Group Ib Metal (cu, Ag, Or Au) Patents (Class 423/604)
  • Patent number: 6537510
    Abstract: One embodiment of the present invention provides a conductive pigment powder, which includes indium oxide, tin and gold, and having a purple color tone. Other embodiments of the present invention provide a method of producing a conductive pigment powder; a dispersion solution and a transparent conductive film, which include the above-mentioned conductive pigment powder; a method of forming a transparent conductive film; and a cathode ray tube, which includes the above-mentioned transparent conductive film and a transparent substrate.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: March 25, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiharu Hayashi, Hiroshi Yamaguchi, Daisuke Shibuta
  • Patent number: 6517802
    Abstract: A chemical synthetic route for nanostructured materials that is scalable to large volume production, comprising spray atomization of a reactant solution into a precursor solution to form a nanostructured oxide or hydroxide precipitate. The precipitate is then heat-treated followed by sonication, or sonicated followed by heat treatment. This route yields nanostructured doped and undoped nickel hydroxide, manganese dioxide, and ytrria-stabilized zirconia. Unusual morphological superstructures may be obtained, including well-defined cylinders or nanorods, as well as a novel structure in nickel hydroxide and manganese dioxide, comprising assemblies of nanostructured fibers, assemblies of nanostructured fibers and agglomerates of nanostructured particles, and assemblies of nanostructured fibers and nanostructured particles. These novel structures have high percolation rates and high densities of active sites, rendering them particularly suitable for catalytic applications.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: February 11, 2003
    Assignees: The University of Connecticut, Rutgers, The State University of New Jersey
    Inventors: Tongsan D. Xiao, Peter R. Strutt, Bernard H. Kear, Huimin Chen, Donald M. Wang
  • Publication number: 20020136685
    Abstract: Stable copper hydroxide is prepared by removing ferrous ion from the beginning cupric solution. The ferrous ion is oxidized to ferric ion, and the ferric ion is precipitated by raising the pH of the solution to 3-4. The utilization of phosphate ion both increases the efficiency of oxidation and simultaneously precipitates ferric ion. A second raising the pH of the purified solution precipitates highly pure copper hydroxide that can be harvested.
    Type: Application
    Filed: March 20, 2001
    Publication date: September 26, 2002
    Inventors: Julio Huato, Tetsuya Ogura
  • Patent number: 6432871
    Abstract: A process for manufacturing a catalyst body for generating hydrogen having at least one thin, large-surface catalyst layer, through which the reaction mixture can be passed includes steps of pressing a copper powder (particularly dendritic copper) to form a thin and highly compressed layer which forms a formed body, sintering, the formed body in a reducing atmosphere so that a net-type carrier structure made of copper is formed, and activating a surface layer of the formed body.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: August 13, 2002
    Assignee: XCELLSIS GmbH
    Inventors: Patrick Bachinger, Berthold Keppeler, Oskar Lamla, Bernd Schoenrock, Martin Schuessler, Dagmar Waidelich
  • Publication number: 20020086209
    Abstract: The current invention relates to the preparation of an improved cathode active material for non-aqueous lithium electrochemical cell. In particular, the cathode active material comprises &egr;-phase silver vanadium oxide prepared by using a &ggr;-phase silver vanadium oxide starting material. The reaction of &ggr;-phase SVO with a silver salt produces the novel &egr;-phase SVO possessing a lower surface area than &egr;-phase SVO produced from vanadium oxide (V2O5) and a similar silver salt as starting materials. Consequently, the low surface area &egr;-phase SVO material provides an advantage in greater long term stability in pulse dischargeable cells.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 4, 2002
    Inventors: Esther S. Takeuchi, Marcus Palazzo
  • Patent number: 6365766
    Abstract: Organohalosilanes are prepared by reacting an organic halide with metallic silicon particles in the presence of a metallic copper catalyst which is a metallic copper powder in flake form having a bulk specific gravity of 1-3 g/cm3 and a mean particle size of 10 &mgr;m to 1 mm as measured by laser diffraction particle size distribution analysis.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: April 2, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mikio Aramata, Masaaki Furuya, Yoshihiro Shirota, Akio Muraida, Susumu Ueno, Toshio Shinohara
  • Patent number: 6365555
    Abstract: A process for the preparation of nanostructured materials in high phase purities using cavitation is disclosed. The method comprises mixing a metal containing solution with a precipitating agent and passing the mixture into a cavitation chamber. The chamber consists of a first element to produce cavitation bubbles, and a second element that creates a pressure zone sufficient to collapse the bubbles. The process is useful for the preparation of mixed metal oxide catalysts and materials for piezoelectrics and superconductors.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: April 2, 2002
    Assignee: Worcester Polytechnic Institute
    Inventors: William R. Moser, Oleg V. Kozyuk, Josef Find, Sean Christian Emerson, Ivo M. Krausz
  • Patent number: 6355821
    Abstract: Methods of forming metal alkoxides and methods of forming precursor solutions of metal alkoxides suitable for the coating of glass in the manufacture of electrochromic devices are disclosed. The method of forming metal alkoxides involves dissolving the metal halide in an anhydrous solvent and reacting it with an alcohol and (together with the addition of the alcohol or subsequently) adding an epoxide, and then evaporating-off the volatile components of the reaction product to leave a solid metal alkoxide that is substantially free of halide. The alkoxide may then be dissolved in a solvent including an alcohol (preferably ethanol) containing a small proportion of water to produce a precursor solution suitable for coating glass, the coating then being hydrolyzed to form a sol-gel and then baked to remove volatile components and to yield a thin layer of metal oxide.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: March 12, 2002
    Assignee: Sustainable Technologies Australia Limited
    Inventors: Andrew Joseph Koplick, Susan Marie Jenkins
  • Patent number: 6346201
    Abstract: The invention provides an ozonated form of the compound tetrasilver tetroxide, a water disinfection method employing the ozonated tetrasilver tetroxide and compositions comprising the ozonated tetrasilver tetroxide. Examples of compositions of the invention include beverages, sterilants and disinfectants. In addition, the invention provides a method for increasing a half-life of ozone in water, where the method includes providing tetrasilver tetroxide in the water along with the ozone.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: February 12, 2002
    Assignee: ICF Technologies, Inc.
    Inventor: I. Cecil Felkner
  • Publication number: 20020009414
    Abstract: Nanostructured materials and processes for the preparation of these nanostructured materials in high phase purities using cavitation is disclosed. The method preferably comprises mixing a metal containing solution with a precipitating agent and passing the mixture into a cavitation chamber. The chamber consists of a first element to produce cavitation bubbles, and a second element that creates a pressure zone sufficient to collapse the bubbles. The process is useful for the preparation of catalysts and materials for piezoelectrics and superconductors.
    Type: Application
    Filed: January 16, 2001
    Publication date: January 24, 2002
    Inventors: William R. Moser, Oleg V. Kozyuk, Ivo M. Krausz, Sean Christian Emerson, Josef Find
  • Publication number: 20010051103
    Abstract: A method for recycling copper oxide includes: a first step in which a sodium hydroxide aqueous solution is added to acidic copper chloride waste etchant produced in the PCB industry, to obtain copper hydroxide slurry; and a second step in which the slurry obtained in the first step is heated and sintered to thereby prepare a needle-form copper oxide. Since copper oxide has a purity of more than 99.0 wt % and the needle-form crystal morphology, so that it has an excellent filtering ability and homogeneous particle size distribution.
    Type: Application
    Filed: January 24, 2001
    Publication date: December 13, 2001
    Inventors: Kyu Bum Seo, Young Sun Uh, Young Hee Kim, Jung Yoon Han, Sun Jin Kim, Myung Hun Kim
  • Patent number: 6306795
    Abstract: Stable highly active supported copper based catalysts are comprised of copper oxide or elemental copper crystallites supported on mechanically stable aluminum oxide and are characterized by high surface area, small copper crystallite size, and high metal loading. The average crystallite size of the copper compound is from about 20 to about 300 Å, the copper loading is from about 10 to about 35 weight percent, the average particle diameter is from about 0.1 mm to about 10 mm, and the total surface area is from about 20 to about 400 square meters per gram. The catalysts are useful for hydration of nitriles to amides, especially hydration of acrylonitrile to acrylamide. The catalysts are distinguished by high mechanical stability, extended lifetime, and excellent resistance to hydration and copper leaching.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: October 23, 2001
    Assignee: Cytec Technology Corp.
    Inventors: Mark Donal Ryan, John Bradley Roucis, James Donald Carruthers
  • Patent number: 6306494
    Abstract: Novel, fine particulate synthetic chalcoalumite, process for preparation thereof, and a heat insulating agent and agricultural film containing said fine, particulate synthetic chalcoalumite. The above objects are met by synthetic chalcoalumite represented by formula (1) below: (M12+)a−x(M22+)Al3+4(OH)b(An−)c. mH2O  (1)  (in which M12+ stands for Zn2+ or Cu2+,  M22+ is at least one divalent metal ion selected from Ni2+, Co2+, Cu2+, Zn2+ and Mg2+,  a is 0.3<a<2.0 (with the proviso that M1 and M2 are not the same),  x is 0 ≦x<1.0, and x<a  b is 10<b<14,  An− is at least one selected from SO42−, HPO42−, CO32−, SO32−, HPO32−, NO3−, H2PO4−, Cl−, OH− and silicate ion,  c is 0.4<c<2.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: October 23, 2001
    Assignee: Kyowa Chemical Industry Co Ltd
    Inventors: Hideo Takahashi, Akira Okada
  • Patent number: 6294274
    Abstract: An object of the invention is to provide an oxide thin film which exhibits a widegap or transparency and p-type conductivity although it has heretofore been very difficult to form. The oxide thin film formed on a substrate contains copper oxide and strontium oxide as a main component and exhibits p-type conductivity at a bandgap of at least 2 eV.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: September 25, 2001
    Assignees: TDK Corporation
    Inventors: Hiroshi Kawazoe, Hideo Hosono, Atsushi Kudo, Hiroshi Yanagi
  • Publication number: 20010003579
    Abstract: The present invention provides a method of reducing copper oxide to improve its acid resistance comprising the step of reacting cupric oxide with a reducing agent selected from the group consisting of morpholine borane, ethylene diamine borane, ethylene diamine bisborane, t-butylamine borane, piperazine borane, imidazole borane, and methoxyethylamine borane to form cuprous oxide.
    Type: Application
    Filed: May 11, 1998
    Publication date: June 14, 2001
    Inventors: JOSEPH A. CORELLA II, KEVIN M. NEIGH
  • Patent number: 6218335
    Abstract: A porous spinel type oxide shows a large surface area and a uniform micro-porous structure. The oxide is expressed by general formula MO—Al2O3 and shows a surface area per unit weight of not less than 80 m2/g. Such a porous spinel type compound oxide is obtained by impregnating a specific &ggr;-alumina carrier with a solution of a compound of metal element M capable of taking a valence of 2, drying the impregnated carrier and calcining it at a temperature of 600° C. or higher. The specific &ggr;-alumina carrier shows a surface area per unit weight of not less than 150 m2/g, a micro-pore volume per unit weight of not less than 0.55 cm3/g and an average micro-pore diameter between 90 and 200 angstroms. The micro-pores with a diameter between 90 and 200 angstroms occupy not less than 60% of the total micro-pore volume of the carrier.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: April 17, 2001
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Kenichi Imagawa, Susumu Yamamoto
  • Patent number: 6197273
    Abstract: The invention provides a process for production of fine spherical particles of a carbonate or a hydroxide of nickel, cobalt or copper which comprises: dissolving a carbonate or a hydroxide of nickel, cobalt or copper having the general formula (I) M(CO3)x/2.(OH)y wherein M represents Ni, Co or Cu, and x and y are numerals satisfying the followings: 0≦x≦2, 0≦y≦2 and x+y=2, in aqueous ammonia, converting the resulting solution to a W/O emulsion containing droplets of the solution in a non-aqueous medium, and then removing volatile components including ammonia from within the droplets, thereby precipitating a basic carbonate or a hydroxide of a metal selected from nickel, cobalt and copperin the droplets.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: March 6, 2001
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Kazuhiko Nagano, Kazunobu Abe, Shigefumi Kamisaka, Kiyoshi Fukai, Tsutomu Hatanaka, Shinji Ohgama, Hiroshi Nakao, Minoru Yoneda, Hideto Mizutani
  • Patent number: 6127476
    Abstract: An aqueous adhesive composition, as for bonding rubber substrates together or for bonding a rubber substrate to a fabric, comprising a blend of a carboxylated rubber latex as made from styrene, butadiene, and an unsaturated acid monomer, and a natural rubber latex, is sulfur curable and desirably utilizes rubber accelerators. The adhesive composition is substantially free of hydrocarbon solvents and/or tackifiers and has good physical properties such as high peel strength.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: October 3, 2000
    Assignee: OMNOVA Solutions Inc.
    Inventors: Gary L. Jialanella, Raymond J. Weinert, Pamela L. Cadile, Norman K. Porter, Richard Olson
  • Patent number: 6093236
    Abstract: Pelletized adsorbent compositions and methods of adsorbing toxic target compounds are provided for the destructive adsorption or chemisorption of toxic or undesired compounds. The pelletized adsorbents are formed by pressing together powder nanocrystalline particles comprising a metal hydroxide or a metal oxide at pressures of from about 50 psi to about 6000 psi to form discrete self-sustaining bodies. The pelletized bodies should retain at least about 25% of the surface area/unit mass and total pore volume of the starting metal particles.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: July 25, 2000
    Assignee: Kansas State University Research Foundation
    Inventors: Kenneth J. Klabunde, Olga Koper, Abbas Khaleel
  • Patent number: 6086845
    Abstract: An aqueous sodium carbonate solution is added in an equivalent amount to an aqueous silver nitrate solution (Ag=100 g/L) under stirring and, with nitric acid and sodium hydroxide being added to adjust the pH to 5.5-6.5, a silver carbonate precipitate is formed and subsequently washed thoroughly and dried at 250.degree. C. or below to produce a silver oxide powder, which satisfactory characteristics for use in cells, as exemplified by high water absorption, good shape of granules, high strength, non-stickiness to the molding punch, high fluidity and low residual carbon content. The pellet of the powder has high cell capacity.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: July 11, 2000
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hidekazu Kato, Shigetoshi Uchino, Kouki Toishi, Kenichi Harigae
  • Patent number: 6086956
    Abstract: A composition for reducing a copper oxide layer to metallic copper so as to facilitate bonding a resin to the metallic copper is disclosed. The composition is an aqueous reducing solution containing a cyclic borane compound. Examples of such cyclic borane compounds include those having nitrogen or sulfur as a ring-forming member, such as morpholine borane, piperidine borane, pyridine borane, piperazine borane, 2,6-Iutidine borane, 4-methylmorpholine borane, and 1,4-oxathiane borane, and also N,N-diethylaniline borane.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: July 11, 2000
    Assignee: Morton International Inc.
    Inventors: John Fakler, Michael Rush, Scott Campbell
  • Patent number: 6071486
    Abstract: A for producing metal oxide and/or organo-metal oxide compositions from metal oxide and organo-metal oxide precursors utilizing a rate modifying drying agent. The process allows metal oxide and/or organo-metal oxide compositions to be produced from a wide variety of metal oxide and organo-metal oxide precursors including metal halides and organometallic halides.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: June 6, 2000
    Assignee: Cabot Corporation
    Inventors: Kenneth C. Koehlert, Douglas M. Smith, William C. Ackerman, Stephen Wallace, David J. Kaul
  • Patent number: 6066590
    Abstract: The present invention is directed to a harmful gas removing agent used for removing harmful gas such as CO, NO.sub.x, and O.sub.3 from exhaust gases ventilated from automobile tunnels and underground parking, thereby preventing air pollution. The harmful gas removing agent, solving the problems of the conventional adsorbents and catalysts, is capable of efficiently removing NO.sub.x with no need of pre-treatment of adding O.sub.3 to the exhaust gas being treated, as well as being capable of satisfactorily removing CO and O.sub.3 from exhaust gases even at high humidity, and its removing activity lasts for a long time. Furthermore, the harmful gas removing agent can be regenerated by being exposed to hot air at relatively low temperature, thereby being repeatedly used, and is hard to be poisoned by SO.sub.x contained in the exhaust gas.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: May 23, 2000
    Assignee: Sued-Chemie Nissan Catalysts Inc.
    Inventors: Yuji Horii, Toshinori Inoue, Takeshi Yamashita, Hidetaka Shibano, Yoshiyuki Tomiyama, Kimihiko Yoshizaki
  • Patent number: 6063344
    Abstract: A method of removing HMO.sub.2.sup.- anions from an aqueous silicate solution comprising contacting the solution with a cationic ion exchange resin, where M is manganese, zinc, copper, nickel, or a mixture thereof. The method is particularly applicable to solutions of sodium silicate or potassium silicate.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: May 16, 2000
    Assignee: Occidental Chemical Corporation
    Inventors: Sharon D. Fritts, Walter Opalinski, Joseph Guzzetta
  • Patent number: 6060422
    Abstract: A process for producing acrylic acid from propane and oxygen gas through a vapor-phase catalytic oxidation reaction, said process comprising conducting the reaction using as a catalyst a metal oxide containing metallic elements Mo, V, Sb, and A (provided that A is at least one element selected from the group consisting of Nb, Ta, Sn, W, Ti, Ni, Fe, Cr, and Co). The metal oxide is prepared by a process including specific steps (1) and (2). The metal oxide may be supported on a compound containing specific elements.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: May 9, 2000
    Assignee: Toagosei Co., Ltd.
    Inventors: Mamoru Takahashi, Xinlin Tu, Toshiro Hirose, Masakazu Ishii
  • Patent number: 6030600
    Abstract: An aqueous sodium carbonate solution is added in an equivalent amount to an aqueous silver nitrate solution (Ag=100 g/L) under stirring and, with nitric acid and sodium hydroxide being added to adjust the pH to 5.5-6.5, a silver carbonate precipitate is formed and subsequently washed thoroughly and dried at 250.degree. C. or below to produce a silver oxide powder, which satisfactory characteristics for use in cells, as exemplified by high water absorption, good shape of granules, high strength, non-stickiness to the molding punch, high fluidity and low residual carbon content. The pellet of the powder has high cell capacity.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: February 29, 2000
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hidekazu Kato, Shigetoshi Uchino, Kouki Toishi, Kenichi Harigae
  • Patent number: 6004469
    Abstract: A process for the decomposition of hydrogen peroxide wherein aqueous streams containing 1 to 500,000 ppm H.sub.2 O.sub.2 are contacted with a Mn/Cu catalyst component on a monolith carrier to eliminate the H.sub.2 O.sub.2 by decomposition to water and oxygen.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: December 21, 1999
    Assignee: Advanced Catalyst Systems, Inc.
    Inventors: Michele W. Sanders, Larry E. Campbell
  • Patent number: 5985790
    Abstract: This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 400.degree. C. to 700.degree. C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: November 16, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5958362
    Abstract: The present method is to produce an active material powder formed of a spinel oxide containing lithium or a layer-structured oxide containing lithium for a lithium secondary battery which is uniform in composition, fine in particle size and free of oxygen defects, and which is unlikely to cause capacity deterioration resulted from repetitive charge/discharge cycles at a high current density.A suspension 1 prepared by suspending an ingredient of the active material powder in a combustible liquid or an emulsion prepared by emulsifying a solution of the ingredient in the combustible liquid is sprayed in a droplet state 15 together with an oxygenic gas 2. The combustible liquid contained in the droplet 15 is burned to have the ingredient therein reacted and to evaporate the solvent. As a result, active material powder 4 formed of the spinel oxide containing lithium is obtained.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: September 28, 1999
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazumasa Takatori, Naoyoshi Watanabe, Toshihiko Tani, Tsuyoshi Sasaki, Akio Takahashi, Masahiko Kato, Akihiko Murakami
  • Patent number: 5948726
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: September 7, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5891945
    Abstract: A production method of a magnesium hydroxide solid solution, Mg.sub.1-x M.sup.2+ .sub.x (OH).sub.2 or a resin and/or rubber material having as its effective elements containing said solid solution as its flame retardant, characterized by having M.sup.2+ distributed unevenly in a high concentration in the vicinity of the surface of each crystal, in the magnesium solid represented by the formula Mg.sub.1-x M.sup.2+ .sub.x (OH).sub.2 wherein M.sup.2+ is at least one divalent metal ion selected from the group consisting of Mn.sup.2+, Fe.sup.2+, Ni.sup.2+, Cu.sup.2+, Zn.sup.2+ and x indicates a range of 0.001.ltoreq.x<0.5.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: April 6, 1999
    Assignee: Tateho Chemical Industries, Co., Ltd.
    Inventors: Shigeo Miyata, Mitsuru Koresawa, Yasunori Kitano, Hirofumi Kurisu, Toshikazu Kotani, Kiminari Tottotsu
  • Patent number: 5874374
    Abstract: A method for producing engineered materials from salt/polymer aqueous solutions in which an aqueous continuous phase having at least one metal cation salt is mixed with a hydrophilic organic polymeric disperse phase so as to form a metal cation/polymer gel. The metal cation/polymer gel is then treated to form a structural mass precursor, which structural mass precursor is heated, resulting in formation of a structural mass having predetermined characteristics based upon the intended application of the structural mass.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: February 23, 1999
    Assignee: Institute of Gas Technology
    Inventor: Estela Ong
  • Patent number: 5861136
    Abstract: The invention is directed to a method for the manufacture of fully dense, finely divided, spherical particles of copper I oxide with controlled particle size distribution. The invention is further directed to a method for the manufacture of finely divided, spherical particles of copper I oxide with controlled particle size distribution.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: January 19, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Howard David Glicksman, Toivo Tarmo Kodas, Diptarka Majumdar
  • Patent number: 5861133
    Abstract: A synthetic chalcoalumite compound represented by the formula (1)(Zn.sub.a-x.sup.2+ M.sub.x.sup.2+)Al.sub.4.sup.3+ (OH).sub.b (A.sup.n-).sub.c.mH.sub.2 O (1)whereinM.sup.2+ represents at least one of Cu, Ni, Co and Mg;a represents 0.3<a<2.0;x represents 0.ltoreq.x<1.0;b represents 10<b<14;A.sup.n- represents one or two selected from SO.sub.4.sup.2-, HPO.sub.4.sup.2-, CO.sub.3.sup.2-, CrO.sub.4.sup.2-, SiO.sub.3.sup.2-, NO.sub.3.sup.2-, OH.sup.- and Cl.sup.- ;c represents 0.4<c<2.0 andm represents a number of 1 to 4,and a process for the production thereof.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: January 19, 1999
    Assignee: Kyowa Chemical Industry Co., Ltd.
    Inventors: Akira Okada, Kanako Shimizu, Kazushige Oda
  • Patent number: 5855862
    Abstract: A method for preparing an oxide (P), which includes the steps of (i) forming a solid phase compound (O) based on an oxide containing molecular entities (1) chosen from optionally substituted ammonium, diammonium, diazan-ium or diazandium, the entities being distributed within the solid matrix, and (ii) eliminating the entities (1) from the solid phase compound (O) by reacting the solid phase compound (O) with a gaseous stream containing a break-down reactant for the entities (1), and isolating the resulting solid material (P).
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: January 5, 1999
    Assignee: Rhone-Poulenc Chimie
    Inventors: Jean-Claude Grenier, Jean-Pierre Doumerc, Stephane Petit
  • Patent number: 5846912
    Abstract: The present invention relate to textured YBa.sub.2 Cu.sub.3 O.sub.x (Y-123) superconductors and a process of preparing them by directional recrystallization of compacts fabricated from quenched YBCO powders at temperatures about 100.degree. C. below the peritectic temperature to provide a superconductor where more than 75% of the YBa.sub.2 Cu.sub.3 O.sub.x phase is obtained without any Y.sub.2 BaCuO.sub.5 .
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: December 8, 1998
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventors: Venkat Selvamanickam, Amit Goyal, Donald M. Kroeger
  • Patent number: 5840267
    Abstract: A method for producing a metal oxide powder which comprises heating a metal or metals in an atmosphere gas comprising a halogen gas, a hydrogen halide gas or a mixture of these gases in a concentration of from 0.5% by volume or more to 99.5% by volume or less; and oxygen, water vapor or a mixture of these gases in a concentration of from 0.5% by volume or more to 99.5% by volume or less.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: November 24, 1998
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventor: Kunio Saegusa
  • Patent number: 5779784
    Abstract: A pigmentary material comprises silver in a lattice of crystalline zirconia, which material contains at least 0.4% by weight of the silver. A process for preparing a pigmentary material comprising silver in a lattice of crystalline zirconia comprises calcining a zirconium component which yields the zirconia, and a silver component which yields the silver, forming a calcination mixture of the resultant zirconium and silver moieties and cooling the mixture, the weight of fluoride compound in the total weight of the components to be calcined being less than 6%.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: July 14, 1998
    Assignee: Cookson Matthey Ceramics & Materials Limited
    Inventors: Desmond G. Eadon, Pamela Wood
  • Patent number: 5750087
    Abstract: The present invention provides a method of reducing copper oxide to improve its acid resistance comprising the step of reacting cupric oxide with a reducing agent selected from the group consisting of morpholine borane, ethylene diamine borane, ethylene diamine bisborane, t-butylamine borane, piperazine borane, imidazole borane, and methoxyethylamine borane to form cuprous oxide.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: May 12, 1998
    Assignee: Mine Safety Appliances Company
    Inventors: Joseph A. Corella, II, Kevin M. Neigh
  • Patent number: 5742070
    Abstract: A method for preparing an active substance for use in a positive electrode in chemical cells comprising a negative electrode is described. The method comprises preparing a mixed aqueous solution of a water-soluble lithium compound, a water-soluble transition metal compound, and an organic acid selected from the group consisting of organic acids having, in the molecule, at least one carboxyl group and at least one hydroxyl group and organic acids having at least two carboxyl groups, preparing an organic acid complex comprising lithium and a transition metal, and thermally decomposing the complex at temperatures sufficient for the decomposition to obtain the active substance. The complex may be prepared by dehydrating the solution. Alternatively, the complex may be formed by spraying the solution under heating conditions.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: April 21, 1998
    Assignee: Nippondenso Co., Ltd.
    Inventors: Yasushi Hayashi, Norikazu Adachi, Hisanao Kojima
  • Patent number: 5707438
    Abstract: A composite cuprous oxide powder is provided comprising at least about 80% by weight of cuprous oxide particles and substantially the balance cupric oxide adhering to cuprous oxide particles. The composite cuprous oxide powder is produced by surface oxidizing cuprous oxide particles to form a black coating or layer thereon. The composite powder is produced by subjecting particles of cuprous oxide to surface oxidation at a temperature ranging from about 400.degree. F. to less than about 900.degree. F. for a time period sufficient to surface oxidize the particles of cuprous oxide and produce a black coating thereon of cupric oxide. The method is applicable to the production of black pigment grade cuprous oxide powder.
    Type: Grant
    Filed: February 21, 1996
    Date of Patent: January 13, 1998
    Assignee: American Chemet Corporation
    Inventor: John N. Carlton
  • Patent number: 5698483
    Abstract: A process for producing nano size powders comprising the steps of mixing an aqueous continuous phase comprising at least one metal cation salt with a hydrophilic organic polymeric disperse phase, forming a metal cation salt/polymer gel, and heat treating the gel at a temperature sufficient to drive off water and organics within the gel, leaving as a residue a nanometer particle-size powder.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: December 16, 1997
    Assignee: Institute of Gas Technology
    Inventors: Estela T. Ong, Vahid Sendijarevic
  • Patent number: 5674815
    Abstract: An oxide superconductor composed of Cu, O and M (M is Ba, Sr and/or Ca) and including alternately arranged at least one rock-salt structure section and at least one infinite layer structure section, wherein the rock-salt structure section consists of two atomic layers each consisting of O and M and each having an atomic ratio O/M of 1 or less, and the infinite layer structure section consists of alternately arranged, first and second atomic layers. Each of the first atomic layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the second atomic layers consists of the element M. The infinite layer structure section may consist of only one first atomic layer.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: October 7, 1997
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Adachi, Hisao Yamauchi, Shoji Tanaka, Nobuo Mouri
  • Patent number: 5637258
    Abstract: A process for the production of metal oxide nanocrystalline phosphors activated with a rare earth, line emitting, element. The nanocrystal oxides are produced by a sol-gel like process. The process begins with an n-butoxide solution of the host and activator which is first subject to acetolysis which will cause the pH of the solution to change from basic to acidic. This is followed by the addition of water in a hydrolysis step which forms a host/activator hydroxide solution. To the host/activator hydroxide solution, sodium hydroxide, which is very basic, is added, which will cause the precipitation of host oxide nanocrystals activated with the activator. The host/activator n-butoxide precursors may be synthesized by azeotropic distillation.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: June 10, 1997
    Assignee: Nanocrystals Technology L.P.
    Inventors: Efim T. Goldburt, Rameshwar N. Bhargava, Bharati S. Kulkarni
  • Patent number: 5635154
    Abstract: Disclosed herein is a process for producing fine metal oxide particles comprising the step of heat-treating an aqueous solution of a metal salt at a temperature of not lower than 200.degree. C. under a pressure of not less than 160 kg/cm.sup.2 for 1 second to 1 hour so as to bring into the decomposition reaction of said metal salt.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: June 3, 1997
    Assignee: Nissan Chemical Industries Ltd.
    Inventors: Kunio Arai, Tadafumi Ajiri
  • Patent number: 5578551
    Abstract: The present invention is a controlled vapor/solid reaction process for the synthesis of samples of bulk compositions with a structure defined by the homologous series HgBa.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2+.delta. [Hg-12(n-1)n] with n=2, 3, . . . with up to 75 to 90% Hg-1212 and 65 to 75% Hg-1223 by volume, which display sharp superconducting transitions up to 135 K.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: November 26, 1996
    Assignee: University of Houston
    Inventors: Ching-Wu Chu, Ruling Meng, Y. Q. Wang
  • Patent number: 5571520
    Abstract: The employment of molecular crystals as bactericidal, viricidal and algicidal devices, and specifically the molecular semiconductor crystal tetrasilver tetroxide Ag.sub.4 O.sub.4 which has two trivalent and two monovalent silver atoms per molecule, and which through this structural configuration generates electronic activity on a molecular scale capable of killing algae and bacteria via the same mechanism as macroscale electron generators.
    Type: Grant
    Filed: August 4, 1994
    Date of Patent: November 5, 1996
    Assignee: Antelman Technologies Ltd.
    Inventor: Marvin S. Antelman
  • Patent number: 5565688
    Abstract: A method for preparing an active substance for positive electrode in non-aqueous electrolytic secondary cells making use of a lithium or lithium alloy negative electrode is described. The method comprises providing an amorphous citrate complex of lithium and a transition metal and firing the complex at a predetermined temperature to obtain an active substance. The citrate complex is obtained by preparing an aqueous mixed solution of lithium hydroxide or carbonate, a water-soluble transition metal salt and citric acid and dehydrating the mixed solution to obtain an amorphous citrate complex. The complex is then fired at a temperature ranging from 300.degree. to 900.degree. C. to obtain an active substance.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: October 15, 1996
    Assignee: Nippondenso Co., Ltd.
    Inventor: Yasushi Hayashi
  • Patent number: 5563117
    Abstract: In the production of a 124-type or 123-type superconductor by a sol-gel method using alkoxides of respective metals, the use of a compound wherein a secbutoxy group and a hydroxy group are coordinated with a copper atom gives a superconductor composed of flat particles having a broad C plane. The dimensional ratio defined by l/d is at least 6.7 in the case of the 124-type or is at least 8.4 in the case of the 123-type. It shows a superconducting property at a liquid nitrogen temperature. This superconductor shows a higher critical current density than one obtained by a sintering method.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: October 8, 1996
    Assignees: Kyocera Corporation, International Superconductivity Technology Center, Sanyo Electric Co., Ltd.
    Inventors: Shinichi Koriyama, Takaaki Ikemachi, Hisao Yamauchi
  • Patent number: 5527765
    Abstract: A high temperature superconductor and composite structure. A superconductor is disposed on a silver substrate without interdiffusion. The superconductor is formed by heating to a temperature not exceeding the peritectic point of the superconductor material, providing an oxidizing atmosphere while not exceeding the melting point of silver and disposing the superconductor on the silver substrate.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: June 18, 1996
    Assignee: Illinois Superconductor Corporation
    Inventors: James D. Hodge, Lori J. Klemptner