Tin, Lead, Or Germanium Containing (e.g., Stannate, Plumbate, Etc.) Patents (Class 423/594.9)
  • Patent number: 11554355
    Abstract: Disclosed herein relates to pharmaceutical engineering, and more particularly to a micro reaction system and a method for preparing 2-methyl-4-amino-5-cyanopyrimidine using the same. An acetamidine hydrochloride solution and an (dimethylaminomethylene)malononitrile solution are separately pumped into the micro reaction system including a micromixer and an agitating microchannel reactor in communication at the same time for a continuous condensation-cyclization reaction to obtain 2-methyl-4-amino-5-cyanopyrimidine.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 17, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Meifen Jiang, Dang Cheng, Minjie Liu, Huashan Huang
  • Publication number: 20150075603
    Abstract: A coating is described. The coating includes a metal oxide layer, which in turn includes a surface having a water contact angle greater than 90 degrees. A metal-oxide coating composition is also described. The composition includes effective amounts of a first type and a second of metals and an effective amount of oxygen to react with the first type and the second type of metals to produce a first type and a second type of metal oxides, both of which produce a structure that is greater than about 50% (by volume) amorphous.
    Type: Application
    Filed: March 21, 2013
    Publication date: March 19, 2015
    Inventors: Mark Allen George, Ching-Lin Chang, Ravi Prasad
  • Patent number: 8976321
    Abstract: The present invention relates to a fluorescent powder mixture, a manufacturing method for the same, and a corresponding liquid crystal display device. The fluorescent powder mixture is a mixture of a conductive powder and a fluorescent powder, wherein the conductive powder is aluminum zinc oxide, gallium zinc oxide, or indium tin oxide. The fluorescent powder mixture, the manufacturing method for the same, and the corresponding liquid crystal display device of the present invention increase the conductivity of the fluorescent powder, and further weaken the electron enrichment phenomenon on the surface of the fluorescent powder, so as to increase the illumination performance of the fluorescent powder.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Yewen Wang
  • Patent number: 8927104
    Abstract: One aspect of an indium tin oxide powder has a specific surface area of 55 m2/g or more, wherein a color tone is from bright yellow to a color of persimmons or a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart. Another aspect of the indium tin oxide powder has a modified surface, wherein a specific surface area is 40 m2/g or more, a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart, and a color tone is navy blue (L is 30 or less in a Lab colorimetric system). A method for producing the indium tin oxide powder includes: coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions in which pH is 4.0 to 9.3, and a temperature of a liquid is 5° C. or higher; and drying and calcining the indium tin hydroxide.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: January 6, 2015
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Electronic Chemicals Co., Ltd.
    Inventors: Shinya Shiraishi, Megumi Narumi
  • Publication number: 20150001436
    Abstract: An oxide represented by Formula 1: (Sr2-xAx)(M1-yQy)D2O7+d, ??Formula 1 wherein A is barium (Ba), M is at least one selected from magnesium (Mg) and calcium (Ca), Q is a Group 13 element, D is at least one selected from silicon (Si) and germanium (Ge), 0?x?2.0, 0<0?1.0, and d is a value which makes the oxide electrically neutral.
    Type: Application
    Filed: January 16, 2014
    Publication date: January 1, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hee-jung PARK, Chan KWAK, Tae-gon KIM, Sang-mock LEE, Doh-won JUNG
  • Publication number: 20140361210
    Abstract: [Problem] The present invention relates to: a heat ray shielding adhesive which is used in bonding to a windowpane and the like and shields neat rays; a heat ray shielding transparent adhesive sheet; and a method for producing the heat ray shielding adhesive. The present invention provides a heat ray shielding transparent adhesive sheet which has nigh transmittance in the visible light region, low haze and more excellent transparency. [Solution] Transparency and heat ray shielding properties can be imparted in a simpler manner by using a heat ray shielding adhesive composition which contains fine heat ray shielding particles that have a half-value width of the first main peak of from. 0.01° to 0.80° (inclusive) as determined by X-ray diffraction pattern, and a heat ray shielding transparent adhesive sheet is therefore able to be produced at low cost.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 11, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Chihiro Takahashi, Hideomi Sakai, Yukihiro Hara, Michiharu Arifuku
  • Publication number: 20140353648
    Abstract: To provide is a p-type oxide, including an oxide, wherein the oxide includes: Cu; and an element M, which is selected from p-block elements, and which can be in an equilibrium state, as being present as an ion, wherein the equilibrium state is a state in which there are both a state where all of electrons of p-orbital of an outermost shell are lost, and a state where all of electrons of an outermost shell are lost, and wherein the p-type oxide is amorphous.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 4, 2014
    Applicant: RICOH COMPANY, LTD.
    Inventors: Yukiko Abe, Naoyuki Ueda, Yuki Nakamura, Mikiko Takada, Shinji Matsumoto, Yuji Sone, Ryoichi Saotome
  • Patent number: 8900537
    Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Vaidyanathan Subramanian, Sankaran Murugesan
  • Publication number: 20140350147
    Abstract: A method of producing metal flakes (72?) is provided. The method includes: applying a layer of ionic liquid (70) to a substrate (24); forming a layer of metal (70) on the substrate (24) over the ionic liquid (70); and removing the layer of metal (70) from the substrate (24).
    Type: Application
    Filed: August 24, 2012
    Publication date: November 27, 2014
    Applicant: ECKART AMERICA CORPORATION
    Inventor: John Moffatt
  • Publication number: 20140335328
    Abstract: Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Young Jae Lee, Kyoung Jong Yoo, Jun Lee, Jin Su Kim, Jae Wan Park
  • Patent number: 8778234
    Abstract: A process for manufacturing indium tin oxide (ITO) sputtering targets as described. The process includes the precipitation of indium and tin hydroxides, sintering in the absence of chloride ions, using the resultant oxide powders to prepare an aqueous slip with dispersing agent, binder, special high density promoting agents and compacting the slip in a specially surface coated porous mold using the method of slip casting followed by sintering the resultant compacted target body to yield high density ITO target.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: July 15, 2014
    Assignee: Bizesp Limited
    Inventors: Charles Edmund King, Dosten Baluch
  • Publication number: 20140158950
    Abstract: Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.
    Type: Application
    Filed: November 12, 2013
    Publication date: June 12, 2014
    Applicant: The Regents of The University of California
    Inventors: Brett Anthony Helms, Delia Jane Milliron, Evelyn Louise Rosen, Raffaella Buonsanti, Anna Llordes
  • Publication number: 20140099267
    Abstract: An ink formulation having a marking component and a reduced indium tin oxide (r-ITO) is disclosed. The r-ITO in powder form exhibits a lightness (L*), according to the 1976 CIE (L*, a*, b*) space, of not more than 50.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 10, 2014
    Applicant: Tetra Laval Holdings & Finance S.A.
    Inventors: Anthony Jarvis, Martin Walker, Chris Wyres
  • Publication number: 20140057129
    Abstract: A thermal barrier coating having a reduced high temperature thermal conductivity includes group II germanate constructs. This thermal barrier coating may be applied directly to a substrate, applied to a bond-coated substrate, and/or incorporated into a protective coating including one or more other thermal barrier coating layers. The thermal barrier coating provides improved thermal protection properties over current industry standards and materials considered for thermal protection applications.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: Thermatin Industries, LLC
    Inventor: James CASSUTO
  • Publication number: 20140054521
    Abstract: Disclosed herein are indium-tin-oxide nanoparticles and a method for continuously producing precipitated indium-tin nanoparticles having a particle size range of substantially from about 10 nm to about 200 nm and a substantially consistent ratio of indium to tin in the resultant nanoparticles across the duration of the continuous process, based on the ratio of indium to tin in a seeding solution. The method comprises preparing intermediate indium and tin compounds of the general formula [M(OH)xCy], where M represents the indium or tin ionic component of indium or tin salts, C represents the cationic component of indium or tin salt(s), x is a number greater than 0 and y=[M*valance?x]/C* valance in the seeding solution. The intermediate compounds are continuously precipitated with a base solution in a reaction vessel initially having a solvent contained therein. The method also provides a means for controlling the shape of the resultant nanoparticles.
    Type: Application
    Filed: November 7, 2012
    Publication date: February 27, 2014
    Applicant: HY-POWER NANO INC.
    Inventors: Hadi K. Mahabadi, Juan-Pablo Bravo-Vasquez, Sinoj Abraham, Guibin Ma, Nathan Gerein
  • Patent number: 8637124
    Abstract: An oxide material including indium (In), tin (Sn), and metal element M, and including an ilmenite structure compound; a sputtering target composed thereof; a transparent conductive film formed by using such a sputtering target; and a transparent electrode composed of such a transparent conductive film.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: January 28, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Kazuyoshi Inoue, Tokie Tanaka
  • Publication number: 20140020744
    Abstract: A device includes a back contact, an absorber layer coupled to the back contact, a buffer layer coupled to the absorber layer; and an amorphous transparent conductive layer coupled to the buffer layer, wherein the amorphous transparent conductive phase is characterized by, as a function of composition, i) a range of band gaps and ii) a range of work functions.
    Type: Application
    Filed: January 3, 2013
    Publication date: January 23, 2014
    Inventors: Peter Hersh, Maikel van Hest, David Ginley, John Perkins, Vincent Bollinger
  • Publication number: 20140017163
    Abstract: Disclosed herein is a method of preparing a ternary oxide semiconductor compound, including the steps of: dissolving an inorganic salt source including Sn and an inorganic salt source including at least one selected from the alkali earth metal group consisting of Ba, Sr and Ca in a mixed solvent of water and hydrogen peroxide to form a mixed solution; precipitating the mixed solution by changing the PH thereof to obtain a precipitate and then aging the precipitate; and drying and then annealing the aged precipitate to prepare MSnO3 powder (here, M includes at least one selected from the group consisting of Ba, Sr and Ca). The method is advantageous in that a nanosized ternary oxide semiconductor compound having a uniform particle size distribution can be prepared.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: SNU R&DB FOUNDATION
    Inventors: Kug Sun Hong, Seong Sik Shin, Jae Ho Suk, Sang Baek Park, Jong Hoon Park, In Sun Cho, Dong Wook Kim
  • Publication number: 20130330267
    Abstract: An ITO film having a band gap in a range of 4.0 eV to 4.5 eV.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 12, 2013
    Inventors: Takehiro Yonezawa, Kazuhiko Yamasaki, Ai Takenoshita
  • Patent number: 8568686
    Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
  • Publication number: 20130240802
    Abstract: This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and at least one type of element (X group element) selected from an X group comprising Si, Hf, Ga, Al, Ni, Ge, Ta, W and Nb. The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 19, 2013
    Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel ,Ltd.)
    Inventors: Aya Miki, Shinya Morita, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130187104
    Abstract: This indium tin oxide powder has a median diameter of 30 nm to 45 nm and a D90 value of 60 nm or less in a particle size distribution. This method for producing an indium tin oxide powder includes, in series: a step (A) of coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions where a pH is in a range of 4.0 to 9.3 and a liquid temperature is in a range of 5° C. or higher, wherein the indium tin hydroxide has a color tone ranging from bright yellow to color of persimmon in a dried powder state; a step (B) of drying and calcining the indium tin hydroxide, and thereby, obtaining indium tin oxide; and a step (C) of dry pulverizing the obtained indium tin oxide in a nitrogen atmosphere.
    Type: Application
    Filed: October 24, 2011
    Publication date: July 25, 2013
    Applicants: Mitsubishi Materials Electronic Chemicals Co., Ltd., MITSUBISHI MATERIALS CORPORATION
    Inventors: Shinya Shiraishi, Hirotoshi Umeda, Ai Takenoshita
  • Publication number: 20130189526
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Applicant: INTERMOLECULAR INC.
    Inventor: Intermolecular Inc.
  • Patent number: 8465718
    Abstract: The invention discloses nano/micron binary structured powders for superhydrophobic, self-cleaning applications. The powders are featured by micron-scale diameter and nano-scale surface roughness. In one embodiment, the average diameter is about 1-25 ?m, and the average roughness Ra is about 3-100 nm. The nano/micron binary structured powders may be made of silica, metal oxide, or combinations thereof.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: June 18, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Chieh Liao, Hsiu-Fen Lin, Jin-Ming Chen
  • Publication number: 20130122305
    Abstract: One aspect of an indium tin oxide powder has a specific surface area of 55 m2/g or more, wherein a color tone is from bright yellow to a color of persimmons or a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart. Another aspect of the indium tin oxide powder has a modified surface, wherein a specific surface area is 40 m2/g or more, a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart, and a color tone is navy blue (L is 30 or less in a Lab colorimetric system). A method for producing the indium tin oxide powder includes: coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions in which pH is 4.0 to 9.3, and a temperature of a liquid is 5° C. or higher; and drying and calcining the indium tin hydroxide.
    Type: Application
    Filed: October 25, 2010
    Publication date: May 16, 2013
    Applicants: Mitsubishi Materials Electronic Chemicals Co., Ltd, MITSUBISHI MATERIALS CORPORATION
    Inventors: Shinya Shiraishi, Megumi Narumi
  • Patent number: 8409543
    Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: April 2, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Keitaro Fujii
  • Publication number: 20130032798
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 7, 2013
    Applicants: SAMSUNG DISPLAY CO., LTD., KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Aya Miki, Yumi Iwanari, Toshihiro Kugimiya, Shinya Morita, Yasuaki Terao, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
  • Publication number: 20130020539
    Abstract: A novel multiband absorption based solar cell is disclosed by using the europium chalcogenides (EuX, X?O, S, Se, Te) and related magnetic semiconductor materials, in which an intermediate band is formed by the localized Eu 4f electrons between p-states of chalcogen ions and Eu s-d states. The energy gaps among the multibands can be in the spectral range of the sunlight, thus they can serve as better sunlight absorbers in solar cells than the conventional single band-gap semiconductors such as Si and GaAs. With these multiband semiconductors, the bottleneck in current power conversion efficiency can be potentially overcome in single junction photovoltaics.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Inventor: Zhixun Ma
  • Patent number: 8357309
    Abstract: Single crystal and polycrystal oxoruthenates having the generalized compositions (Baz,Sr1?z)FexCoyRu6?(x+y)O11 (1?(x+y)?5; 0?z?1) and (Ba,Sr)M2±xRu4?xO11 (M=Fe,Co) belong to a novel class of ferromagnetic semiconductors with applications in spin-based field effect transistors, spin-based light emitting diodes, and magnetic random access memories.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: January 22, 2013
    Assignee: University of Kentucky Research Foundation
    Inventors: Larysa Shlyk, Sergly Alexandrovich Kryukov, Lance Eric De Long, Barbara Schüpp-Niewa, Rainer Niewa
  • Publication number: 20130009111
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Toshihiro Kugiyama, Takeaki Maeda, Satoshi Yasuno, Yasuaki Terao, Aya Miki
  • Publication number: 20130004412
    Abstract: Provided herein are aqueous sonolysis methods involving mixing a precursor transition metal salt, with a Pd-water slurry and sonicating the resulting reaction mixture to synthesize the palladium-based transition metal oxides. Also provided herein are palladium-based transition metal oxides.
    Type: Application
    Filed: August 1, 2011
    Publication date: January 3, 2013
    Inventor: Sivasankaran Sankaranarayana Iyer
  • Patent number: 8329129
    Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: December 11, 2012
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
  • Publication number: 20120267622
    Abstract: Stable electrical characteristics are given to a transistor and a highly reliable semiconductor device is provided. In addition, an oxide material which enables manufacture of such a semiconductor device is provided. An oxide film is used in which two or more kinds of crystalline portions which are different from each other in a direction of an a-axis or a direction of a b-axis in an a-b plane (or the top surface, or the formation surface) are included, and each of the crystalline portions is c-axis aligned, has at least one of triangular atomic arrangement and hexagonal atomic arrangement when seen from a direction perpendicular to the a-b plane, a top surface, or a formation surface, includes metal atoms arranged in a layered manner, or metal atoms and oxygen atoms arranged in a layered manner along the c-axis, and is expressed as In2SnZn2O7(ZnO)m (m is 0 or a natural number).
    Type: Application
    Filed: April 11, 2012
    Publication date: October 25, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA
  • Patent number: 8287914
    Abstract: A method for preparing nanoscale hydroxyapatite particles by combining an amount of a calcium ion source, which includes calcium acetate, and an amount of a phosphate ion source, wherein the amounts are sufficient to produce nanoscale hydroxyapatite particles and the amounts are combined under ambient conditions to produce the hydroxyapatite particles. Nanoscale hydroxyapatite particles are also presented.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 16, 2012
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard Riman, Christina Sever
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Publication number: 20120141358
    Abstract: Disclosed is a method for making nanometer ITO powder. In the method, first and second reactants are added to a solvent to provide a clear metal ion solution. The solvent is an alcohol or an organic solvent. The clear metal ion solution is added to a hydrolysis concentration solution at a desired ratio to provide a first solution. The hydrolysis concentration solution contains a sour catalyst and water. An aging step is taken on the first solution and the hydrolysis concentration solution to provide a second solution. A solvothermal step is executed on the second solution to provide multi-ingredient transparent conductive ITO powder in the order of nanometer. The solvothermal step includes the steps of locating the second solution in a solvothermal device and heating the second solution to a solvothermal temperature for a solvothermal reaction.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yen-Chung Chen, Hsiou-Jeng Shy, Hsin-Chun Lu, Ching-Hung Chiu, Kai-Wei Wang
  • Patent number: 8178071
    Abstract: Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and an optical material are provided. A method of producing metal oxide nanoparticles includes the steps of (A) mixing a first metal alkoxide containing a first metal, a second metal alkoxide containing a second metal different from the first metal, and a surfactant under an inert atmosphere to prepare a reaction solution; and (B) mixing a reaction initiator prepared by mixing a catalyst with a solvent and the reaction solution, and then heating the mixture of the reaction initiator and the reaction solution under an inert atmosphere to produce metal oxide nanoparticles which have a rutile-type crystal structure based on an atom of the first metal, an atom of the second metal, and an oxygen atom, and the surfaces of which are coated with the surfactant.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: May 15, 2012
    Assignee: Sony Corporation
    Inventors: Mikihisa Mizuno, Yuichi Sasaki, Sung-kil Lee, Hitoshi Katakura
  • Publication number: 20120094075
    Abstract: A method of obtaining a substrate coated on a first face with at least one transparent and electrically conductive thin layer based on at least one oxide, including depositing the at least one thin layer on the substrate and subjecting the at least one thin layer to a heat treatment in which the at least one layer is irradiated with aid of radiation having a wavelength between 500 and 2000 nm and focused on a zone of the at least one layer, at least one dimension of which does not exceed 10 cm. The radiation is delivered by at least one radiation device facing the at least one layer, a relative displacement being created between the radiation device and the substrate to treat the desired surface, the heat treatment being such that resistivity of the at least one layer is reduced during the treatment.
    Type: Application
    Filed: June 4, 2010
    Publication date: April 19, 2012
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Emmanuelle Peter, Andriy Kharchenko, Nicolas Nadaud
  • Patent number: 8153098
    Abstract: Surface-modified indium-tin oxides are produced by mixing the oxides with the surface-modifying agent in liquid or vapor form and heat treating the mixture. They can be used to produce coating systems.
    Type: Grant
    Filed: October 29, 2005
    Date of Patent: April 10, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Jurgen Meyer, Gunther Michael
  • Publication number: 20120070690
    Abstract: A composition for preparing ITO powders and ITO coatings includes at least one indium compound and at least one bimetal compound which includes indium and tin. A method of preparing ITO powders and ITO coatings includes a one-step temperature treatment in an inert atmosphere.
    Type: Application
    Filed: May 18, 2010
    Publication date: March 22, 2012
    Inventors: Carsten Bubel, Michael Veith, Peter William de Oliveira
  • Publication number: 20120052435
    Abstract: A tin-zinc complex oxide powder includes particles containing a tin-zinc complex oxide and having a volume resistivity of about 1×105 ?·cm or less.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 1, 2012
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Kazunori ANAZAWA, Tomoko MIYAHARA, Kaoru TORIKOSHI
  • Publication number: 20120000519
    Abstract: A method for forming a transparent electrically conductive layer. The method includes providing a layer comprising cadmium, tin, and oxygen. Concentrated electromagnetic energy is directed from an energy source to at least one portion of the layer to locally heat the at least a portion of the layer. The layer is crystallized to a cadmium-tin oxide ceramic. A photovoltaic cell having the laser crystallized cadmium-tin oxide ceramic and a composition of matter are also disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR
    Inventor: Jonathan Mack FREY
  • Publication number: 20120000776
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer (e.g., including cadmium stannate) on a substrate from a target in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature greater of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Scott Daniel Feldman-Peabody
  • Publication number: 20110315936
    Abstract: A sputtering target including an oxide sintered body, the oxide sintered body containing indium (In) and at least one element selected from gadolinium (Gd), dysprosium (Dy), holmium (Ho), erbium (Er) and ytterbium (Yb), and the oxide sintered body substantially being of a bixbyite structure.
    Type: Application
    Filed: February 28, 2008
    Publication date: December 29, 2011
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Kazuyoshi Inoue, Koki Yano, Masashi Kasami
  • Publication number: 20110287940
    Abstract: An optical element is disclosed which includes transparent superconductor material.
    Type: Application
    Filed: April 9, 2009
    Publication date: November 24, 2011
    Inventor: Daniel Brandt
  • Patent number: 8048398
    Abstract: Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 1, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Kraemer, Peter Kress, Horst Miess
  • Publication number: 20110198985
    Abstract: The present invention aims to drive a PDP at low voltage by providing a material with a high secondary electron emission coefficient under a practical manufacturing condition. In order to achieve the aim, a crystalline oxide selected from the group consisting of CaSnO3, SrSnO3, BaSnO3, and a solid solution of two or more of them, in which an amount of Ca, Sr or Ba in a surface region thereof is reduced, is used as a material for a protective film when a plasma display panel is produced.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 18, 2011
    Inventors: Osamu Inoue, Hiroshi Asano, Yayol Okui, Kojiro Okuyama
  • Patent number: 7968070
    Abstract: Process for the production of a metal oxide powder having a BET surface area of at least 20 m2/g by reacting an aerosol with oxygen in a reaction space at a reaction temperature of more than 700° C. and then separating the resulting powder from gaseous substances in the reaction space, wherein the aerosol is obtained by atomisation using a multi-component nozzle of at least one starting material, as such in liquid form or in solution, and at least one atomising gas, the volume-related mean drop diameter D30 of the aerosol is from 30 to 100 ?m and the number of aerosol drops larger than 100 ?m is up to 10%, based on the total number of drops, and metal oxide powder obtainable by this process.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 28, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Michael Kraemer, Michael Kroell, Peter Kress, Edwin Staab
  • Publication number: 20110127162
    Abstract: A process for manufacturing indium tin oxide (ITO) sputtering targets as described. The process includes the precipitation of indium and tin hydroxides, sintering in the absence of chloride ions, using the resultant oxide powders to prepare an aqueous slip with dispersing agent, binder, special high density promoting agents and compacting the slip in a specially surface coated porous mold using the method of slip casting followed by sintering the resultant compacted target body to yield high density ITO target.
    Type: Application
    Filed: May 7, 2009
    Publication date: June 2, 2011
    Inventors: Charles Edmund King, Dosten Baluch
  • Publication number: 20110104469
    Abstract: Provided here is a method of producing a monolithic body from a porous matrix, comprising: (i) providing a porous matrix having interstitial spaces and comprising at least a first reactant; (ii) contacting the porous matrix with an infiltrating medium that carries at least a second reactant; (iii) allowing the infiltrating medium to infiltrate at least a portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (iv) allowing the at least first product to form and fill at least a portion of the interstitial spaces of the porous matrix, thereby producing a monolithic body, wherein the monolithic body does not comprise barium titanate.
    Type: Application
    Filed: January 4, 2011
    Publication date: May 5, 2011
    Inventors: Richard E. Riman, Vahit Atakan