a nanostructured MnO2 material comprises: doping a nanostructured MnO2 material with Fe3+ to reduce the dissolution of the manganese.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 15, 2014
    Assignee: Inframat Corporation
    Inventors: Huimin Chen, Lei Jin
  • Patent number: 8623781
    Abstract: The oxidative dehydrogenation of propane provides a highly selective catalyst for the oxidative dehydrogenation of propane to propylene, and a process for preparing the catalyst. The catalyst is a mixed metal oxides catalyst of the general formula MoaVbOx, where the molar ratio of molybdenum to vanadium is between 1:1 and 9:1 (a:b is between 0.5:0.5 and 0.9:0.1) and x is determined according to the oxidation state of the cations present. The catalyst is prepared by mixing the metals by sol-gel technique, heating the gel to dry the mixed oxides, further heating the dried product to induce auto-combustion, washing the product with isopropyl alcohol, and drying with a supercritical CO2 dryer. Oxidative dehydrogenation is carried out by contacting a stream of propane gas with the bulk mixed metal oxides catalyst at a temperature between 350° C. and 550° C. Propylene selectivity of 100% is reached at conversion rates between 1.9% and 4.8%.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 7, 2014
    Assignee: King Fahd University of Pretroleum and Minerals
    Inventors: Shakeel Ahmed, Hassan S. Alasiri, Faizur Rahman, Adnan M. J. Al-Amer
  • Publication number: 20140004000
    Abstract: This invention relates to a method of making lead-free piezoelectric ceramic films. Specifically, the invention is directed to a method for fabricating lead-free piezoelectric free standing films having enhanced piezoelectric properties. The films may be used for a number of applications including incorporation in microelectronic devices such as energy harvesting devices and sensor technologies.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 2, 2014
    Applicant: DREXEL UNIVERSITY
    Inventors: Wei-Heng SHIH, Wan Y. SHIH, Huidong LI
  • Publication number: 20130336871
    Abstract: A cosmetic material that exhibits sufficient shielding effects against UV-A and UV-B, does not color a resultant cosmetic product even when blended in cosmetic materials, and will not result in a non-powdery finish when applied to the skin, and a method for producing such a cosmetic material are provided. It is a cosmetic material with at least part of InTaO4 substituted with at least one element of Sc, Ti, V, Cr, Mn, Co, Cu, Ga, Ge, As, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Hf, W, Re, Os, Ir, Pt, Au, and Hg.
    Type: Application
    Filed: November 9, 2011
    Publication date: December 19, 2013
    Applicant: IHI CORPORATION
    Inventors: Haruki Eguchi, Kenji Fuchigami
  • Patent number: 8603678
    Abstract: A positive electrode active material for a nonaqueous electrolyte battery. The positive electrode active material has been manufactured through a mixing step and a heating step. In the mixing step, a mixture is produced by mixing niobium pentoxide (Nb2O5) with lithium hydroxide (LiOH) at a molar ratio of 1:1. In the heating step, the mixture is heated in an atmosphere of air at substantially 800° C. The positive electrode active material having been produced through the mixing process and the heating process causes the plateau potential in a discharge to be approximately 1.0 [V] for lithium. And the nonaqueous electrolyte battery using the positive electrode active material can operate at a voltage of approximately 1.0 [V].
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: December 10, 2013
    Assignees: SANYO Electric Co., Ltd., SANYO Energy Tottori Co., Ltd.
    Inventors: Shunsuke Uegaki, Masao Kondou, Yasuo Akai, Tomoyuki Shose, Satoru Naruse
  • Patent number: 8592044
    Abstract: Ceramic coatings for a component that is subjected to high temperatures, especially for a turbine blade are provided. The ceramic coatings contain one or more compounds that are selected from alkaline earth silicates, ZrV2O7 and Mg3(VO4)2. A layer system including at least one coating of the ceramic coating is also provided.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 26, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Birkner, Knut Halberstadt, Eckart Schumann, Werner Stamm
  • Patent number: 8585928
    Abstract: A family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 19, 2013
    Assignee: Sandia Corporation
    Inventors: May D. Nyman, Lauren E. S. Rohwer
  • Publication number: 20130303801
    Abstract: Provided is a novel catalyst that can produce acrolein and acrylic acid in high yields using glycerol as starting material. The disclosed glycerol dehydration catalyst has niobic oxide synthesized by hydrothermal synthesis as the main component.
    Type: Application
    Filed: July 8, 2011
    Publication date: November 14, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Wataru Ueda, Yasuhiro Magatani, Kimito Okumura, Toru Kawaguchi
  • Publication number: 20130280159
    Abstract: To provide a sulfur trioxide decomposition catalyst, particularly, a sulfur trioxide decomposition catalyst capable of lowering the temperature required when producing hydrogen by an S—I cycle process. A sulfur trioxide decomposition catalyst comprising a composite oxide of vanadium and at least one metal selected from the group consisting of transition metal and rare earth elements is provided. Also, a sulfur dioxide production process comprising decomposing sulfur trioxide into sulfur dioxide and oxygen by using the sulfur trioxide decomposition catalyst above, is provided. Furthermore, a hydrogen production process, wherein the reaction of decomposing sulfur trioxide into sulfur dioxide and oxygen by an S—I cycle process is performed by the above-described sulfur dioxide production process, is provided.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Takeshima, Masato Machida
  • Patent number: 8563263
    Abstract: The present invention is directed to a composition comprising a vanadium-containing phosphatase inhibitor and a polyol. In the presence of the polyol the effect of the inhibitor is enhanced, even in the presence of chelating agents or reducing agents. The invention also concerns the use of the inventive composition for inhibiting a phosphatase, as well as kits comprising the composition.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 22, 2013
    Assignee: Roche Diagnostics Operations Inc.
    Inventors: Erhard Fernholz, Dorothea Mayr
  • Publication number: 20130270109
    Abstract: The oxides for semiconductor layers of thin-film transistors according to the present invention include: In; Zn; and at least one element (X group element) selected from the group consisting of Al, Si, Ta, Ti, La, Mg and Nb. The present invention makes it possible to provide oxides for semiconductor layers of thin-film transistors, in which connection thin-film transistors with In—Zn—O oxide semiconductors not containing Ga have favorable switching characteristics and high stress resistance, and in particular, show a small variation of the threshold voltage before and after positive bias stress tests, thereby having high stability.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Aya Miki, Satoshi Yasuno, Toshihiro Kugimiya, Tomoya Kishi
  • Publication number: 20130253216
    Abstract: An apparatus for producing a catalyst comprising a tank configured to prepare an aqueous mixed solution containing a Mo compound, a V compound and a Nb compound, a dryer configured to spray-dry the aqueous mixed solution, and a pipe for connecting the tank with the dryer so that the aqueous mixed solution can be supplied from the tank to the dryer, wherein a heater configured to heat the aqueous mixed solution is provided in the tank and/or the pipe, and a filter configured to filtrate the aqueous mixed solution is provided in the pipe.
    Type: Application
    Filed: December 13, 2011
    Publication date: September 26, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Takaaki Kato, Satoshi Endo, Minoru Kadowaki
  • Publication number: 20130244099
    Abstract: A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Claus Daniel
  • Publication number: 20130240802
    Abstract: This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and at least one type of element (X group element) selected from an X group comprising Si, Hf, Ga, Al, Ni, Ge, Ta, W and Nb. The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 19, 2013
    Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel ,Ltd.)
    Inventors: Aya Miki, Shinya Morita, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130172175
    Abstract: Disclosed herein are photocatalyst powder and a production method thereof, and by having photocatalyst particles corn binded without reduction of a specific surface area, the reduction of the specific surface area is nearly none while the pores are developed, as well as the absorption rate with respect to light is superior, the method of producing photocatalyst powder includes forming initial photocatalyst powder by molding nanoparticles of photocatalyst substance into a certain shape through extrusion, and splitting the initial photocatalyst powder into a plurality of photocatalyst powder by injecting the initial photocatalyst powder into a predetermined splitting solution, the initial photocatalyst powder being split into the plurality of photocatalyst powder by the predetermined spliting solution.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8435484
    Abstract: The invention relates to a lithium vanadium oxide which corresponds to the formula Li1+?V3O8 (0.1???0.25). It is composed of agglomerates of small needles having a length l from 400 to 1000 nm, a width w such that 10<l/w<100 and a thickness t such that 10<l/t<100. It is obtained by a process consisting in preparing a precursor gel by bringing ?-V2O5 and a Li precursor into contact in amounts such that the ratio of the concentrations [V2O5]/[Li] is between 1.15 and 1.5 and in subjecting the gel to a heat treatment comprising a first stage at 80° C.-150° C. for 3 h to 15 days and a second stage between 250° C. and 350° C. for 4 min to 1 hour, under a nitrogen or argon atmosphere. It is useful as an active material of a positive electrode.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 7, 2013
    Assignees: BATSCAP, Centre National de la Recherche Scientifique
    Inventors: Dominique Guyomard, Joël Gaubicher, Marc Deschamps, Matthieu Dubarry, Benoit Morel
  • Publication number: 20130101848
    Abstract: Doped nanoparticles, methods of making such nanoparticles, and uses of such nanoparticles. The nanoparticles exhibit a metal-insulator phase transition at a temperature of ?200° C. to 350° C. The nanoparticles have a broad range of sizes and various morphologies. The nanoparticles can be used in coatings and in device structures.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 25, 2013
    Inventors: Sarbajit Banerjee, Luisa Whittaker, Christopher J. Patridge, Peter Marley
  • Patent number: 8425875
    Abstract: The low Ta impurity content in pyrochlore ore makes it unnecessary to use a solvent extraction process to separate Nb from Ta. Consequently, niobium pentoxide powders using this ore can be produced at lower cost than competing mining/refining approaches, but in turn contain significant amounts of Ta impurities. SAW wafers are grown from melts produced by reacting niobium pentoxide powders containing Ta impurities at levels of 200 ppm or more by weight. Given proper amounts of starting powders, crystals can be grown with good yields and reproducible properties that satisfy typical SAW wafer specifications. The consistency across various lots of powders may be further improved by adding an appropriate amount of Ta pentoxide to the starting powders.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: April 23, 2013
    Assignee: Crystal Technology, Inc.
    Inventors: Maria Claudia Custodio Kajiyama, Dieter Hans Jundt, Stephane Chamaly
  • Publication number: 20130032798
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 7, 2013
    Applicants: SAMSUNG DISPLAY CO., LTD., KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Aya Miki, Yumi Iwanari, Toshihiro Kugimiya, Shinya Morita, Yasuaki Terao, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130009111
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Toshihiro Kugiyama, Takeaki Maeda, Satoshi Yasuno, Yasuaki Terao, Aya Miki
  • Publication number: 20130006030
    Abstract: The oxidative dehydrogenation of propane provides a highly selective catalyst for the oxidative dehydrogenation of propane to propylene, and a process for preparing the catalyst. The catalyst is a mixed metal oxides catalyst of the general formula MoaVbOx, where the molar ratio of molybdenum to vanadium is between 1:1 and 9:1 (a:b is between 0.5:0.5 and 0.9:0.1) and x is determined according to the oxidation state of the cations present. The catalyst is prepared by mixing the metals by sol-gel technique, heating the gel to dry the mixed oxides, further heating the dried product to induce auto-combustion, washing the product with isopropyl alcohol, and drying with a supercritical CO2 dryer. Oxidative dehydrogenation is carried out by contacting a stream of propane gas with the bulk mixed metal oxides catalyst at a temperature between 350° C. and 550° C. Propylene selectivity of 100% is reached at conversion rates between 1.9% and 4.8%.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: SHAKEEL AHMED, HASSAN S. ALASIRI, FAIZUR RAHMAN, ADNAN M.J. AL-AMER
  • Publication number: 20120328878
    Abstract: There is provided an anisotropically shaped powder preferred as plate-like crystals used in the process of producing niobate-based KNbO3—NaNbO3—LiNbO3-based crystal-oriented ceramics and the like, and a method for producing the same. The production method includes, an oxide powder, such as Nb2O5, and a surfactant are added to an aqueous solution of alkali hydroxides, such as NaOH and KOH to perform hydrothermal synthesis, the product obtained after this reaction is washed with an organic solvent, and further, the product after the washing is fired at 170° C. to 700° C. In addition, according to this production method, it is possible to obtain an anisotropically shaped powder having a ratio of an average particle length in a major axis direction to an average particle length in a thickness direction in the range of 2 to 20 and having a pseudo-cubic perovskite structure in which a crystal face is oriented in a (100) plane.
    Type: Application
    Filed: November 24, 2010
    Publication date: December 27, 2012
    Applicants: HITACHI METALS, LTD., TOYAMA PREFECTURE
    Inventors: Tomoaki Karaki, Fan Zhang
  • Patent number: 8323611
    Abstract: A solid acid catalyst represented by HTixNbyO5 wherein x is 1.1<x<1.2 and y is 0.9>y>0.8, having a Ti/Nb atomic ratio z of 1<z<1.5, and has been produced by subjecting a cation exchangable lamellar metal oxide composed of polyanion nano-sheets comprising lamellar metal oxide layers of titanium niobate being arranged regularly while sandwiching an alkali metal cation between them to the proton exchange of the alkali metal cation by the use of an inorganic acid or an organic acid prepared into a 0.0001M to 1M solution, and then inserting a cation selected from the group consisting of an organic amine and an organic ammonium between the resulting proton exchanged layers, to thereby delaminate the laminated layers temporarily and prepare an aqueous colloidal solution comprising metal oxide sheets having the organic amine or organic ammonium adsorbed thereon, and then adding an inorganic acid or an organic acid prepared into a 0.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 4, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara
  • Patent number: 8246929
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 21, 2012
    Assignee: St. Jude Medical AB
    Inventors: Tom Eriksson, Kenth Nilsson, Anna-Karin Johansson, Karin Ljungström, Koroush Lashgari, Annika Pohl, Gunnar Westin
  • Patent number: 8242049
    Abstract: A catalytic material which includes a metal oxide catalyst anchored to a nano-sized metal oxide crystal as support and functions well at low temperatures. The catalytic material may optionally include another metal oxide as a promoter deposited on the surface of the support to modify the properties of the metal oxide catalyst and/or the properties of the support. The catalyst may be vanadium oxide, tungsten oxide, manganese oxide, chromium oxide or molybdenum oxide; the support may be TiO2, SiO2, Al2O3, ZrO2, or WO3; and the promoter may be vanadium oxide, tungsten oxide, manganese oxide, chromium oxide or molybdenum oxide. The present invention also provides a method of producing the catalytic materials, which is useful in removing ammonia and other nitrogen containing contaminants.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: August 14, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: King-Lun Yeung, Pik-Ying Lui, Ka-Yee Ho, Miguel Angel Banares
  • Patent number: 8236102
    Abstract: A method of hydrothermally synthesizing sapphire single crystals doped with trivalent metal ions in a crystal-growth autoclave including a crystal-growth zone and nutrient-dissolution zone in fluid communication with the crystal-growth zone is provided. Implementations of the method including situating within the crystal-growth zone at least one sapphire-based seed crystal and situating within the nutrient-dissolution zone an aluminum-containing material to serve as nutrient. An acidic, trivalent-metal-ion-containing growth solution is introduced into the cavity in a quantity sufficient, at least when heated to a predetermined average temperature, to immerse the at least one seed crystal and the nutrient in the growth solution. The growth solution is selected such that sapphire exhibits retrograde solubility therein and the growth process is carried out while maintaining an interior-cavity pressure within a range between and including each of 3.
    Type: Grant
    Filed: January 24, 2009
    Date of Patent: August 7, 2012
    Assignee: Solid State Scientific Corporation
    Inventors: Buguo Wang, David F. Bliss, Michael J. Callahan