Tin, Lead, Or Germanium Containing (e.g., Stannate, Plumbate, Etc.) Patents (Class 423/594.9)
-
Patent number: 11554355Abstract: Disclosed herein relates to pharmaceutical engineering, and more particularly to a micro reaction system and a method for preparing 2-methyl-4-amino-5-cyanopyrimidine using the same. An acetamidine hydrochloride solution and an (dimethylaminomethylene)malononitrile solution are separately pumped into the micro reaction system including a micromixer and an agitating microchannel reactor in communication at the same time for a continuous condensation-cyclization reaction to obtain 2-methyl-4-amino-5-cyanopyrimidine.Type: GrantFiled: September 3, 2021Date of Patent: January 17, 2023Assignee: Fudan UniversityInventors: Fener Chen, Meifen Jiang, Dang Cheng, Minjie Liu, Huashan Huang
-
Publication number: 20150075603Abstract: A coating is described. The coating includes a metal oxide layer, which in turn includes a surface having a water contact angle greater than 90 degrees. A metal-oxide coating composition is also described. The composition includes effective amounts of a first type and a second of metals and an effective amount of oxygen to react with the first type and the second type of metals to produce a first type and a second type of metal oxides, both of which produce a structure that is greater than about 50% (by volume) amorphous.Type: ApplicationFiled: March 21, 2013Publication date: March 19, 2015Inventors: Mark Allen George, Ching-Lin Chang, Ravi Prasad
-
Patent number: 8976321Abstract: The present invention relates to a fluorescent powder mixture, a manufacturing method for the same, and a corresponding liquid crystal display device. The fluorescent powder mixture is a mixture of a conductive powder and a fluorescent powder, wherein the conductive powder is aluminum zinc oxide, gallium zinc oxide, or indium tin oxide. The fluorescent powder mixture, the manufacturing method for the same, and the corresponding liquid crystal display device of the present invention increase the conductivity of the fluorescent powder, and further weaken the electron enrichment phenomenon on the surface of the fluorescent powder, so as to increase the illumination performance of the fluorescent powder.Type: GrantFiled: June 8, 2012Date of Patent: March 10, 2015Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.Inventor: Yewen Wang
-
Patent number: 8927104Abstract: One aspect of an indium tin oxide powder has a specific surface area of 55 m2/g or more, wherein a color tone is from bright yellow to a color of persimmons or a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart. Another aspect of the indium tin oxide powder has a modified surface, wherein a specific surface area is 40 m2/g or more, a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart, and a color tone is navy blue (L is 30 or less in a Lab colorimetric system). A method for producing the indium tin oxide powder includes: coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions in which pH is 4.0 to 9.3, and a temperature of a liquid is 5° C. or higher; and drying and calcining the indium tin hydroxide.Type: GrantFiled: October 25, 2010Date of Patent: January 6, 2015Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Electronic Chemicals Co., Ltd.Inventors: Shinya Shiraishi, Megumi Narumi
-
Publication number: 20150001436Abstract: An oxide represented by Formula 1: (Sr2-xAx)(M1-yQy)D2O7+d, ??Formula 1 wherein A is barium (Ba), M is at least one selected from magnesium (Mg) and calcium (Ca), Q is a Group 13 element, D is at least one selected from silicon (Si) and germanium (Ge), 0?x?2.0, 0<0?1.0, and d is a value which makes the oxide electrically neutral.Type: ApplicationFiled: January 16, 2014Publication date: January 1, 2015Applicant: Samsung Electronics Co., Ltd.Inventors: Hee-jung PARK, Chan KWAK, Tae-gon KIM, Sang-mock LEE, Doh-won JUNG
-
Publication number: 20140361210Abstract: [Problem] The present invention relates to: a heat ray shielding adhesive which is used in bonding to a windowpane and the like and shields neat rays; a heat ray shielding transparent adhesive sheet; and a method for producing the heat ray shielding adhesive. The present invention provides a heat ray shielding transparent adhesive sheet which has nigh transmittance in the visible light region, low haze and more excellent transparency. [Solution] Transparency and heat ray shielding properties can be imparted in a simpler manner by using a heat ray shielding adhesive composition which contains fine heat ray shielding particles that have a half-value width of the first main peak of from. 0.01° to 0.80° (inclusive) as determined by X-ray diffraction pattern, and a heat ray shielding transparent adhesive sheet is therefore able to be produced at low cost.Type: ApplicationFiled: September 10, 2012Publication date: December 11, 2014Applicant: NIPPON KAYAKU KABUSHIKI KAISHAInventors: Chihiro Takahashi, Hideomi Sakai, Yukihiro Hara, Michiharu Arifuku
-
Publication number: 20140353648Abstract: To provide is a p-type oxide, including an oxide, wherein the oxide includes: Cu; and an element M, which is selected from p-block elements, and which can be in an equilibrium state, as being present as an ion, wherein the equilibrium state is a state in which there are both a state where all of electrons of p-orbital of an outermost shell are lost, and a state where all of electrons of an outermost shell are lost, and wherein the p-type oxide is amorphous.Type: ApplicationFiled: November 28, 2012Publication date: December 4, 2014Applicant: RICOH COMPANY, LTD.Inventors: Yukiko Abe, Naoyuki Ueda, Yuki Nakamura, Mikiko Takada, Shinji Matsumoto, Yuji Sone, Ryoichi Saotome
-
Patent number: 8900537Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.Type: GrantFiled: May 11, 2011Date of Patent: December 2, 2014Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, RenoInventors: Vaidyanathan Subramanian, Sankaran Murugesan
-
Publication number: 20140350147Abstract: A method of producing metal flakes (72?) is provided. The method includes: applying a layer of ionic liquid (70) to a substrate (24); forming a layer of metal (70) on the substrate (24) over the ionic liquid (70); and removing the layer of metal (70) from the substrate (24).Type: ApplicationFiled: August 24, 2012Publication date: November 27, 2014Applicant: ECKART AMERICA CORPORATIONInventor: John Moffatt
-
Publication number: 20140335328Abstract: Provided is a nanowire manufacturing substrate, comprising a grid base layer on a substrate and a grid pattern formed by patterning the grid base layer, the grid pattern being disposed to produce a nanowire on a surface thereof. According to the present invention, the width and height of the nanowire can be adjusted by controlling the wet-etching process time period, and the nanowire can be manufactured at a room temperature at low cost, the nanowire can be mass-manufactured and the nanowire with regularity can be manufactured even in case of mass production.Type: ApplicationFiled: July 28, 2014Publication date: November 13, 2014Inventors: Young Jae Lee, Kyoung Jong Yoo, Jun Lee, Jin Su Kim, Jae Wan Park
-
Patent number: 8778234Abstract: A process for manufacturing indium tin oxide (ITO) sputtering targets as described. The process includes the precipitation of indium and tin hydroxides, sintering in the absence of chloride ions, using the resultant oxide powders to prepare an aqueous slip with dispersing agent, binder, special high density promoting agents and compacting the slip in a specially surface coated porous mold using the method of slip casting followed by sintering the resultant compacted target body to yield high density ITO target.Type: GrantFiled: May 7, 2009Date of Patent: July 15, 2014Assignee: Bizesp LimitedInventors: Charles Edmund King, Dosten Baluch
-
Publication number: 20140158950Abstract: Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.Type: ApplicationFiled: November 12, 2013Publication date: June 12, 2014Applicant: The Regents of The University of CaliforniaInventors: Brett Anthony Helms, Delia Jane Milliron, Evelyn Louise Rosen, Raffaella Buonsanti, Anna Llordes
-
Publication number: 20140099267Abstract: An ink formulation having a marking component and a reduced indium tin oxide (r-ITO) is disclosed. The r-ITO in powder form exhibits a lightness (L*), according to the 1976 CIE (L*, a*, b*) space, of not more than 50.Type: ApplicationFiled: May 23, 2012Publication date: April 10, 2014Applicant: Tetra Laval Holdings & Finance S.A.Inventors: Anthony Jarvis, Martin Walker, Chris Wyres
-
Publication number: 20140057129Abstract: A thermal barrier coating having a reduced high temperature thermal conductivity includes group II germanate constructs. This thermal barrier coating may be applied directly to a substrate, applied to a bond-coated substrate, and/or incorporated into a protective coating including one or more other thermal barrier coating layers. The thermal barrier coating provides improved thermal protection properties over current industry standards and materials considered for thermal protection applications.Type: ApplicationFiled: August 21, 2013Publication date: February 27, 2014Applicant: Thermatin Industries, LLCInventor: James CASSUTO
-
Publication number: 20140054521Abstract: Disclosed herein are indium-tin-oxide nanoparticles and a method for continuously producing precipitated indium-tin nanoparticles having a particle size range of substantially from about 10 nm to about 200 nm and a substantially consistent ratio of indium to tin in the resultant nanoparticles across the duration of the continuous process, based on the ratio of indium to tin in a seeding solution. The method comprises preparing intermediate indium and tin compounds of the general formula [M(OH)xCy], where M represents the indium or tin ionic component of indium or tin salts, C represents the cationic component of indium or tin salt(s), x is a number greater than 0 and y=[M*valance?x]/C* valance in the seeding solution. The intermediate compounds are continuously precipitated with a base solution in a reaction vessel initially having a solvent contained therein. The method also provides a means for controlling the shape of the resultant nanoparticles.Type: ApplicationFiled: November 7, 2012Publication date: February 27, 2014Applicant: HY-POWER NANO INC.Inventors: Hadi K. Mahabadi, Juan-Pablo Bravo-Vasquez, Sinoj Abraham, Guibin Ma, Nathan Gerein
-
Patent number: 8637124Abstract: An oxide material including indium (In), tin (Sn), and metal element M, and including an ilmenite structure compound; a sputtering target composed thereof; a transparent conductive film formed by using such a sputtering target; and a transparent electrode composed of such a transparent conductive film.Type: GrantFiled: September 15, 2006Date of Patent: January 28, 2014Assignee: Idemitsu Kosan Co., Ltd.Inventors: Koki Yano, Kazuyoshi Inoue, Tokie Tanaka
-
Publication number: 20140020744Abstract: A device includes a back contact, an absorber layer coupled to the back contact, a buffer layer coupled to the absorber layer; and an amorphous transparent conductive layer coupled to the buffer layer, wherein the amorphous transparent conductive phase is characterized by, as a function of composition, i) a range of band gaps and ii) a range of work functions.Type: ApplicationFiled: January 3, 2013Publication date: January 23, 2014Inventors: Peter Hersh, Maikel van Hest, David Ginley, John Perkins, Vincent Bollinger
-
Publication number: 20140017163Abstract: Disclosed herein is a method of preparing a ternary oxide semiconductor compound, including the steps of: dissolving an inorganic salt source including Sn and an inorganic salt source including at least one selected from the alkali earth metal group consisting of Ba, Sr and Ca in a mixed solvent of water and hydrogen peroxide to form a mixed solution; precipitating the mixed solution by changing the PH thereof to obtain a precipitate and then aging the precipitate; and drying and then annealing the aged precipitate to prepare MSnO3 powder (here, M includes at least one selected from the group consisting of Ba, Sr and Ca). The method is advantageous in that a nanosized ternary oxide semiconductor compound having a uniform particle size distribution can be prepared.Type: ApplicationFiled: July 11, 2012Publication date: January 16, 2014Applicant: SNU R&DB FOUNDATIONInventors: Kug Sun Hong, Seong Sik Shin, Jae Ho Suk, Sang Baek Park, Jong Hoon Park, In Sun Cho, Dong Wook Kim
-
Publication number: 20130330267Abstract: An ITO film having a band gap in a range of 4.0 eV to 4.5 eV.Type: ApplicationFiled: June 10, 2013Publication date: December 12, 2013Inventors: Takehiro Yonezawa, Kazuhiko Yamasaki, Ai Takenoshita
-
Patent number: 8568686Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.Type: GrantFiled: April 18, 2007Date of Patent: October 29, 2013Assignee: The Regents of the University of CaliforniaInventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
-
Publication number: 20130240802Abstract: This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and at least one type of element (X group element) selected from an X group comprising Si, Hf, Ga, Al, Ni, Ge, Ta, W and Nb. The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.Type: ApplicationFiled: November 28, 2011Publication date: September 19, 2013Applicants: Samsung Display Co., Ltd., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel ,Ltd.)Inventors: Aya Miki, Shinya Morita, Toshihiro Kugimiya, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
-
Publication number: 20130187104Abstract: This indium tin oxide powder has a median diameter of 30 nm to 45 nm and a D90 value of 60 nm or less in a particle size distribution. This method for producing an indium tin oxide powder includes, in series: a step (A) of coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions where a pH is in a range of 4.0 to 9.3 and a liquid temperature is in a range of 5° C. or higher, wherein the indium tin hydroxide has a color tone ranging from bright yellow to color of persimmon in a dried powder state; a step (B) of drying and calcining the indium tin hydroxide, and thereby, obtaining indium tin oxide; and a step (C) of dry pulverizing the obtained indium tin oxide in a nitrogen atmosphere.Type: ApplicationFiled: October 24, 2011Publication date: July 25, 2013Applicants: Mitsubishi Materials Electronic Chemicals Co., Ltd., MITSUBISHI MATERIALS CORPORATIONInventors: Shinya Shiraishi, Hirotoshi Umeda, Ai Takenoshita
-
Publication number: 20130189526Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.Type: ApplicationFiled: March 12, 2013Publication date: July 25, 2013Applicant: INTERMOLECULAR INC.Inventor: Intermolecular Inc.
-
Patent number: 8465718Abstract: The invention discloses nano/micron binary structured powders for superhydrophobic, self-cleaning applications. The powders are featured by micron-scale diameter and nano-scale surface roughness. In one embodiment, the average diameter is about 1-25 ?m, and the average roughness Ra is about 3-100 nm. The nano/micron binary structured powders may be made of silica, metal oxide, or combinations thereof.Type: GrantFiled: October 5, 2007Date of Patent: June 18, 2013Assignee: Industrial Technology Research InstituteInventors: Shih-Chieh Liao, Hsiu-Fen Lin, Jin-Ming Chen
-
Publication number: 20130122305Abstract: One aspect of an indium tin oxide powder has a specific surface area of 55 m2/g or more, wherein a color tone is from bright yellow to a color of persimmons or a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart. Another aspect of the indium tin oxide powder has a modified surface, wherein a specific surface area is 40 m2/g or more, a half-width in the peak of (222) plane is 0.6° or less on an X-ray diffraction chart, and a color tone is navy blue (L is 30 or less in a Lab colorimetric system). A method for producing the indium tin oxide powder includes: coprecipitating an indium tin hydroxide by using a tin (Sn2+) compound under conditions in which pH is 4.0 to 9.3, and a temperature of a liquid is 5° C. or higher; and drying and calcining the indium tin hydroxide.Type: ApplicationFiled: October 25, 2010Publication date: May 16, 2013Applicants: Mitsubishi Materials Electronic Chemicals Co., Ltd, MITSUBISHI MATERIALS CORPORATIONInventors: Shinya Shiraishi, Megumi Narumi
-
Patent number: 8409543Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.Type: GrantFiled: August 30, 2011Date of Patent: April 2, 2013Assignee: JX Nippon Oil & Energy CorporationInventors: Yasushi Sato, Keitaro Fujii
-
Publication number: 20130032798Abstract: Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.Type: ApplicationFiled: April 18, 2011Publication date: February 7, 2013Applicants: SAMSUNG DISPLAY CO., LTD., KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)Inventors: Aya Miki, Yumi Iwanari, Toshihiro Kugimiya, Shinya Morita, Yasuaki Terao, Satoshi Yasuno, Jae Woo Park, Je Hun Lee, Byung Du Ahn
-
Publication number: 20130020539Abstract: A novel multiband absorption based solar cell is disclosed by using the europium chalcogenides (EuX, X?O, S, Se, Te) and related magnetic semiconductor materials, in which an intermediate band is formed by the localized Eu 4f electrons between p-states of chalcogen ions and Eu s-d states. The energy gaps among the multibands can be in the spectral range of the sunlight, thus they can serve as better sunlight absorbers in solar cells than the conventional single band-gap semiconductors such as Si and GaAs. With these multiband semiconductors, the bottleneck in current power conversion efficiency can be potentially overcome in single junction photovoltaics.Type: ApplicationFiled: July 21, 2011Publication date: January 24, 2013Inventor: Zhixun Ma
-
Patent number: 8357309Abstract: Single crystal and polycrystal oxoruthenates having the generalized compositions (Baz,Sr1?z)FexCoyRu6?(x+y)O11 (1?(x+y)?5; 0?z?1) and (Ba,Sr)M2±xRu4?xO11 (M=Fe,Co) belong to a novel class of ferromagnetic semiconductors with applications in spin-based field effect transistors, spin-based light emitting diodes, and magnetic random access memories.Type: GrantFiled: April 3, 2008Date of Patent: January 22, 2013Assignee: University of Kentucky Research FoundationInventors: Larysa Shlyk, Sergly Alexandrovich Kryukov, Lance Eric De Long, Barbara Schüpp-Niewa, Rainer Niewa
-
Publication number: 20130009111Abstract: Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.Type: ApplicationFiled: April 7, 2011Publication date: January 10, 2013Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Shinya Morita, Toshihiro Kugiyama, Takeaki Maeda, Satoshi Yasuno, Yasuaki Terao, Aya Miki
-
Publication number: 20130004412Abstract: Provided herein are aqueous sonolysis methods involving mixing a precursor transition metal salt, with a Pd-water slurry and sonicating the resulting reaction mixture to synthesize the palladium-based transition metal oxides. Also provided herein are palladium-based transition metal oxides.Type: ApplicationFiled: August 1, 2011Publication date: January 3, 2013Inventor: Sivasankaran Sankaranarayana Iyer
-
Patent number: 8329129Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.Type: GrantFiled: February 10, 2010Date of Patent: December 11, 2012Assignee: JX Nippon Oil & Energy CorporationInventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
-
Publication number: 20120267622Abstract: Stable electrical characteristics are given to a transistor and a highly reliable semiconductor device is provided. In addition, an oxide material which enables manufacture of such a semiconductor device is provided. An oxide film is used in which two or more kinds of crystalline portions which are different from each other in a direction of an a-axis or a direction of a b-axis in an a-b plane (or the top surface, or the formation surface) are included, and each of the crystalline portions is c-axis aligned, has at least one of triangular atomic arrangement and hexagonal atomic arrangement when seen from a direction perpendicular to the a-b plane, a top surface, or a formation surface, includes metal atoms arranged in a layered manner, or metal atoms and oxygen atoms arranged in a layered manner along the c-axis, and is expressed as In2SnZn2O7(ZnO)m (m is 0 or a natural number).Type: ApplicationFiled: April 11, 2012Publication date: October 25, 2012Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA
-
Patent number: 8287914Abstract: A method for preparing nanoscale hydroxyapatite particles by combining an amount of a calcium ion source, which includes calcium acetate, and an amount of a phosphate ion source, wherein the amounts are sufficient to produce nanoscale hydroxyapatite particles and the amounts are combined under ambient conditions to produce the hydroxyapatite particles. Nanoscale hydroxyapatite particles are also presented.Type: GrantFiled: January 12, 2007Date of Patent: October 16, 2012Assignee: Rutgers, The State University of New JerseyInventors: Richard Riman, Christina Sever
-
Patent number: 8273413Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.Type: GrantFiled: July 2, 2009Date of Patent: September 25, 2012Assignee: International Business Machines CorporationInventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
-
Publication number: 20120141358Abstract: Disclosed is a method for making nanometer ITO powder. In the method, first and second reactants are added to a solvent to provide a clear metal ion solution. The solvent is an alcohol or an organic solvent. The clear metal ion solution is added to a hydrolysis concentration solution at a desired ratio to provide a first solution. The hydrolysis concentration solution contains a sour catalyst and water. An aging step is taken on the first solution and the hydrolysis concentration solution to provide a second solution. A solvothermal step is executed on the second solution to provide multi-ingredient transparent conductive ITO powder in the order of nanometer. The solvothermal step includes the steps of locating the second solution in a solvothermal device and heating the second solution to a solvothermal temperature for a solvothermal reaction.Type: ApplicationFiled: December 1, 2010Publication date: June 7, 2012Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National DefenseInventors: Yen-Chung Chen, Hsiou-Jeng Shy, Hsin-Chun Lu, Ching-Hung Chiu, Kai-Wei Wang
-
Patent number: 8178071Abstract: Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and an optical material are provided. A method of producing metal oxide nanoparticles includes the steps of (A) mixing a first metal alkoxide containing a first metal, a second metal alkoxide containing a second metal different from the first metal, and a surfactant under an inert atmosphere to prepare a reaction solution; and (B) mixing a reaction initiator prepared by mixing a catalyst with a solvent and the reaction solution, and then heating the mixture of the reaction initiator and the reaction solution under an inert atmosphere to produce metal oxide nanoparticles which have a rutile-type crystal structure based on an atom of the first metal, an atom of the second metal, and an oxygen atom, and the surfaces of which are coated with the surfactant.Type: GrantFiled: May 3, 2007Date of Patent: May 15, 2012Assignee: Sony CorporationInventors: Mikihisa Mizuno, Yuichi Sasaki, Sung-kil Lee, Hitoshi Katakura
-
Publication number: 20120094075Abstract: A method of obtaining a substrate coated on a first face with at least one transparent and electrically conductive thin layer based on at least one oxide, including depositing the at least one thin layer on the substrate and subjecting the at least one thin layer to a heat treatment in which the at least one layer is irradiated with aid of radiation having a wavelength between 500 and 2000 nm and focused on a zone of the at least one layer, at least one dimension of which does not exceed 10 cm. The radiation is delivered by at least one radiation device facing the at least one layer, a relative displacement being created between the radiation device and the substrate to treat the desired surface, the heat treatment being such that resistivity of the at least one layer is reduced during the treatment.Type: ApplicationFiled: June 4, 2010Publication date: April 19, 2012Applicant: SAINT-GOBAIN GLASS FRANCEInventors: Emmanuelle Peter, Andriy Kharchenko, Nicolas Nadaud
-
Patent number: 8153098Abstract: Surface-modified indium-tin oxides are produced by mixing the oxides with the surface-modifying agent in liquid or vapor form and heat treating the mixture. They can be used to produce coating systems.Type: GrantFiled: October 29, 2005Date of Patent: April 10, 2012Assignee: Evonik Degussa GmbHInventors: Jurgen Meyer, Gunther Michael
-
Publication number: 20120070690Abstract: A composition for preparing ITO powders and ITO coatings includes at least one indium compound and at least one bimetal compound which includes indium and tin. A method of preparing ITO powders and ITO coatings includes a one-step temperature treatment in an inert atmosphere.Type: ApplicationFiled: May 18, 2010Publication date: March 22, 2012Inventors: Carsten Bubel, Michael Veith, Peter William de Oliveira
-
Publication number: 20120052435Abstract: A tin-zinc complex oxide powder includes particles containing a tin-zinc complex oxide and having a volume resistivity of about 1×105 ?·cm or less.Type: ApplicationFiled: May 17, 2011Publication date: March 1, 2012Applicant: FUJI XEROX CO., LTD.Inventors: Kazunori ANAZAWA, Tomoko MIYAHARA, Kaoru TORIKOSHI
-
Publication number: 20120000776Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer (e.g., including cadmium stannate) on a substrate from a target in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature greater of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.Type: ApplicationFiled: September 19, 2011Publication date: January 5, 2012Applicant: PRIMESTAR SOLAR, INC.Inventor: Scott Daniel Feldman-Peabody
-
Publication number: 20120000519Abstract: A method for forming a transparent electrically conductive layer. The method includes providing a layer comprising cadmium, tin, and oxygen. Concentrated electromagnetic energy is directed from an energy source to at least one portion of the layer to locally heat the at least a portion of the layer. The layer is crystallized to a cadmium-tin oxide ceramic. A photovoltaic cell having the laser crystallized cadmium-tin oxide ceramic and a composition of matter are also disclosed.Type: ApplicationFiled: July 1, 2010Publication date: January 5, 2012Applicant: PRIMESTAR SOLARInventor: Jonathan Mack FREY
-
Publication number: 20110315936Abstract: A sputtering target including an oxide sintered body, the oxide sintered body containing indium (In) and at least one element selected from gadolinium (Gd), dysprosium (Dy), holmium (Ho), erbium (Er) and ytterbium (Yb), and the oxide sintered body substantially being of a bixbyite structure.Type: ApplicationFiled: February 28, 2008Publication date: December 29, 2011Applicant: IDEMITSU KOSAN CO., LTD.Inventors: Kazuyoshi Inoue, Koki Yano, Masashi Kasami
-
Publication number: 20110287940Abstract: An optical element is disclosed which includes transparent superconductor material.Type: ApplicationFiled: April 9, 2009Publication date: November 24, 2011Inventor: Daniel Brandt
-
Patent number: 8048398Abstract: Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.Type: GrantFiled: May 9, 2007Date of Patent: November 1, 2011Assignee: Evonik Degussa GmbHInventors: Stipan Katusic, Guido Zimmermann, Michael Kraemer, Peter Kress, Horst Miess
-
Publication number: 20110198985Abstract: The present invention aims to drive a PDP at low voltage by providing a material with a high secondary electron emission coefficient under a practical manufacturing condition. In order to achieve the aim, a crystalline oxide selected from the group consisting of CaSnO3, SrSnO3, BaSnO3, and a solid solution of two or more of them, in which an amount of Ca, Sr or Ba in a surface region thereof is reduced, is used as a material for a protective film when a plasma display panel is produced.Type: ApplicationFiled: April 1, 2010Publication date: August 18, 2011Inventors: Osamu Inoue, Hiroshi Asano, Yayol Okui, Kojiro Okuyama
-
Patent number: 7968070Abstract: Process for the production of a metal oxide powder having a BET surface area of at least 20 m2/g by reacting an aerosol with oxygen in a reaction space at a reaction temperature of more than 700° C. and then separating the resulting powder from gaseous substances in the reaction space, wherein the aerosol is obtained by atomisation using a multi-component nozzle of at least one starting material, as such in liquid form or in solution, and at least one atomising gas, the volume-related mean drop diameter D30 of the aerosol is from 30 to 100 ?m and the number of aerosol drops larger than 100 ?m is up to 10%, based on the total number of drops, and metal oxide powder obtainable by this process.Type: GrantFiled: February 19, 2009Date of Patent: June 28, 2011Assignee: Evonik Degussa GmbHInventors: Stipan Katusic, Michael Kraemer, Michael Kroell, Peter Kress, Edwin Staab
-
Publication number: 20110127162Abstract: A process for manufacturing indium tin oxide (ITO) sputtering targets as described. The process includes the precipitation of indium and tin hydroxides, sintering in the absence of chloride ions, using the resultant oxide powders to prepare an aqueous slip with dispersing agent, binder, special high density promoting agents and compacting the slip in a specially surface coated porous mold using the method of slip casting followed by sintering the resultant compacted target body to yield high density ITO target.Type: ApplicationFiled: May 7, 2009Publication date: June 2, 2011Inventors: Charles Edmund King, Dosten Baluch
-
Publication number: 20110104469Abstract: Provided here is a method of producing a monolithic body from a porous matrix, comprising: (i) providing a porous matrix having interstitial spaces and comprising at least a first reactant; (ii) contacting the porous matrix with an infiltrating medium that carries at least a second reactant; (iii) allowing the infiltrating medium to infiltrate at least a portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (iv) allowing the at least first product to form and fill at least a portion of the interstitial spaces of the porous matrix, thereby producing a monolithic body, wherein the monolithic body does not comprise barium titanate.Type: ApplicationFiled: January 4, 2011Publication date: May 5, 2011Inventors: Richard E. Riman, Vahit Atakan