Catalytic Reaction Patents (Class 423/651)
  • Patent number: 10710056
    Abstract: Catalysts for hydrogenation of CO2 to dimethyl ether. These catalysts comprise 0.1-10 wt % per total catalyst weight of a catalytic material containing Pd (e.g. metallic palladium), 0.05-5 wt % per total catalyst weight of a promoter containing Ca (e.g. metallic calcium), as well as 85-99 wt % of CeO2 as a catalyst support. Methods of preparing and characterizing the catalysts as well as processes for catalyzing the hydrogenation of CO2 to dimethyl ether and other byproducts such as methanol, carbon monoxide, and methane portrayed by reactant conversion, product selectivity, and catalyst stability are disclosed.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 14, 2020
    Assignee: King Abdulaziz University
    Inventors: Sharif Fakhruz Zaman, Ali Shan Malik, Abdulrahim Ahmed Alzahrani, Muhammad A. Daous, Lachezar A. Petrov
  • Patent number: 10629933
    Abstract: A process for producing hydrogen from a hydrocarbon gas comprising contacting at elevated temperature the hydrocarbon gas with a catalyst to catalytically convert the hydrocarbon gas to hydrogen and solid carbon; wherein, the catalyst comprises one or both of the following: (a) a calcined Fe-containing catalyst; or (b) a bimetallic MxNiy-type catalyst supported on a substrate.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: April 21, 2020
    Assignee: HAZER GROUP LTD
    Inventors: Hui Tong Chua, Andrew Cornejo, Colin Llewellyn Raston, Lizhen Gao
  • Patent number: 10407364
    Abstract: Improved methods of oxidative dehydrogenation (ODH) of short chain alkanes or ethylbenzene to the corresponding olefins, and improved methods of oxidative coupling of methane (OCM) to ethylene and/or ethane, are disclosed. The disclosed methods use boron- or nitride-containing catalysts, and result in improved selectivity and/or byproduct profiles than methods using conventional ODH or OCM catalysts.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: September 10, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ive Hermans, Joseph Thomas Grant, Carlos Alberto Carrero Marquez, Alessandro Chieregato, Juan Mauricio Venegas
  • Patent number: 10189709
    Abstract: A power generation system that includes a membrane reformer assembly, wherein syngas is formed from a steam reforming reaction of natural gas and steam, and wherein hydrogen is separated from the syngas via a hydrogen-permeable membrane, a combustor for an oxy-combustion of a fuel, an expander to generate power, and an ion transport membrane assembly, wherein oxygen is separated from an oxygen-containing stream to be combusted in the combustor. Various embodiments of the power generation system and a process for generating power using the same are provided.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: January 29, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Esmail Mohamed Ali Mokheimer, Yinka Sofihullahi Sanusi, Mohamed A. Habib
  • Patent number: 10118153
    Abstract: The present application discloses method for making air adsorbent particles. The method includes the steps of: providing and mixing porous powder, water, adhesive, and additive agent for obtaining sizing agent; obtaining air adsorbent particles by spray shaping, drying, and screening the sizing agent. The mass ratio between the porous powder, water, adhesive and the additive agent is 1:(0.5˜8):(0.01˜0.16):(0.001˜0.15). Particles obtained by the method of the present application have higher strength.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 6, 2018
    Inventors: Yanyan Jin, Ning Kang
  • Patent number: 9780391
    Abstract: To provide a fuel cell device capable of extending the years of service life of a reformer by suppressing thermal runaways. The present invention is a solid oxide fuel cell device, including a fuel cell module having fuel cell units; a reformer disposed above the fuel cell units, for producing hydrogen by a partial oxidation reforming reaction and a steam reforming reaction; a vaporizing chamber disposed adjacent to the reformer; a combustion chamber for heating the vaporization chamber; a water supply device; an electrical generation oxidant gas supply device; and a controller for raising the fuel cell units to a temperature at which electrical generation is possible; whereby over the entire period of the startup step, the reforming oxidant gas supply device and water supply device are controlled so that partial oxidation reforming reactions do not occur independently in the reformer.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: October 3, 2017
    Assignee: TOTO LTD.
    Inventors: Yousuke Akagi, Toshiya Abe, Toshiharu Otsuka, Katsuhisa Tsuchiya, Takuya Matsuo, Naoki Watanabe, Hajime Omura, Shuhei Tanaka, Takuya Hoshiko
  • Patent number: 9604200
    Abstract: A process for the steam reforming of hydrocarbons comprises partially oxidizing a feedgas comprising a hydrocarbon feedstock with an oxygen-containing gas in the presence of steam to form a partially oxidized hydrocarbon gas mixture at a temperature >1200° C. and passing the resultant partially oxidized hydrocarbon gas mixture through a bed of steam reforming catalyst, wherein the bed comprises a first layer and a second layer, each layer comprising a catalytically active metal on an oxidic support wherein the oxidic support for the first layer is a zirconia.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 28, 2017
    Inventors: Peter William Farnell, Martin Fowles
  • Patent number: 9561462
    Abstract: Sorbent compositions including sorbent particles of a small particle sized sorbent with increased pneumatic conveyance properties. The sorbent compositions have relatively small median particle size and have a controlled particle size distribution (PSD). Specifically, the sorbent compositions include a relatively small percentage of very fine particles, such as a small percentage of particles having a particle size of not greater than about 5 ?m. The sorbent compositions are particularly useful for the treatment of a flue gas stream to remove mercury from the flue gas stream.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: February 7, 2017
    Assignee: ADA Carbon Solutions, LLC
    Inventors: Sarah G. McMurray, Jacob B. Lowring
  • Patent number: 9550147
    Abstract: A particulate, heterogeneous solid CO2 absorbent composition, comprising decomposition products of Ca3Al2O6 after having been heated to a temperature between 500° C. and 925° C. in the presence of H2O and CO2 for a period of time sufficient to allow the Ca3Al2O6 to react and form the particulate, heterogeneous absorbent composition which exhibits a higher concentration of aluminum than calcium in the particle core but a higher concentration of calcium than aluminum at the particle surface. The invention also comprises a method for preparing the particulate, heterogeneous product as well as a method for utilizing the composition for separating CO2 from a process gas.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: January 24, 2017
    Inventors: Johann Mastin, Julien Meyer, Arne Raaheim
  • Patent number: 9409157
    Abstract: Provided is a catalyst for preparing a syngas by reforming methane wherein a nickel-based catalyst is mixed with a metal oxide catalyst. More particularly, alumina is used as a support and a metal oxide catalyst including magnesia, nickel, vanadium, tungsten, iron, molybdenum or chromium is used to inhibit carbon deposition and maintain or improve catalytic activity.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: August 9, 2016
    Inventors: Dong Ju Moon, Young Chul Kim, Hye Jeong Ok
  • Patent number: 9394219
    Abstract: Method for producing synthesis gas for methanol production The present invention relates to a method for producing synthesis gas from a hydrocarbon containing feed, which synthesis gas is particularly suitable for subsequent use in methanol production. In this method, a hydrocarbon containing feed, particularly natural gas (100), is subjected to catalytic partial oxidation (CPO) (2), followed by the water gas shift (WGS) (4) reaction of a part of the reformed feed. At least part of the shifted feed is then subjected to hydrogen purification, preferably by pressure swing adsorption (PSA) (5) to obtain pure hydrogen (108), which hydrogen is subsequently combined with the remaining parts of the feeds to yield synthesis gas particularly suitable for methanol synthesis. The recombined stream preferably has an R ratio, being the molar ratio (H2?CO2)/(CO+CO2), in the range 1.9-2.2 and preferably about 2.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: July 19, 2016
    Assignee: STAMICARBON B.V.
    Inventors: Gaetano Iaquaniello, Barbara Cucchiella, Elena Antonetti
  • Patent number: 9302250
    Abstract: A method of steam reforming where a reaction occurs in which an oxygenated feed contacts a catalyst to produce hydrogen. The catalyst of the reaction comprises a metal/metal promoter on a nickel/transition metal blend catalyst supported on a high-energy lattice metal oxide.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: April 5, 2016
    Assignee: Phillips 66 Company
    Inventors: Jimmy A. Faria, Jon M. Nelson, Uchenna P. Paul, Danielle K. Smith
  • Publication number: 20150139896
    Abstract: A solar energy based continuous process and reactor system for the production of an alkene by dehydrogenation of the corresponding alkane is performed in a reactor which process comprises alternatingly performing a first mode and a second mode in the same reactor, wherein the first mode is a non-oxidative dehydrogenation wherein the non-oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst at a temperature of at least 500° C. to produce the corresponding alkene and hydrogen and wherein the second mode is an oxidative dehydrogenation wherein the oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst and an oxidation agent at a temperature from 300 to 500° C. to produce the corresponding alkene wherein the dehydrogenation catalyst for the oxidative dehydrogenation and the non-oxidative dehydrogenation are the same, wherein the heat for the first mode is provided by a solar energy source.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Mohamed Sabri Abdelghani, Mustapha Karime, Zeeshan Nawaz, Abdullah Mohammad Al-Qahtani
  • Patent number: 9034282
    Abstract: The invention relates to a catalytic reactor including: at least one first architecture/microstructure including a ceramic and/or metal cellular architecture having a pore size of 2 to 80 ppi and a macroporosity of more than 85%, and a microstructure having a grain size of 100 nm to 5 microns, and skeleton densification of more than 95%, and a catalytic layer; and at least one second architecture/microstructure including a spherical or cylindrical architecture having a pore size of 0.1 to 100 ?m and a macroporosity of less than 60%, and a microstructure having a grain size of 20 nm to 10 ?m and a skeleton densification of 20% to 90%, and a catalytic layer; the first and second architecture/microstructure being stacked inside said reactor.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: May 19, 2015
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Daniel Gary, Mathieu Cornillac, Aude Cuni
  • Patent number: 9017642
    Abstract: A process for reducing free oxygen in a hydrocarbon gas stream comprises the steps of (i) forming a gas mixture containing hydrogen from a hydrocarbon, (ii) mixing the hydrogen gas mixture with a gaseous hydrocarbon stream containing free oxygen, and (iii) passing the resulting hydrocarbon gas mixture over a conversion catalyst that converts at least a portion of the free oxygen present in the gaseous hydrocarbon to steam.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 28, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Peter John Herbert Carnell, Martin Fowles, Raymond Anthony Hadden, Suzanne Rose Ellis
  • Patent number: 9011814
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 21, 2015
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Patent number: 9005571
    Abstract: Hydrogenated liquid organic compounds are used for storage and supply of hydrogen at near ambient conditions. The hydrogen is released from the hydrogenated liquid organic compounds through a catalytic dehydrogenation reaction using a M/support or M-M?/support catalyst. The M/support catalyst comprises a metal M selected from Pt, Pd, Rh, Ru, Ir, Os, or combination thereof, and a support selected from Y2O3 or V2O5 or combinations thereof. The M-M?/support catalyst comprises a first metal M selected from Cu, Ag, Au, or combination thereof, a second metal M? selected from Pt, Pd, Rh, Ru, Ir, Os, Fe, Ni, Re, Mo, W, V, Cr, Co or combinations thereof, and a support selected from activated carbon, alumina, alumite, zirconia, silica or combination thereof. Synergistic effects are created by using the combination of the M and M? in the catalyst, which result in shifting of the equilibrium of the reaction favorably to dehydrogenation.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: April 14, 2015
    Assignee: Council of Scientific & Industrial Research
    Inventors: Rajesh Bhaskar Biniwale, Jayshri Vijay Pande, Anshu Ajit Shukla
  • Patent number: 9005344
    Abstract: The present application is directed to a hydrophobic membrane assembly (28) used within a gas-generating apparatus. Hydrogen is separated from the reaction solution by passing through a hydrophobic membrane assembly (28) having a hydrophobic lattice like member (36) disposed within a hydrogen output composite (32) further enhancing the ability of the hydrogen output composite's ability to separate out hydrogen gas and prolonging its useful life.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 14, 2015
    Assignees: Societe Bic, The Commissariat a L'energie Atomique et Aux Energies Alternatives (CEA)
    Inventors: Andrew J. Curello, Michael Curello, Constance R. Stepan
  • Publication number: 20150086472
    Abstract: One exemplary embodiment can be a process for catalytic reforming The process can include catalytically reforming a hydrocarbon feed in a reaction zone, obtaining an effluent stream having hydrogen and hydrocarbons from the reaction zone, obtaining from at least a portion of the effluent stream a waste hydrocarbon stream from an adsorption zone, passing at least a portion of the waste hydrocarbon stream as a feed stream across a feed side of a membrane having the feed side and a permeate side, and being selective for hydrogen over one or more C1-C6 hydrocarbons, and withdrawing from the permeate side a permeate stream enriched in hydrogen compared with a residue stream withdrawn from the feed side.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Applicant: UOP, LLC
    Inventors: Eleftherios Adamopoulos, Wim Frans Elseviers, Bryan K. Glover
  • Publication number: 20150078986
    Abstract: A reformer reactor is provided for converting hydrocarbon fuel into hydrogen rich gas by auto-thermal reaction process having a cylindrically shaped and double walled, housing with two side faces forming a. reaction chamber of the reformer. Additionally, a fuel inlet is provided in one of the to side faces for providing hydrocarbon fuels into the reaction chamber, wherein further a fuel preheating means is provided which preheats the hydrocarbon fuel before the hydrocarbon fuel enters the reaction chamber.
    Type: Application
    Filed: November 23, 2014
    Publication date: March 19, 2015
    Inventors: Bård LINDSTRÕM, Anders KARLSSON, Lars PETTERSSON
  • Patent number: 8979953
    Abstract: An apparatus for generating hydrogen including a housing, a reservoir, and a piston is provided. The housing has a top wall, a bottom wall, and a sidewall. The top wall has vents and a protrudent column extending to the interior of the housing. At least one vent communicates with the top wall and the protrudent column and rest of the vents surround the protrudent column. The reservoir is disposed in the housing for storing a solid state reactant and divides the housing into a first chamber and a second chamber. The first chamber is located between the top wall and the reservoir. The second chamber is located between the bottom wall and the reservoir for storing a liquid reactant. The piston is disposed on the bottom wall. The piston is used to push the liquid reactant towards the reservoir to react with the solid state reactant to generate hydrogen.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: March 17, 2015
    Assignee: Young Green Energy Co.
    Inventors: Yu-Hsiang Lin, Po-Kuei Chou, Tsai-Hsin Cheng, Hsuan-Yi Lu
  • Publication number: 20150068953
    Abstract: Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 12, 2015
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. ANTHONY, Gregory G. BORSINGER
  • Patent number: 8974699
    Abstract: The invention relates to a cyclic process for producing synthesis gas comprising: a first step of oxidation of an oxidizable oxygen-carrying solid; a second purge step; a third combustion step with production of CO2; a fourth step of production of synthesis gas; a fifth purge step.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 10, 2015
    Assignees: Total Raffinage Chimie, IFP Energies Nouvelles
    Inventors: Sebastien Rifflart, Gregory Patience, Francois Xavier Chiron
  • Patent number: 8951312
    Abstract: A compact, chemical-mechanical apparatus, having no electrical components, for storing and generating hydrogen safely, on-demand, at the time and point of use in small or large quantities using the environmentally clean chemical reaction between sodium metal and water to generate hydrogen (H2) gas and sodium hydroxide (NaOH) byproduct is presented, for powering electricity generating fuel cells for large scale commercial and private electric motor vehicle transport. The apparatus of the present invention supports hydrogen gas generation by the controlled addition of liquid water to solid sodium metal to produce hydrogen gas and sodium hydroxide using only mechanical components without electrical components that require external power and can generate sparks or short circuits, producing catastrophic failure in hydrogen systems.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 10, 2015
    Inventor: Alvin Gabriel Stern
  • Patent number: 8940061
    Abstract: An apparatus for generating hydrogen for fuel cells is provided. The apparatus includes a housing, a button, a first separating plate, a solid state reactant, and a separating membrane. The housing has an opening and a reservoir. The button connected to the housing covers the opening. The first separating plate disposed in the housing divides the reservoir into first and second sub-rooms. The opening communicates with the first sub-room and the first sub-room is suitable for storing a liquid reactant. The first separating plate has a through hole opposite to the button. The solid state reactant is disposed in the second sub-room. The separating membrane disposed on the through hole separates the first sub-room from the second sub-room. When the button is pushed, the button damages the separating membrane. Therefore, the liquid reactant flows to the second sub-room and reacts with the solid state reactant to generate hydrogen.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: January 27, 2015
    Assignee: Young Green Energy Co.
    Inventors: Yu-Hsiang Lin, Po-Kuei Chou, Men-Chi Hsieh
  • Patent number: 8915979
    Abstract: The present application is directed to a gas-generating apparatus. Hydrogen is generated within the gas-generating apparatus and is transported to a fuel cell. The first fuel component is introduced into the second fuel component through a conduit which punctures a septum separating the reaction chamber and the first fuel component reservoir, and the fuel conduit introduces the first fuel component to different portions of the second fuel component to produce hydrogen.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 23, 2014
    Assignee: Societe BIC
    Inventors: Alain Rosenzweig, Kurt Rath
  • Patent number: 8888873
    Abstract: A method for generating and purifying syngas and to an apparatus for generating and purifying syngas is presented.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 18, 2014
    Assignee: L'air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Natacha Haik-Beraud, Antoine Hernandez, Pascal Marty, Bernd Polster
  • Patent number: 8889098
    Abstract: A system and method of producing hydrogen from a mixture of hydrocarbon fuel and steam. Reaction cells are provided that each contains a first tube of hydrogen permeable material and a second tube of hydrogen impermeable material that are concentrically positioned. This creates a gap space between the first tube and the second tube. The gap space is heated by burning a combustion gas outside of the two concentric tubes. A water gas shift reaction occurs in the gap space. Hydrogen is created that permeates through the first tube and becomes separated from the remainder of the reaction gases. The hydrogen gas is collected for use. As such, the system and method acts both as a gas shift reactor and as a hydrogen separator even though it is a single unit.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 18, 2014
    Inventors: Peter R. Bossard, Jacob Mettes
  • Patent number: 8883118
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 3006 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Publication number: 20140328749
    Abstract: The present invention relates to the use of a process for hydrogen production in which at least a part of a hydrocarbonaceous feed gas (a) is passed into a reformer (c), wherein the feed gas is contacted in the reformer with a catalyst and the feed gas is converted to hydrogen and solid carbon, for the direct production of a hydrogenous gas at filling stations for sale to a consumer, and also to a reactor (d) for hydrogen production.
    Type: Application
    Filed: June 20, 2014
    Publication date: November 6, 2014
    Inventors: Ernst Hammel, Klaus-Dieter Mauthner, Walter Briceta
  • Patent number: 8865117
    Abstract: The invention provides an integrated catalyst and membrane reactor for the production a predetermined gas such as hydrogen. The reactor comprises a gas flow channel, comprising a plurality of alternating catalyst sections and membrane sections, wherein each catalyst section comprises a catalyst bed and each membrane section comprises a plurality of membranes, and wherein the membranes are selectively permeable for the predetermined gaseous species.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 21, 2014
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Arend De Groot, Yvonne Christine Van Delft, Marija Saric
  • Patent number: 8864857
    Abstract: An apparatus for generating hydrogen gas from a replaceable aluminum pack comprising an aluminum and hydride mixture encased in a breathable membrane that is raised and lowered into a fluid contained within an enclosed tank wherein contact with the fluid releases hydrogen gas from the aluminum. A pressure transducer and microprocessor chip are provided for monitoring and regulating the rate of hydrogen production by engaging and disengaging a reversible motor that raises and lowers an inner tray on which the aluminum pack resides accordingly.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 21, 2014
    Inventor: Harlo Mayne
  • Patent number: 8852822
    Abstract: When terminating power generation by a fuel cell 3 in a fuel cell system 1, an amount of a raw fuel material introduced to a reforming catalyst 2a of a reformer 2 is reduced. Here, before the temperature of the reforming catalyst 2a is lowered to the un-reformed gas generation temperature, an amount of water supplied to the reforming catalyst 2a is controlled to increase the temperature of the reforming catalyst 2a. Thus, upon termination of power generation in the fuel cell 3, no un-reformed gas is generated and the reformed gas is supplied to the fuel cell 3.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: October 7, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Tomotaka Ishida
  • Patent number: 8834587
    Abstract: Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 16, 2014
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Robert T. Rozmiarek, Charles C. Hornemann
  • Patent number: 8834604
    Abstract: A membrane for use in a high temperature gas processing system and method for making the same. The membrane includes a dense, gas impermeable layer and a first and second porous layer, wherein each of the first and second porous layers is a ceramic oxide material having a non-symmetrical load bearing skeleton of a plurality of pores having a graded porosity. Each porous layer provides a reduction of an oxygen partial pressure gradient across the dense layer and reduces resultant stresses in the dense layer that are small compared to its strength thereby improving long term mechanical durability of the dense layer.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 16, 2014
    Assignee: Volt Research, LLC
    Inventors: Ajit Y. Sane, Thomas L. Cable
  • Patent number: 8834834
    Abstract: Processes for producing synthesis gas from biomass in which char particles, which are formed during the production of synthesis gas from biomass, are employed as catalysts. The char particles may be used as catalysts in a gasifier or in a thermal reformer, whereby gaseous components, formed as a result of the gasification of the biomass, such as methane, light alkyl and aromatic compounds, and phenolics, as well as tar, may be reformed and/or converted into synthesis gas.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Enerkem, Inc.
    Inventors: Antonin Paquet, Esteban Chornet
  • Patent number: 8834585
    Abstract: A hydrogen generating device is adapted for a fuel cell. The hydrogen generating device includes a casing, a button, a solid reactant, a bag-shaped body, and at least one flexible element. The casing has a containing space and an opening. The button is integrally formed and connected to the casing to seal the opening. The solid reactant is disposed in the casing. The bag-shaped body is disposed in the casing and contains a liquid reactant. The flexible element is connected to the casing and is located in the containing space. The flexible element includes a bending end, wherein the flexible element is aligned to the button and is located between the button and the bag-shaped body. When the button is pressed, the button pushes the flexible element so the bending end pierces the bag-shaped body, and the liquid reactant flows out and reacts with the solid reactant to generate hydrogen.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 16, 2014
    Assignee: Young Green Energy Co.
    Inventors: Yu-Hsiang Lin, Hsuan-Yi Lu
  • Patent number: 8821832
    Abstract: The invention relates to a fuel processor that produces hydrogen from a fuel. The fuel processor comprises a reformer and a heater. The reformer includes a catalyst that facilitates the production of hydrogen from the fuel; the heater provides heat to the reformer. Multipass reformer and heater chambers are described that reduce fuel processor size. Single layer fuel processors include reformer and heater chambers in a compact form factor that is well suited for portable applications. Some fuel processors described herein place an electrically resistive material in contact with a thermally conductive material to heat fuel entering the fuel processor. This is particularly useful during start-up of the fuel processor. Fuel processors described may also include features that facilitate assembly.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: September 2, 2014
    Assignee: UltraCell, L.L.C.
    Inventors: Jennifer E. Brantley, Ian W. Kaye, Arpad Somogyvari, Gerry Tucker, Fan Liang Chan
  • Patent number: 8815208
    Abstract: A process for the steam reforming of hydrocarbons comprises partially oxidising a feedgas comprising a hydrocarbon feedstock with an oxygen-containing gas in the presence of steam to form a partially oxidised hydrocarbon gas mixture at a temperature >1200° C. and passing the resultant partially oxidised hydrocarbon gas mixture through a bed of steam reforming catalyst, wherein the bed comprises a first layer and a second layer, each layer comprising a catalytically active metal on an oxidic support wherein the oxidic support for the first layer is a zirconia.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: August 26, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Peter William Farnell, Martin Fowles
  • Publication number: 20140235912
    Abstract: A method for the recovery of energy from synthesis gas waste products obtained from wet crushed coal, according to a gasification-pyrolysis process, which comprises the submission of the waste products obtained during the production of the synthesis gas to a subsequent treatment, to transform such products into other products of the branched-chain alkane type and aromatic compounds, recovering the hydrogen obtained during these reactions, which will be available to be used at other chemical processing plants, as fuel or simply to be fed back to the gasification-pyrolysis process itself, to enrich the synthesis gas obtained.
    Type: Application
    Filed: September 1, 2011
    Publication date: August 21, 2014
    Applicant: GURADOOR, S.L.
    Inventor: Daniel Gonzalez Gonzalez
  • Patent number: 8809603
    Abstract: A method of producing a hydrocarbon fuel from a hydrocarbon-containing gas is disclosed and described. A hydrocarbon-containing gas is produced (10) containing from about 25% to about 50% carbon dioxide and can be reformed (12) with a steam gas to form a mixture of hydrogen, carbon monoxide and carbon dioxide. The reforming can be a composite dry-wet reforming or a tri-reforming step. The mixture of hydrogen, carbon monoxide and carbon dioxide can be at least partially converted (14) to a methanol product. The methanol product can be converted to the hydrocarbon fuel (18), optionally via UME synthesis (16). The method allows for effective fuel production with low catalyst fouling rates and for operation in an unmanned, self-contained unit at the source of the hydrocarbon-producing gas.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 19, 2014
    Assignee: Oberon Fuels, Inc.
    Inventors: Andrew Corradini, Jarod McCormick
  • Patent number: 8784531
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 22, 2014
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Patent number: 8764854
    Abstract: In some embodiments, a deposit-forming reference fuel composition comprises a high sulfur base fuel composition in an amount greater than 50 weight % based on total weight % of the deposit-forming reference fuel composition, wherein the high sulfur base fuel composition comprises greater than or equal to 200 ppm sulfur based on total sulfur content of the base fuel composition. The deposit-forming reference fuel composition also comprises a reactive diolefin dopant; and a reaction initiating peroxide. The reaction initiating peroxide has an active oxygen content greater than or equal to 2 weight % based on total oxygen content of the reaction initiating peroxide and a half-life temperature of 80° C. to 200° C. The deposit-forming reference fuel composition is free from a detergent additive and has a concentration ratio of greater than 1:1 for the reactive diolefin dopant to the reaction initiating peroxide.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: July 1, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: William M. Studzinski, Jill M. Cummings
  • Patent number: 8758722
    Abstract: Provided is a method for producing hydrogen aimed at storage and transportation, by which hydrogen for storage and transportation that is necessary for smoothly performing an organic chemical hydride method can be industrially produced efficiently at low cost. The method is a method for producing hydrogen aimed at storage and transportation in an organic chemical hydride method, in which: the hydrogenation process of an aromatic compound uses, as a hydrogen source for the reaction of the aromatic compound, a reaction gas is produced by a reforming reaction and adjusted a hydrogen concentration from 30 to 70 vol % by a shift reaction; and a hydrogenated aromatic compound is separated from a reaction mixture obtained in the hydrogenation process, which is followed by purification.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: June 24, 2014
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Masashi Saito, Shuhei Wakamatsu, Mitsunori Shimura
  • Publication number: 20140134101
    Abstract: The present application describes a catalyst that is suitable for the CO2 reforming of methane-rich gases, such as biogas, that is resistant to poisoning by sulfur. The catalyst comprises from about 5 wt % to about 20 wt % Ni and 0 wt % to about 10 wt % Co supported on a support having a formula selected from: (a) Al2O3; (b) M1aOb-AI2O3; and (c) M1aOb—ZrO2-AI2O3, where M1aOb is either CaO or MgO.
    Type: Application
    Filed: May 29, 2012
    Publication date: May 15, 2014
    Inventors: Raphael Idem, Ataullah Khan Mohammed, Bappy Saha
  • Patent number: 8722010
    Abstract: A method for the coproduction of oxygen, hydrogen and nitrogen using an ion transport membrane is provided. This method includes separating a compressed, hot air stream in an ion transport membrane, thereby producing a product oxygen stream and a hot nitrogen rich stream; utilizing at least a portion of the hot nitrogen rich stream as a heat source for reforming a hydrocarbons stream, thereby producing a syngas stream and a warm product nitrogen stream; and separating the syngas stream into a product hydrogen stream and a carbon dioxide rich stream.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 13, 2014
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Bhadra S. Grover
  • Patent number: 8709378
    Abstract: A catalytic composition is particularly well suited for hydrocarbon conversion to synthesis gas at a temperature of between 800 and 1000° Celsius. The catalytic composition includes a noble metal cluster having an X-Y-Z axial mean linear dimension of between 2 and 15 Angstroms and a super cage structure surrounding the noble metal cluster. The super cage structure stabilizes the noble metal cluster against aggregation at temperatures of 1000° Celsius. A process for reforming hydrocarbon feedstock to hydrogen and carbon monoxide is also provided that conversion to greater than 80% of theoretical yield.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: April 29, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Ivan Chihang Lee
  • Patent number: 8696775
    Abstract: Methods are disclosed for generating electrical power from a compound comprising carbon, oxygen, and hydrogen. Water is combined with the compound to produce a wet form of the compound. The wet form of the compound is transferred into a reaction processing chamber. The wet form of the compound is heated within the reaction chamber such that elements of the compound dissociate and react, with one reaction product comprising hydrogen gas. The hydrogen gas is processed to generate electrical power.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: April 15, 2014
    Assignee: Proton Power, Inc
    Inventors: Samuel C. Weaver, Samuel P. Weaver, Daniel C. Weaver, Daniel L. Hensley
  • Patent number: 8697597
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 15, 2014
    Assignee: University of Miami
    Inventor: Xiangyang Zhou
  • Patent number: 8697027
    Abstract: Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 15, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: Ighor K. Uzhinsky, Gary K. Lund, John C. Leylegian, Florin Girlea, Jason S. Tyll, Lawrence G. Piper, Marten Byl, Wallace Chinitz