Including Decomposing Water Patents (Class 423/652)
  • Publication number: 20090220413
    Abstract: Provided is a novel catalyst for methane steam reformation which enables a highly efficient production of hydrogen at a lower reaction temperature of lower than 500° C. without the need for a high temperature condition of a conventional temperature of 500° C. or higher, actually as high as 700 to 800° C. by use of a catalyst for methane steam reformation that is characterized in supporting one kind or more of noble metals or one kind or more of each of noble metals and lanthanide metals in a microporous carbon material, and a method of producing hydrogen using the catalyst.
    Type: Application
    Filed: June 30, 2006
    Publication date: September 3, 2009
    Inventors: Iijima Sumio, Masako Yudasaka, Katsuyuki Murata
  • Patent number: 7578986
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials such as Group 1 and Group 2 metal oxides that are adapted to absorb CO2 and catalyst materials such as reforming catalysts and water-gas shift catalysts, and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 25, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Patent number: 7572304
    Abstract: An apparatus and method for the preferential oxidation of carbon monoxide in a hydrogen-rich fluid. The apparatus utilizes one or more reactors that are dimensioned to optimize the exothermic oxidation reaction and the transfer of heat to and from the catalyst bed. A reactor of the apparatus has an elongated cylindrical catalyst bed and heat transfer means adjacent the catalyst bed. The heat transfer means is suitable for pre-heating the catalyst bed during start-up operations and for removing the heat from the catalyst bed during the oxidation reaction. One or more reactors of different dimensions may be utilized depending upon the pressure of the hydrogen-rich fluid to be directed into the apparatus and the pressure requirements for the carbon monoxide-depleted fluid exiting the apparatus. For instance, in low pressure operations where it may be desirable to minimize the pressure drop across the apparatus, two or more reactors having relatively smaller dimensions can be utilized.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: August 11, 2009
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Daniel G. Casey, Curtis L. Krause, Marshall D. Wier, David W. Harrison, Sr.
  • Patent number: 7572429
    Abstract: A combined desulphurization and pre-reforming processing unit converts logistic fuels such as JP-5, JP-8, gasoline, and diesel with high sulfur content levels, into a mixture of hydrogen, methane, carbon monoxide, carbon dioxide, and water without any sulfur or higher hydrocarbons. The fuel is processed at lower temperatures with sulfur-resistant materials in order to break down all the heavy hydrocarbons into methane and carbon oxides while capturing the sulfur simultaneously. The resulting feed is passed to a methane reforming system to generate additional hydrogen with no effects of coking or sulfur poisoning on the reforming system. The unit itself operates in a cyclic manner in order to regenerate the bed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 11, 2009
    Assignee: Nu Element, Inc.
    Inventors: Michael K. Neylon, David C. LaMont, Karen M. Fleckner
  • Patent number: 7572432
    Abstract: Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 11, 2009
    Assignee: General Electric Company
    Inventors: Sauri Gudlavalleti, Michael Bowman, Chellappa Balan, Shailesh Singh Bhaisora, Andrei Colibaba-Evulet, Narayan Ramesh
  • Publication number: 20090196822
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Application
    Filed: January 13, 2009
    Publication date: August 6, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Patent number: 7569203
    Abstract: Methods for the reduction of gaseous carbon dioxide emissions from combustion or oxidation reactions are provided. The various methods involve the formation of carbon suboxides and/or polymerized carbon suboxides (PCS), preferentially over gaseous carbon oxides to thereby reduce gaseous carbon dioxide emissions. The various methods can be employed for efficient generation of energy and/or hydrogen. In addition, various methods for the use of polymerized carbon suboxide are disclosed.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: August 4, 2009
    Assignee: Drexel University
    Inventors: Alexander Fridman, Alexander F. Gutsol, Young I. Cho
  • Patent number: 7566441
    Abstract: The invention provides methods of combusting a fuel in a reactor that includes at least 3 zones each of which contains a solid catalyst. A method of making a thermally-stable alumina support from fumed alumina is also described.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 28, 2009
    Assignee: Velocys
    Inventors: Francis P. Daly, Junko M. Watson, Yong Wang, Jianli Hu, Chunshe Cao, Richard Long, Rachid Taha
  • Patent number: 7563390
    Abstract: The present invention provides steam reforming catalyst compositions containing Pd and Zn, and methods of steam reforming alcohols over a catalyst. Surprisingly superior results and properties of the present invention, including low temperature activity and/or low carbon monoxide output, are also described. Methods of making a steam reforming catalyst are also provided.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 21, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max R. Phelps, Heon Jung
  • Patent number: 7560091
    Abstract: Mineral particles consisting essentially of metallic magnesium particles subjected to special processing are accommodated directly in a microporous cartridge made of a sintered polypropylene material, and the cartridge is closed. The cartridge is put in a closed raw water container, whereby a large amount of hydrogen gas is generated in a short period of time and released from the whole surface of the cartridge in the form of microbubbles so as to be dissolved in raw water in the container.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 14, 2009
    Assignee: Hidemitu Hayashi
    Inventors: Hidemitu Hayashi, Kiyoshi Kimura
  • Patent number: 7556872
    Abstract: The present invention provides an adsorbent for removing sulfur compounds, which adsorbent can effectively remove a variety of sulfur compounds contained in a hydrocarbon fuel to a low concentration even at room temperature; a process for effectively producing hydrogen that can be used in a fuel cell; and a fuel cell system employing hydrogen produced through the process. The adsorbent for removing a sulfur compound contained in a hydrocarbon fuel contains cerium oxide. The process for producing hydrogen that can be used in a fuel cell includes desulfurizing a hydrocarbon fuel through removal of a sulfur compound contained in the a hydrocarbon fuel by use of the aforementioned adsorbent and, subsequently, bringing the thus-desulfurized fuel into contact with a partial-oxidation reforming catalyst, an authothermal reforming catalyst, or a steam reforming catalyst. The fuel cell system employs hydrogen produced through the process.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: July 7, 2009
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kozo Takatsu, Gakuji Takegoshi
  • Patent number: 7553475
    Abstract: A method and apparatus for use in producing high-pressure hydrogen from natural gas, methanol, ethanol, or other fossil fuel-derived and renewable hydrocarbon resources. The process can produce hydrogen at pressure ranging from 2000 to 12,000 pounds per square inch (psi) using a hydrogen feedstock (16, 18) high pressure water (12, 18), and an appropriate catalyst. Following making and heating in preheater (14), the catalyst reacts with the hydrogen feedstock (16, 18) and high pressure water (12, 18) in a catalytic reformer (20) maintained under desired temperature and pressure conditions. Reformate products exit reformer (200) and flow into condenser (22), in which water and a portion of the carbon dioxide product are condensed.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: June 30, 2009
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Ronald C. Timpe, Ted R. Aulich
  • Patent number: 7550215
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 23, 2009
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, James Hanlan Gosnell
  • Patent number: 7550635
    Abstract: Process for the preparation hydrogen and a mixture of hydrogen and carbon monoxide containing gas from a carbonaceous feedstock by performing the following steps: (a) preparing a mixture of hydrogen and carbon monoxide having a temperature of above 700° C. (51); (b) catalytic steam reforming a carbonaceous feedstock in a Convective Steam Reformer zone (44), wherein the required heat for the steam reforming reaction is provided by convective heat exchange between the steam reformer reactor zone and the effluent of step (a) to obtain as separate products a steam reforming product having a hydrogen to CO molar ratio of greater than 2 and a cooled effluent of step (a), and (c) separating hydrogen from the steam reforming product.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: June 23, 2009
    Assignee: Shell Oil Company
    Inventor: Thian Hoey Tio
  • Patent number: 7547332
    Abstract: Process and apparatus for the preparation of synthesis gas by catalytic steam and/or CO2 reforming of a hydrocarbon feedstock comprising the following steps: (a) heating the reaction mixture of hydrocarbon and steam and/or CO2 in a heated steam reforming unit integrated with the flue gas containing waste heat section from the fired tubular reformer in which reforming of the reaction mixture takes place by contact with a solid reforming catalyst (b) feeding the partially steam reformed mixture to the fired tubular reformer and further reforming the mixture to the desired composition and temperature, wherein the heated steam reforming unit comprises a piping system containing reaction sections with solid reforming catalyst comprising catalyst pellets and/or catalysed structured elements, the piping system being part of the process gas piping system integrated with the flue gas-containing waste heat section.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 16, 2009
    Assignee: Haldor Topsoe A/S
    Inventors: Peter Scier Christensen, Thomas Rostrup Nielsen, Niels Erikstrup, Kim Assberg-Petersen, Jens-Henrik Bak Hansen, Ib Dybkjer
  • Patent number: 7544346
    Abstract: A multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of modules stacked end-to-end along a common axis. Each module includes a shell having an interior space defining a passageway for the flow of gas from a first end of the shell to a second end of the shell opposite the first end, and a processing core being contained within the interior space for effecting a chemical, thermal, or physical change to a gas stream passing axially through the module. The multi-step process includes: providing a fuel processor having a plurality of modules stacked end-to-end along a common axis; and feeding the hydrocarbon fuel successively through each of the modules in an axial direction through the tubular reactor to produce the hydrogen rich gas.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: June 9, 2009
    Assignee: Texaco Inc.
    Inventors: Curtis L. Krause, James K. Wolfenbarger, Paul F. Martin
  • Patent number: 7537750
    Abstract: Hydrogen gas is produced by reacting a carbon-hydrogen-containing species with water provided as a water reforming inflow at a reforming temperature to produce a primary reacted gas flow containing hydrogen gas. The carbon-hydrogen-containing species and water are heated to the reforming temperature with solar energy. The heating is preferably performed by heating a molten metal to at least the reforming temperature with solar energy, and using the molten metal to heat the carbon-hydrogen-containing species and water to at least the reforming temperature. The water reforming inflow is preheated by heat exchange from the primary reacted gas flow. The primary reacted gas flow is reacted with water to produce additional hydrogen gas in a secondary reacted gas flow.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: May 26, 2009
    Assignee: United Technologies Corporation
    Inventors: Robert Zachary Litwin, Albert E. Stewart
  • Patent number: 7527781
    Abstract: A process for the preparation of a hydrogen-rich stream comprising contacting a carbon monoxide-containing gas, methanol and water in at least one shift step in the presence of a catalyst comprising copper, zinc and aluminium and/or chromium at a shift inlet temperature of at least 280° C. and a pressure of at least 2.0 MPa.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: May 5, 2009
    Assignee: Haldor Topsoe A/S
    Inventors: Poul Erik Højlund Nielsen, John Bøgild Hansen, Niels Christian Schiødt
  • Publication number: 20090104110
    Abstract: A staged steam hydrocarbon reformer is disclosed having a chamber within which convectively heated reformer stages are enclosed. The reformer stages are tubes containing steam reforming catalyst. The stages are in serial fluid communication with one another through mixing vessels positioned between each stage. The first reforming stage is fed a mixture of steam and a gaseous hydrocarbon. Partially reformed gases having increased hydrogen concentration are produced at each stage and are mixed with additional gaseous hydrocarbon and optionally steam in the mixing vessels. Collection and distribution manifolds provide fluid communication between the reformer stages and the mixing vessels. A method is also disclosed in which partially reformed gases from a preceding stage are mixed with gaseous hydrocarbon and steam having a lower steam to carbon ratio than the fresh feed to the previous stage.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Xiang-Dong Peng, John Michael Repasky, Blaine Edward Herb
  • Patent number: 7517507
    Abstract: The steam reformer has a double-cylinder structure having an inner cylinder and an outer cylinder surrounding the inner cylinder. The inner cylinder contains a high-temperature reaction section and an adjacent section being adjacent to the high-temperature reaction section. The high-temperature reaction section contains a mixed-catalyst bed prepared by mixing a steam reforming catalyst and an oxidation catalyst, and an oxygen-containing gas introduction section. A heat transfer suppresser is structured to suppress heat transfer from the high-temperature reaction section to the adjacent section or to the oxygen-containing gas introduction section. With the heat-transfer suppressor, the thermal diffusion from the high-temperature reaction section to peripheral area is effectively suppressed.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: April 14, 2009
    Assignee: T.RAD Co., Ltd.
    Inventors: Takeshi Kuwabara, Yoshio Tomizawa, Jun Ono, Yasushi Yoshino
  • Patent number: 7510648
    Abstract: The invention provides an optimum method for utilizing a desulfurizing agent for liquid hydrocarbons which can efficiently remove sulfur content from kerosene without performing addition of hydrogen to a low sulfur concentration and which has a prolonged lifetime. The invention provides a desulfurization method which includes removing sulfur content from kerosene by use of a metallic desulfurizing agent without performing addition of hydrogen, characterized in that the method employs desulfurization conditions satisfying the following formula (1): 1.06×Pope0.44<Tope/T50<1.78×Pope0.22??(1) (wherein Tope is operation temperature (° C.); Pope is operation pressure (MPa); and T50 is a temperature per 50 percent recovered as determined by “test method for distillation at atmospheric pressure” stipulated in JIS K2254 “Petroleum products—Determination of distillation characteristics as revised in 1998”).
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: March 31, 2009
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Tadashi Kisen, Hiroto Matsumoto, Hisashi Katsuno, Kazuhito Saito
  • Publication number: 20090071471
    Abstract: An apparatus for producing oxygen in an atmosphere substantially devoid of breathable oxygen.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 19, 2009
    Inventor: Binyomin A. Cohen
  • Patent number: 7504048
    Abstract: A steam/hydrocarbon reformer employing a conventional radiantly heated first reformer section and a flue-gas heated second reformer section is disclosed. The second reformer section comprises catalyst-containing tubes for partially reforming a hydrocarbon stream. The catalyst-containing tubes in the second reformer section are disposed in a conduit for conveying flue gas from the first reformer section, thereby receiving heat from the flue gases. The flue gases flow either cocurrent or countercurrent to the process gas in the catalyst-containing tubes in the second reformer section. The partially reformed hydrocarbon stream from the second reformer section is fed to the catalyst-containing tubes in the first reformer section thereby producing a hydrogen-rich synthesis gas.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: March 17, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventor: William Robert Licht
  • Patent number: 7501078
    Abstract: A process for generating synthesis gas wherein a reactant gas mixture comprising steam and a light hydrocarbon is introduced into a tubular reactor comprising a catalyzed structured packing at higher inlet mass rates than conventional tubular reactors containing random packing catalyst pellets or catalyzed structure packing.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: March 10, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shankar Nataraj, Robert Roger Broekhuis, Diwakar Garg, Xiaoyi He, Xianming Jimmy Li
  • Publication number: 20090035192
    Abstract: By using catalytic partial oxidation or autothermal reforming process, a catalytic oxidizer installed in the engine's Exhaust Gas Recycle (EGR) line can be used to produce from fossil fuels or bio-fuels a reformate gas containing H2 and CO for an IC engine or a gas turbine. Thus, a system consisting of an EGR Oxidizer and an IC engine/gas turbine can be used by itself as a driving device, or can be combined with an electric generator and a battery bank to produce, store and transmit electricity to be used in stationary or mobile power generation, transportation and utility etc. The Oxidizer can also be used to provide reducing gases to regenerate the NOx or diesel particulate traps, so that the traps can continuously be used for reducing emissions from IC engine, diesel truck, gas turbine, power plant etc.
    Type: Application
    Filed: July 1, 2008
    Publication date: February 5, 2009
    Inventor: Herng Shinn Hwang
  • Patent number: 7481992
    Abstract: A base-facilitated reformation reaction. Hydrogen is produced from a reaction of an organic substance with a base to form bicarbonate ion or carbonate ion as a by-product. The base-facilitated reformation reactions are thermodynamically more spontaneous than conventional reformation reactions and are able to produce hydrogen gas at less extreme reaction conditions than conventional reformation reactions. In one embodiment, the instant base-facilitated reactions produce hydrogen gas from an organic substance at a lower temperature than is possible for the production of hydrogen gas from the organic substance in a conventional reformation reaction. In another embodiment, the instant base-facilitated reformation reactions produce hydrogen gas from an organic substance at a faster rate at a particular temperature than is possible from the conventional reformation reaction of the organic substance.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: January 27, 2009
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Benjamin Reichman, William Mays
  • Publication number: 20090001727
    Abstract: The present invention relates to a process for production of electric energy and CO2 from a hydrocarbon feedstock comprising steam reforming of the feedstock, separation and combustion of hydrogen and separation of CO2. Further the invention relates to a power plant for performing the process.
    Type: Application
    Filed: April 19, 2006
    Publication date: January 1, 2009
    Applicant: STATOIL ASA
    Inventors: Gelein De Koeijer, Erling Rytter, Borge Rygh Sivertsen, Henrik Kobro
  • Publication number: 20080305034
    Abstract: Systems and methods for producing hydrogen gas with a fuel processing system that includes a hydrogen-producing region that produces hydrogen gas from a feed stream and a heating assembly that consumes a fuel stream to produce a heated exhaust stream for heating the hydrogen-producing region. In some embodiments, the heating assembly heats the hydrogen-producing region to at least a minimum hydrogen-producing temperature. In some embodiments, the feed stream and the fuel stream both contain a carbon-containing feedstock and at least 25 wt % water. In some embodiments, at least one of the feed and fuel streams contain at least one additional component. In some embodiments, the feed and fuel streams have the same composition. In some embodiments, the feed and fuel streams are drawn or obtained from a common source or supply, and in some embodiments as a liquid stream that is selectively apportioned to form the feed and fuel streams.
    Type: Application
    Filed: March 7, 2008
    Publication date: December 11, 2008
    Applicant: IDATECH, LLC
    Inventors: David J. Edlund, Darrell J. Elliott, Alan E. Hayes, William A. Pledger, Curtiss Renn, Redwood Stephens, R. Todd Studebaker
  • Patent number: 7461618
    Abstract: Liquid fuel is evaporated and mixed with an oxidizing agent in a mixing chamber of a reformer by first introducing substantially only the liquid fuel in an axial downstream direction into a first upstream zone of the mixing chamber via a nozzle so as to atomize the liquid fuel. Then steam is separately introduced into the upstream zone and contacted with the atomized fuel to cause the fuel to evaporate. An oxidizing agent is then introduced downstream of the first zone in a second zone of the mixing chamber to the evaporated fuel and uniformly mixing the oxidizing agent with the evaporated fuel.
    Type: Grant
    Filed: November 12, 2005
    Date of Patent: December 9, 2008
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Zdenek Pors, Anderas Tschauder, Joachim Pasel, Ralf Peters, Detlef Stolten
  • Patent number: 7459224
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: December 2, 2008
    Assignee: General Motors Corporation
    Inventors: Michael Ian Petch, Mark Robert Feaviour, Suzanne Rose Ellis, Jillian Elaine Bailie, David Wails, Paul James Millington
  • Patent number: 7445647
    Abstract: A method for making fuel cells is disclosed and includes placing catalyst strips on an anode side and a cathode side of a proton exchange membrane disposed between carbon bases. The method includes metalizing at least two collectors, and drilling a plurality of paths through the body portions to form a first and second metalized collectors, which are placed on opposite sides of the proton exchange membrane to form a membrane electrode assembly. The metalized collectors are connected to form an electrical circuit for operating the fuel cell. A flexible fuel plenum and a flexible oxidant plenum are disposed on opposite sides of the membrane electrode assembly, and a fuel manifold and an oxidant manifold of a sealable two-part housing engage the membrane electrode assembly to provide oxidant to the flexible oxidant plenum and fuel to the flexible fuel plenum forming an operational singe unit fuel cell.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 4, 2008
    Assignee: Hydra Fuel Cell Corporation
    Inventors: Edward Lee Davis, Benjamin Franklin Schafer
  • Patent number: 7442290
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 28, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Patent number: 7442363
    Abstract: A hydrogen iodide manufacturing method which includes a step of producing aqueous solution of hydrogen iodide and sulfuric acid by causing iodine-containing aqueous solution and sulfur dioxide to react with each other in a pressurized condition. The pressurized condition may be of not lower than 0.1 MPa in gauge pressure. The method may further include: a separation step of adding iodine to the aqueous solution of hydrogen iodide and separating an upper phase containing sulfuric acid relatively to a large extent and a lower phase containing hydrogen iodide relatively to a large extent; and a step of producing hydrogen iodide by adding sulfur dioxide to the upper phase in a pressurized condition and extracting the produced hydrogen iodide to the lower phase.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: October 28, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryouta Takahashi, Hideki Nakamura, Kazuo Murakami, Haruhiko Takase, Noboru Jimbo, Kazuya Yamada
  • Patent number: 7442364
    Abstract: A process for producing hydrogen for direct use as a fuel or for input to a fuel cell from dissociating H2O in a plasma reformer with hydrocarbon fuel acting as an initiator. The molar ratio of water to hydrocarbon fuel in the input mixture for reactions, and therefore the production of hydrogen from water, increases with the carbon number of the hydrocarbon fuel. Steps in the process include: mixing and vaporizing an H2O and hydrocarbon fuel mixture in an atomization/evaporation chamber, further heating the mixture in a rotating-flow buffer chamber, dissociating H2O and hydrocarbon fuel in a plasma reformer, converting carbon monoxide and H2O to hydrogen and carbon dioxide in a water shift reactor and optionally conditioning the reformate stream by removing carbon dioxide and by purifying hydrogen.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: October 28, 2008
    Inventor: Chi S. Wang
  • Publication number: 20080260631
    Abstract: A hydrogen production process includes combining a first feedstream and a second feedstream to produce, in a pre-reforming reactor, a first product stream comprising CH4 and H2O; wherein the first feedstream contains a mixture of H2 and at least one selected from the group consisting of hydrocarbons having two or more carbon atoms and alcohols having two or more carbon atoms, and the mixture has a hydrogen stoichiometric ratio (?) of at least 0.1, and the second feedstream contains steam; feeding the first product stream into a reforming reactor; and reacting the first product stream in the reforming reactor to produce a second product stream containing CO and H2; and a catalyst for use in the process.
    Type: Application
    Filed: February 12, 2008
    Publication date: October 23, 2008
    Applicant: H2GEN INNOVATIONS, INC.
    Inventors: Franklin D. Lomax, Maxim Lyubovsky, Rama Zakaria, Jon P. Wagner, Chandra Ratnasamy
  • Patent number: 7438889
    Abstract: A process for producing hydrogen comprising reacting at least one hydrocarbon and steam in the presence of a complex metal oxide and a steam-hydrocarbon reforming catalyst in a production step under reaction conditions sufficient to form hydrogen and a spent complex metal oxide, wherein the complex metal oxide is represented by the formula (A?xCax?Mgx?)x(B?yMny?Fey?)yOn where A? represents at least one element selected from the group consisting of Sr, Ba, a Group 1 element, and an element of the Lanthanide series according to the IUPAC Periodic Table of the Elements; B? represents at least one element selected from the group consisting of Cu, Ni, Co, Cr, and V; 0?x?1, 0?x??1, 0?x??1 wherein x+x?+x?=x; 0?y?1, 0?y??1, 0?y??1 wherein y+y?+y?=y; 1?x?10; 1?y?10; and n represents a value such that the complex metal oxide is rendered electrically neutral.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: October 21, 2008
    Assignee: University of South Carolina
    Inventors: Guido Peter Pez, Baolong Zhang, Hans-Conrad zur Loye
  • Patent number: 7431865
    Abstract: Ammonia synthesis gas production having a shift reaction stage employing a copper-based catalyst wherein the air supplied to the process is passed through an absorber that removes sulfur and/or halide contaminants, is described. The absorber has a support carrying an absorbent for sulfur compounds and/or absorbent for halide compounds. The removal of the contaminants improves the lifetime e.g. copper-zinc low temperature shift catalysts.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: October 7, 2008
    Assignee: Johnson Matthey PLC
    Inventors: Andrew Mark Ward, Alan Bruce Briston
  • Publication number: 20080241059
    Abstract: A method for generating hydrogen in a production facility having a catalytic steam reformer, a boiler downstream of the catalytic steam reformer, optionally having a prereformer, and optionally having a shift reactor, wherein the reformer feed gas mixture is formed using a steam-containing recycle gas mixture which was formed from boiler effluent. The boiler generates steam which may be used to form the reformer feed gas mixture, used elsewhere in the production facility, and/or used for export steam.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Xiang-Dong Peng, James Richard O'Leary, Blaine Edward Herb, Krishnakumar Jambunathan
  • Patent number: 7429373
    Abstract: Process for producing hydrogen comprising reacting at least one hydrocarbon and steam in the presence of a complex metal oxide and a steam-hydrocarbon reforming catalyst in a production step under reaction conditions sufficient to form hydrogen gas and a spent complex metal oxide, wherein the complex metal oxide is represented by the formula AxByOn wherein A represents at least one metallic element having an oxidation state ranging from +1 to +3, inclusive, wherein the metallic element is capable of forming a metal carbonate; x is a number from 1 to 10, inclusive; B represents at least one metallic element having an oxidation state ranging from +1 to +7, inclusive; y is a number from 1 to 10, inclusive; and n represents a value such that the complex metal oxide is rendered electrically neutral.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: September 30, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Guido Peter Pez, Robert Quinn, Shankar Nataraj
  • Patent number: 7427385
    Abstract: Systems and processes for removing a first sulfur compound from a hydrocarbon stream. The systems and process utilize at least one reaction vessel incorporating a hydrolysis catalyst suitable for hydrolyzing the first sulfur compound to a second sulfur compound. The reaction vessel also incorporates a sorbent material suitable for absorbing the second sulfur compound. Following hydrolysis of the first sulfur compound to the second sulfur compound and absorption of the second sulfur compound, a hydrocarbon-containing stream having a reduced sulfur content is produced. The hydrolysis catalyst and sorbent material may be provided in separate zones within the reaction vessel or provided as a mixture in a single zone. The hydrocarbon-containing stream having a reduced sulfur content is suitable for a variety of uses, including as a feedstreams for hydrogen plants, process gas streams for power generation plants, or for other uses for hydrocarbon-containing stream having reduced sulfur content.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 23, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Glen E. Scheirer, Francis S. Wu, Thomas R. Kiliany
  • Patent number: 7422706
    Abstract: A process for the preparation of hydrogen and carbon monoxide containing gas from a gaseous hydrocarbon feedstock by performing the following steps: (a) partial oxidation of part of the feedstock thereby obtaining a first gaseous mixture of hydrogen and carbon monoxide; and, (b) catalytic steam reforming of part of the gaseous feedstock in a Convective Steam Reformer having a tubular reactor provided with one or more tubes containing a reforming catalyst, wherein the exterior of the tubes of the tubular reactor is used to cool the hot gas as obtained in step (a) and wherein the exterior of the tubes is a metal alloy surface having between 0 wt % and 20 wt % iron.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: September 9, 2008
    Assignee: Shell Oil Company
    Inventors: Franciscus Gerardus Van Dongen, Winnifred De Graaf, Thian Hoey Tio, Anthonij Wolfert
  • Patent number: 7419648
    Abstract: The present invention pertains to a process for the production of hydrogen and carbon dioxide from hydrocarbons involving: a) supplying a gaseous stream of hydrocarbons and a molecular-oxygen containing gas to a first reaction zone having a fluidized bed of partial oxidation catalyst; b) catalytically partially oxidizing the hydrocarbons in the gaseous stream at a temperature in the range of from 700° C. to 1400° C., to form a first effluent; c) supplying a gaseous stream of hydrocarbons, steam and the first effluent to a second reaction zone containing a fluidized bed of steam reforming catalyst; d) catalytically reforming the hydrocarbons fed to the second reaction zone at a temperature in the range of from 200° C. to 700° C.; e) separating hydrogen from the reformed gas by a selective membrane in the second reaction zone; and, f) removing a gaseous stream rich in carbon dioxide.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: September 2, 2008
    Assignee: Shell Oil Company
    Inventors: Johannes Alfonsius Maria Kuipers, Charudatta Subhash Patil, Martin Van Sint Annaland
  • Patent number: 7410531
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. In some embodiments, the fuel processing systems and the hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 12, 2008
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 7399326
    Abstract: A fuel processor system is provided including an autothermal reactor (ATR), a pressure swing adsorber (PSA) located downstream of the ATR, and a methanation reactor located downstream of the PSA. A method of operating of proton exchange membrane fuel cell stack involves cooling the methanator output and feeding it into the stack as an anode fuel.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: July 15, 2008
    Assignee: General Motors Corporation
    Inventors: Yan Zhang, John Ruhl, Annette M Brenner, Craig S Gittleman
  • Patent number: 7384621
    Abstract: Methods for converting hydrocarbon fuels to hydrogen-rich reformate that incorporate a carbon dioxide fixing mechanism into the initial hydrocarbon conversion process. The mechanism utilizes a carbon dioxide fixing material to remove carbon dioxide from the reformate product stream. The removal of carbon dioxide from the product stream shifts the reforming reaction equilibrium toward higher hydrocarbon conversion with only small amounts of carbon oxides produced. Repeated absorption/desorption of carbon dioxide by the fixing materials tends to decrease the fixing capacity of the materials. Hydration of the carbon dioxide fixing materials between one or more cycles serves to sustain their fixing capacity and to enhance the efficiencies of the reforming and shift reactions occurring in the catalyst bed. Hydration can occur during reactor start-up or shut down, periodically over a number of cycles, and/or upon a monitored change in the reformate composition.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: June 10, 2008
    Assignee: Texaco Inc.
    Inventors: James F. Stevens, Julie M. Cao, Thomas M. Vu
  • Publication number: 20080131361
    Abstract: A process and apparatus for producing hydrogen from a gaseous mixture of hydrocarbons and steam are disclosed. The process includes first reacting the hydrocarbon gas and steam in the presence of a precious metal catalyst on a structural support and then reacting the resulting gas mixture in the presence of a non-precious metal catalyst. The apparatus includes a vessel having an inlet and an outlet. The precious metal catalyst is supported on the structural support positioned at the inlet. The non-precious metal catalyst is supported on a support medium positioned between the structural support and the outlet. The support medium may be a granular medium or a structural support.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Diwakar Garg, Kevin Boyle Fogash
  • Patent number: 7354560
    Abstract: Process for the removal of organic and/or inorganic sulfur from an ammonia stream by passing said stream through a fixed bed of sulfur absorbent in a sulfur absorber and withdrawing a sulfur-free ammonia stream, wherein said sulfur absorbent is a catalyst having a total nickel content in reduced form in the range 10 wt % to 70 wt % with the balance being a carrier material selected from the group of alumina, magnesium alumina spinel, silica, titania, magnesia, zirconia and mixtures thereof.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 8, 2008
    Assignee: Haldor Topsoe A/S
    Inventors: Poul Erik Højlund Nielsen, Leif Storgaard
  • Patent number: 7351275
    Abstract: The present invention provides for a process for producing carbon monoxide. A feed gas stream of hydrogen, carbon monoxide and carbon dioxide is directed to a membrane unit which separates the feed gas stream into two streams. The stream containing carbon monoxide is directed to second membrane unit for further purification and the steam containing the carbon dioxide and hydrogen is fed to a reverse shift reactor to produce more carbon monoxide. The carbon monoxide recovered from the reverse shift reactor is purified in a third membrane unit and directed back to the first membrane unit and is further purified and recovered as additional carbon monoxide product.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: April 1, 2008
    Assignee: The BOC Group, Inc.
    Inventor: Graeme John Dunn
  • Publication number: 20080069766
    Abstract: A process for producing synthesis gas, SG, from a hydrocarbon feed and optionally from recycled compounds, F, is described in which: a first feed F1 supplemented with steam undergoes steam reforming in a multi-tube reactor-exchanger R comprising a plurality of reaction tubes (38) containing a steam reforming catalyst and a shell containing said tubes, to produce a first synthesis gas SG1; said reaction tubes (38) are heated principally by convection by circulating a fluid HF in the shell external to said tubes, in which HF is a staged partial oxidation stream with oxygen of a second feed F2 at a pressure in the range 0.5 to 12 MPa, to produce a second synthesis gas SG2; the synthesis gas SG is produced by mixing SG1 and SG2. FIG. 1 to be published.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 20, 2008
    Inventors: Alexandre Rojey, Stephane Bertholin, Fabrice Giroudiere, Eric Lenglet
  • Patent number: 7344789
    Abstract: The invention provides a controlled hypergolic approach to using concentrated hydrogen peroxide in combination with certain hydrocarbons such as ethanol, methanol, methane as well as more common fuels such as gasoline, diesel, DME, JP5, JP8 and the like to generate a gas mixture primarily composed of hydrogen and carbon dioxide. Because air is not used as the oxygen source, this novel process does not allow the formation of nitrous oxide (NOx) compounds, thereby avoiding the primary source of nitrogen contamination as well. The process is executed in a constraining system on a micro scale such that the resulting hydrogen supply is self-pressurizing. This enables the incorporation of an “on-demand” hydrogen fuel source for a variable output fuel cell power plant such as those proposed for use in automobiles, marine vessels and stationary power sources. In another embodiment of the present invention hydrogen peroxide is catalytically, or thermally reacted to provide H2O vapor and O2.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: March 18, 2008
    Assignee: CBH2 Technologies, Inc.
    Inventors: Jeffrey L. Barber, Jeremiah J. Cronin