Utilizing Fluidized Bed Patents (Class 423/74)
  • Patent number: 11479725
    Abstract: An improved process is provided for catalytic pyrolysis of biomass, comprising pneumatically injecting a biomass feed via a pneumatic injection line into a fluidized heat medium, for example, hot catalyst, with a carrier gas at a velocity of from 5 to 40 m/s in at least one mixing zone in communication with a pyrolysis reactor in which catalytic pyrolysis occurs, and maintaining a catalyst/biomass mixture flowrate ratio (C/B) of from 4 to 40 downstream from the point of catalyst injection via a catalyst injection line in the at least one mixing zone.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 25, 2022
    Assignee: ANELLOTECH, INC.
    Inventors: Benjamin Thomas Amblard, Raghava Dasarathy, Frédéric Jean-Michel Feugnet, Thierry Albert Pierre Gauthier, Eugene Schmelzer, Charles Mitchel Sorensen, Jr., Sina Tebianian
  • Patent number: 11136948
    Abstract: The present invention relates to a multi-modal multi-media air filtration system which can include: a base having one or more connection features and a filter media assembly, the filter media assembly being configured to attach to the base at a first end and the cap at a second end. The filter media assembly also including a first filter media extending across a primary air flow path and a second filter media extending across a secondary air flow path. The air filtration assembly then includes a blocking mechanism and an actuation assembly being configured to work together so as to selectively open or close the secondary air flow path so as to alternate the degree of filtration passing through the filter media based on the degree of desired filtration.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: October 5, 2021
    Assignee: MANN+HUMMEL GmbH
    Inventors: Anja Koronai, Thomas Loehl
  • Patent number: 8691167
    Abstract: The present invention provides for a process for handling carbonyl sulfide waste and waste metal halides produced in industrial processes and, more particularly chlorination processes. The process includes the steps of hydrolyzing the carbonyl sulfide to produce a waste stream containing hydrogen sulfide and sulfidizing the resulting hydrogen sulfide containing stream with a solution of the waste metal halides. The resulting metal sulfide and metal halide-containing stream can be neutralized before disposal of the produced waste solids.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: April 8, 2014
    Assignee: Tronox LLC
    Inventor: Harry Eugene Flynn
  • Patent number: 8460624
    Abstract: A process for producing metal oxide from a metal salt includes supplying a first part of the metal salt to a hydrate drier so as to indirectly heat the first part of the metal salt in the hydrate drier using a heat transfer medium from a first stage of a multi-stage indirect cooler so as to dry the first part of the metal salt in the hydrate drier and so as to control a waste gas temperature of the process. A second part of the metal salt is guided as a partial stream past the hydrate drier. The metal salt is preheated in a first preheating stage and precalcined in a second preheating stage. The metal salt and a fluidizing gas having a temperature of 150° C. or less are supplied to a fluidized bed reactor so as to calcine the metal salt to form a metal oxide product. The metal oxide product is cooled in at least one suspension heat exchanger and then in the multi-stage indirect cooler.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 11, 2013
    Assignee: Outotec Oyj
    Inventors: Michael Missalla, Pekka Hiltunen, Roger Bligh, Erwin Schmidbauer, Cornelis Klett, Guenter Schneider
  • Patent number: 8313715
    Abstract: A process for producing metal oxide from metal salts includes cleaning a metal salt in a filter. After cleaning, the metal salt is dried in a drying apparatus. Steam is formed in the drying apparatus. The metal salt is preheated in at least one preheating stage. The metal salt is calcined to metal oxide in a fluidized-bed reactor. The metal oxide is cooled. The steam formed in the drying apparatus is recirculated into the filter.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 20, 2012
    Assignee: Outotec Oyj
    Inventors: Michael Missalla, Guenter Schneider, Jan Jarzembowski, Erwin Schmidbauer
  • Patent number: 7931886
    Abstract: According to the present invention there is provided a process for the agglomeration of titania slag particles comprising providing titania slag at a d50 particle size of below 106 ?m; mixing the slag particles with an organic binder; and agglomerating the mixture of the slag particles and organic binder into agglomerated particles with a d50 particle size in the range from 106 ?m to 1000 ?m. The agglomerated particles have a (TiO2 and FeO)/C mass ratio of more than 3.4. The invention also relates to such agglomated slag particles and a chloride process for the production of TiO2 wherein such agglomerated titania slag particles are used.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: April 26, 2011
    Assignee: Kumba Resources Limited
    Inventors: Pieter Adriaan Botha, Gert Hendrik Jacobus Coetzee, legal representative, Deon Bessinger, Benjamin Alexander Dippenaar
  • Patent number: 7618601
    Abstract: A process for the enrichment of anatase mechanical concentrates, in order to obtain synthetic rutile with low contents of rare earth and radioactive elements, comprising the steps of: calcination of the anatase concentrate; reduction of the calcined product; dry or wet low-intensity magnetic separation of the reduced product; dry, high-intensity, high-gradient magnetic separation of the non-magnetic fraction from the low-intensity separation; leaching of the high-intensity magnetic fraction; oxidation of the dried product; leaching of the quenched product; filtering of the product from the second leaching; drying of the filtered product; and dry, high-intensity, high-gradient magnetic separation of the product of the second leaching.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: November 17, 2009
    Assignee: Companhia Vale Do Rio Doce
    Inventors: Lino Rodrigues De Freitas, Ronaldo Moreira De Horta, Joao Alberto Lessa Tude
  • Patent number: 7588741
    Abstract: Cyclical batch processes for halogenation, such as chlorination, of minerals in a fixed bed using a plurality of cycles which include the steps of at least partially evacuating the bed, charging the bed with reactant gas, maintaining the reactant gas in the bed for a predetermined time, and exhausting reaction products under vacuum. Also disclosed is the chlorination of spodumene in its beta crystalline form produced by calcining spodumene in its naturally-occurring alpha crystalline form to preferentially extract lithium as lithium chloride.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: September 15, 2009
    Inventors: Wendell E. Dunn, Jr., Jeffrey Van Jahnke
  • Patent number: 7571814
    Abstract: Methods and apparatuses for separating metal values, such as nickel and nickel compounds, from mineral ores, including lateritic ores are disclosed. The method includes providing a mixture of particles (e.g., crushed and sized ore) that is composed of at least a first group of particles and a second group of particles. Group members have similar chemical composition, while particles belonging to different groups have dissimilar chemical compositions. The mixture of particles is concurrently, or generally concurrently, heated (using microwave/millimeter wave energy) and exposed to a reactant. The wave energy and the reactant act to increase the difference in either the magnetic susceptibility or other separation properties between the first and second group of particles. The mixture of particles is then passed through an appropriate separator to separate the particles of interest. Optional steps are disclosed for purifying selected particles.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: August 11, 2009
    Assignee: Wave Separation Technologies LLC
    Inventor: Stephen M. Birken
  • Patent number: 7572418
    Abstract: A process for production of titanium concentrate with low contents of radionuclide elements from anatase mechanical concentrates. The process involves calcination in air and reduction with hydrogen or any other reducing gas, both in fluidized bed reactor or rotary kiln, low-intensity magnetic separation of the reduced product, high-intensity magnetic separation of the non-magnetic fraction resulting from the low-intensity magnetic separation, hydrochloric acid leaching of the product of high-intensity magnetic separation, filtering and dewatering of the leached product, high temperature oxidation of the dewatered material, cooling of the oxidized ore, hydrochloric acid leaching of the oxidation product in the presence of sodium fluoride, filtration and drying of the product of the second leaching and high intensity magnetic separation, the non-magnetic fraction of this final magnetic separation becoming the end product.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: August 11, 2009
    Assignee: Companhia Vale do Rio Doce
    Inventors: Ronaldo De Moreira Horta, Lino Rodrigues De Freitas, João Alberto Lessa Tude
  • Publication number: 20090148363
    Abstract: The invention is directed to a process for the production of TiCl4, in particular to such a process carried out using a fluidized bed process. According to the present invention there is provided a process for the production of TiCl4, which process comprises the steps of: —feeding TiO2 containing ore and coke to a fluidized bed chlorinator; —the assessment of total gas flow entering said chlorinator; —the measurement of the pressure drop inside said fluidized bed for a known height, the pressure drop across said fluidized bed and relating this to the composition of the fluidized bed. —the measurement of the CO:CO2 ratio of the gas flow leaving said fluidized bed chlorinator and relating this to the composition of the fluidized bed—calculating set points for said TiO2 containing ore and coke feed and adjusting said TiO2 and coke feed accordingly.
    Type: Application
    Filed: April 25, 2006
    Publication date: June 11, 2009
    Inventors: Machiel Kristen Keegel, Johannes Christiaan Katsman, Robert Peter Kalmeijer, Steven Christian Lans, Pieter Christoffel Van Beek
  • Publication number: 20090148364
    Abstract: A method for reprocessing cyclone dust occurring during the carbochlorination of titaniferous raw materials, which essentially consists of titanium dioxide, coke and other inert metal oxides, such as silicon dioxide, and for returning a coke-rich and/or a TiO2-rich fraction to the chlorination reactor includes: preparing an aqueous suspension of the cyclone dust; separating a coke-rich fraction (1) from the aqueous suspension by flotation; adding hydrofluoric acid to the remaining suspension; and separating a TiO2-rich fraction (2) by flotation from the remaining suspension.
    Type: Application
    Filed: November 13, 2008
    Publication date: June 11, 2009
    Inventors: Heiko Frahm, Joerg Friedrich, Dirk Floeder
  • Patent number: 6399033
    Abstract: An improvement to the chloride process of making titanium dioxide. By recycling some of the cyclone dust, the yield in the chlorination of titanium-containing raw materials can be increased. In order to prevent silica accumulation in the fluidized bed, the cyclone dust is divided into two fractions. An economic solution is described of a single-stage separation of the cyclone dust in a hydrocyclone, the majority of the titanium dioxide occurring in the hydrocyclone underflow, although the separation is not sharp. By grinding and drying the solids from the hydrocyclone underflow, the titanium dioxide particles returned to the lower region of the fluidized-bed reactor are rapidly chlorinated, while the quartz and coke particles are rapidly discharged again from the fluid bed, so that no silica contamination occurs.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: June 4, 2002
    Assignee: Kronos, Inc.
    Inventor: Achim Hartmann
  • Patent number: 5968460
    Abstract: The present invention is a process for feeding particulate material to a fluidized bed reactor operated at greater than atmospheric through a standpipe wherein the ratio of the absolute pressure where the standpipe enters the fluidized bed reactor to the absolute pressure where the particulate material enters the standpipe is at least about 1.5 and gas is injected into the standpipe at a velocity which is about 20-80 percent of the minimum fluidization velocity of the particulate material.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: October 19, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Donald H. Eastham, Ted M. Knowlton, Melvyn B. Pell, James W. Reeves
  • Patent number: 5830420
    Abstract: A method is disclosed including: (a) sizing a titania slag to a particle size range of from 75 microns to 850 microns; (b) oxidizing the sized titania slag by contacting the sized titania slag with an oxygen containing gas at a temperature of at least about 950.degree. C. for a period of at least about 20 minutes such that a substantial portion of the iron oxide is converted to a ferric state, such that the reduced titanium oxides are converted to a tetravalent state, and such that at least a major portion of the glassy silicate phase is decomposed; (c) reducing the oxidized titania slag in a reducing atmosphere at a temperature of at least about 700.degree. C. for a period of at least about 30 minutes such that the ferric state iron oxide is converted to a ferrous state; (d) leaching the reduced titania slag with mineral acid at a temperature of at least 125.degree. C.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: November 3, 1998
    Assignee: QIT-Fer et Titane Inc.
    Inventors: Krzysztof Borowiec, Alfonso E. Grau, Michel Gueguin, Jean-Fran.cedilla.ois Turgeon
  • Patent number: 5744108
    Abstract: The present invention relates to a process for the production of titanium dioxide pigments and the use thereof.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: April 28, 1998
    Assignee: Bayer AG
    Inventors: Bernd-Michael Holle, Eckhard Bayer, Jorg Krekel
  • Patent number: 5670121
    Abstract: This invention relates to a process for controlling the temperature of a fluidized bed reactor in the manufacture of titanium tetrachloride, wherein an exhaust gas stream comprising carbonyl sulfide, sulfur dioxide, carbon monoxide, carbon dioxide, and chlorine is formed. In the process, the exhaust gas stream is first analyzed to determine the analyzed concentration of carbonyl sulfide (or concentration ratio of carbonyl sulfide to sulfur dioxide), the desired concentration of carbonyl sulfide (or concentration ratio of carbonyl sulfide to sulfur dioxide) in the exhaust gas stream is determined, and the difference between the analyzed concentration of carbonyl sulfide (or concentration ratio of carbonyl sulfide to sulfur dioxide) and the desired concentration of carbonyl sulfide (or concentration ratio of carbonyl sulfide to sulfur dioxide) in the exhaust gas stream is then calculated.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: September 23, 1997
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Thomas Shields Elkins
  • Patent number: 5618331
    Abstract: An economic, non-polluting vapor-phase system of extracting titanium values from titanium ore or slag comprises solubilizing titanium (in ore or slag) with sulfuric acid to form titanyl sulfate, hydrolyzing the titanyl sulfate to form titanium oxide hydrate, converting the latter to pigment, and recycling sulfuric acid for extracting titanium values from further ore or slag. Methodology and equipment are provided.
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: April 8, 1997
    Assignee: Kemicraft Overseas Limited
    Inventors: Jorge Miller, Miguel Kling
  • Patent number: 5585078
    Abstract: In a process for chlorinating titanium containing material in a fluidized bed reactor which evolves gaseous material including CO, COS, and TiCl.sub.4, the improvement comprising introducing oxygen containing gas at a location or locations which are downstream of the surface of the bed, as measured in its static condition, to convert at least some CO to CO.sub.2 and some COS to CO.sub.2 and SO.sub.2.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: December 17, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Paul G. Reis, Melvyn B. Pell, David N. Low, Hans H. Glaeser
  • Patent number: 5490976
    Abstract: In a continuous process for reacting particulate ore with a liquid reagent in a counter-current vertical column the improvement comprising:(a) providing an upper and lower chamber for the vertical column;(b) maintaining sufficient upward flow of liquid reagent in The upper chamber so that the particulate ore is wetted and deaerated, at least some fine particles thereof are carried overhead for removal, and the remainder thereof settle and enter the lower chamber; and(c) maintaining sufficient fluidization and retention time in the lower chamber so that the desired amount of reaction with the ore takes place, at least some of the fine ore particles which are generated from the reaction process and/or which are introduced with the particulate ore are entrained and carried upward for removal, and the reacted particulate ore exits the lower chamber.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: February 13, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Foster W. Rennie, Tze Chao, Donald H. Eastham, James V. Tarbell
  • Patent number: 5427749
    Abstract: The specification describes a process for producing synthetic rutile from a titaniferous ore or concentrate. The process involves three basic steps which are reduction, removal or iron by leaching or aeration and removal of other impurities by leaching in a solution of a strong mineral acid such as hydrochloric acid or sulphuric acid. The conditions of reduction are controlled to promote the formation of metallic iron, a major rutile phase and a minor impurity bearing phase. The minor impurity phase may be a metatitanate, an anosovite or a pseudobrookite. However, formation of a metatinatate is normally preferred. Suitable reductants include carbonaceous materials or hydrogen bearing gases such as natural gas or synthesis gas. The process is capable of removing more than 80% of each of the contained iron magnesium and manganese remaining as oxides after reduction. Substantial proportions of contained aluminum can also be removed.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: June 27, 1995
    Assignee: Wimmera Industrial Minerals Pty. Ltd.
    Inventors: Michael J. Hollitt, Brian A. O'Brien, Ian E. Grey
  • Patent number: 5389353
    Abstract: In a fluidized bed process for chlorinating rirnium-containing material, an improvement is disclosed comprising utilizing in the process calcined petroleum shot coke, calcined petroleum fluid coke or mixtures thereof. The improved process is capable of (a) decreasing the amount of fine particulate coke that is entrained in the hot gases exiting the fluidized bed reactor, and (b) more completely reacting the coke.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: February 14, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Hans H. Glaeser, Mark J. Spoon
  • Patent number: 5334362
    Abstract: In order to treat metal chlorides obtained in the form of dust collector solids in the production of titanium dioxide by the chloride process, the inert constituents, especially particulate coke, is separated then the metals are selectively precipitated and a maturing phase under oxidative conditions is provided for. The residue consisting of metal hydroxides is also not thixotropic in the absence of inerts. As a result, the material to be deposited has been cut in half.
    Type: Grant
    Filed: September 23, 1992
    Date of Patent: August 2, 1994
    Assignee: Kronos, Inc.
    Inventors: Dieter Schinkitz, Hans Thumm
  • Patent number: 5320815
    Abstract: In a fluidized bed process having a bed of fluidized particulate material which is susceptible to having at least some of the particulate material being entrained in the gases exiting the bed, the entrainment is reduced by introducing the particulate material into the process, in the substantial absence of a gas which transports the particulate material, at one or more points which are below the surface of the bed of fluidized particulate material.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: June 14, 1994
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Ran Abed, James W. Reeves
  • Patent number: 5225178
    Abstract: Titaniferous solid containing titanium (IV) oxide, for example ilmenite, is reacted with silicon tetrafluoride gas at 800.degree. C. or more and at a pressure of at least 1 atmosphere to produce titanium tetrafluoride vapor and silica. The vapor is rapidly removed from the reaction zone, preferably by rapid cooling to solid titanium tetrafluoride, at a sufficient distance from the reaction zone so as not to quench the reaction. The titanium tetrafluoride may be hydrolysed to produce titanium dioxide and hydrogen fluoride which is combined with silica to regenerate silicon tetrafluoride. It is preferred to pretreat the titaniferous solid by grinding and then roasting at 700.degree. C. to 750.degree. C. in air. Products of the reaction may be separated and purified by condensation and resublimation.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: July 6, 1993
    Inventors: Thomas A. O'Donnell, David G. Wood, Theresa K. H. Pong
  • Patent number: 5160482
    Abstract: A process for the recovery of substantially pure zirconium values from zircon sand which also contains Ra, U, Hf, Pb and other metal values, comprising contacting zircon sand in a chlorinator with a chlorination medium to form an off-gas stream containing chlorides of Zr, Hf, Si, and tract U. The off-gas stream is passed to a condenser to remove volatile Si chlorides and thereby provide a product stream containing condensed chlorides of Zr, Hf and tract U, treating the product stream in acidic aqueous medium in a separation stage to separate the principal Hf values from the principal Zr values. Adjusting the pH of the resulting effluent to between about 3 to about 7 in a second stage to precipitate the trace U values. The residue stream is treated by(A) leaching with an acidic aqueous system to solubilize the trace Ra, Pb and other metal values while settling out the unreacted zircon sand and chlorination medium, and contacting the resultant leach liquor first with Ba++ ions and then with SO.sub.
    Type: Grant
    Filed: March 2, 1989
    Date of Patent: November 3, 1992
    Assignee: Teledyne Industries, Inc.
    Inventors: Kenneth C. Ash, William A. Crocker, John C. Haygarth, David R. Lee, Donald Morris, John R. Peterson, Jon A. Riesen, Robert S. Yih
  • Patent number: 5147619
    Abstract: A process for the recovery of nickel catalyst metal from a top portion of a fluidized bed consists essentially of the steps of providing a sludge material including spent catalyst including recoverable catalyst metal in the form of particles which are finely divided, and an organic material consisting essentially of fat, the organic material being combustible or otherwise degradable under conditions attainable by fluidized bed techniques; feeding the sludge material into a base portion of a fluidized bed including a bed of inert carrier material; converting the organic material to waste gases in the fluidized bed; maintaining the fluidized bed under conditions which cause the particles of recoverable catalyst metal to rise to a top portion of the fluidized bed, the recoverable catalyst metal comprising particles having an average particle size of less than 50 microns; removing the particles of recoverable catalyst metal and the waste gases from the top portion of the fluidized bed; and separating the particle
    Type: Grant
    Filed: April 18, 1990
    Date of Patent: September 15, 1992
    Assignee: Camlaw Limited
    Inventors: Christopher J. Cutchey, Trevor J. Keirle
  • Patent number: 5063032
    Abstract: Synthetic rutile is prepared from titaniferous slags containing alkaline-earth metal impurities, such as magnesium oxide, by a method comprising contacting the slag with chlorine at a temperature of at least about 800.degree. C., and then leaching the chlorine-treated slag with hydrochloric acid at a temperature of at least about 140.degree. C.
    Type: Grant
    Filed: March 27, 1990
    Date of Patent: November 5, 1991
    Assignee: QIT-Fer et Titane, Inc.
    Inventor: Michel Gueguin
  • Patent number: 5049363
    Abstract: A process for extracting scandium from titanium ore includes the steps of: feeding the titanium ore to a fluidized bed chlorinator at about 1000.degree. C. to produce a vaporous (generally titanium and possible iron chlorides) phase and a scandium-containing residue; and recovering the scandium from the residue.In one practice, the scandium is recovered by leaching the residue with aqueous acid (e.g. HCl) to produce a scandium-containing aqueous solution, followed by contacting the aqueous solution with a polyalkyl phosphate-containing organic phase, the polyalkyl phosphate (e.g. tributyl phosphate) extracting scandium into the organic phase, followed by scandium precipitation by an ammonium addition to produce a scandium hydroxide precipitate and the scandium hydroxide is calcined, whereby scandium is recovered as an oxide. The residue generally also contains yttrium and lanthanides, and the yttrium and lanthanides can also be recovered from the residue as a part of the scandium recovery process.
    Type: Grant
    Filed: August 3, 1989
    Date of Patent: September 17, 1991
    Assignee: Westinghouse Electric Corp.
    Inventor: Robert J. Feuling
  • Patent number: 5032372
    Abstract: An improved dilute phase chlorination procedure characterized by providing extremely finely divided oxygen-containing metallic material and a carbonaceous material co-milled together to a particle size size of less than 20 microns. The finely divided charge material is introduced into a tubular reaction zone, preferably at the bottom, with the gaseous chlorination agent where reaction occurs at a temperature above 800.degree. C. for a period of time sufficient to fully react the chlorinating agent in a single pass. Metal chloride is recovered from the tubular reactor and, most advantageously, there is little or no need to separate any dusty unreacted solid material from the off-gases for recycle to the chlorination zone.
    Type: Grant
    Filed: October 6, 1989
    Date of Patent: July 16, 1991
    Assignee: SCM Chemicals, Inc.
    Inventor: James P. Bonsack
  • Patent number: 4961911
    Abstract: A process for reducing the amount of carbon monoxide emitted from a fluidized bed reactor for chlorinating titanium bearing material containing iron oxide comprising (a) feeding coke, titanium bearing material containing iron oxide, and chlorine to the reactor, the chlorine being fed to the reactor below the surface of the fluidized bed, (b) maintaining the feed rate of the materials in step (a) and the conditions of operation of the bed so that the iron oxide is substantially converted to ferrous chloride, and (c) feeding sufficient chlorine to the reactor at or near the surface of the bed to convert the desired amount of carbon monoxide to carbon dioxide.
    Type: Grant
    Filed: March 2, 1989
    Date of Patent: October 9, 1990
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Paul G. Reis, Michael J. Dunbar
  • Patent number: 4948477
    Abstract: A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.
    Type: Grant
    Filed: November 6, 1987
    Date of Patent: August 14, 1990
    Assignee: Carbotek, Inc.
    Inventors: Michael A. Gibson, Christian W. Knudsen
  • Patent number: 4933153
    Abstract: A synthetic rutile is prepared from a titaniferous slag, typically containing at least about 1.0 weight percent magnesium oxide and at least some portion of its titanium values as Ti.sub.2 O.sub.3, by a method comprising contacting the slag with chlorine gas at a temperature between about 400.degree. C.-800.degree. C., such that the magnesium oxide and chlorine gas react to form magnesium chloride, and then removing the magnesium chloride from the slag, typically by washing the slag with water. In one embodiment, the synthetic rutile can be further upgraded by subjecting it to either a caustic or acid leaching treatment.
    Type: Grant
    Filed: December 9, 1987
    Date of Patent: June 12, 1990
    Assignee: QIT Fer et Titane, Inc.
    Inventor: Michel Gueguin
  • Patent number: 4854972
    Abstract: The invention is concerned with a substantially nitrogen-free process for chloride-route TiO.sub.2 pigment manufacture in which a TiO.sub.2 -containing feedstock is subjected to a fluidized-bed, high temperature carbochlorination in a chlorinator to produce TiCl.sub.4 which is thereafter converted to TiO.sub.2 by oxidation. The TiO.sub.2 -containing feedstock and a solid carbonaceous reducing agent are fed to the chlorinator under a CO.sub.2 blanketing atmosphere such that the carbochlorination is carried out in a substantially nitrogen-free atmosphere containing CO.sub.2 and a CO.sub.2 -rich flue gas is generated, the CO.sub.2 in the chlorinator assisting in controlling thermal balance of the carbochlorination reaction. The absence of significant concentrations of nitrogen in the flue gas results in a favorable condition enabling either or both the CO and CO.sub.2 contained in the flue gas to be readily recovered, purified and sold as by-products.
    Type: Grant
    Filed: June 23, 1987
    Date of Patent: August 8, 1989
    Assignee: Canadian Liquid Air Ltd.
    Inventors: Guillermo F. Garrido, Robert G. H. Lee, Olivier Francois
  • Patent number: 4629607
    Abstract: A process for increasing the amount of titanium dioxide in a titaniferous slag includes the rapid preheating of the slag in gases substantially void of free oxygen.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: December 16, 1986
    Inventor: Michel Gueguin
  • Patent number: 4619815
    Abstract: The process is directed to a fluidized bed chlorination of iron containing metaliferous materials to simultaneously produce a quantity of titanium beneficiate and a quantity of titanium tetrachloride. The process is controlled by maintaining the bed temperature between about 600.degree. C. and 1150.degree. C. while controlling the quantity of chlorine relative to the ratio of beneficiate to titanium tetrachloride desired.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: October 28, 1986
    Assignee: SCM Chemicals Limited
    Inventor: Michael Robinson
  • Patent number: 4595573
    Abstract: A method for producing tetrachloride of a metal selected from the group consisting of titanium and zirconium comprising: providing a reaction chamber which is defined by a wall structure of refractory material and arranged in an airtight encasement of metal, said reaction chamber comprising a reaction zone ranging downwards from an intermediate level thereof, said encasement including a jacket formed of a double wall construction around the reaction zone, communicating means between the inside of said jacket and said reaction chamber, heating said reaction chamber, filling said jacket with a gas, introducing a solid reaction mixture comprising a compound of the metal to be chlorinated, supplying a gas mixture comprising chlorine to said reaction zone through a tube connected to the chamber bottom to cause reaction at a positive pressure over the atmosphere to produce the tetrachloride of the metal, maintaining a positive pressure relative to the atmosphere in both said jacket and said reaction chamber and a p
    Type: Grant
    Filed: February 15, 1985
    Date of Patent: June 17, 1986
    Inventor: Hiroshi Ishizuka
  • Patent number: 4576636
    Abstract: A process for the beneficiation of an iron-containing material is carried out by first chlorinating the iron-containing material. Oxidation of ferrous chloride in the effluent gas from the chlorination is carried out under controlled conditions of oxygen supply so that more than 50% but less than 100% of the ferrous chloride is oxidized. In this way chlorine gas is separated from the process stream in a relatively pure form which can be utilized in a continuous process by recycle to another chlorination.
    Type: Grant
    Filed: February 17, 1981
    Date of Patent: March 18, 1986
    Assignee: SCM Chemicals Limited
    Inventors: Michael Robinson, Harry B. Wilson
  • Patent number: 4540551
    Abstract: There is provided a multi stage process for nonselectively chlorinating a titaniferous ore containing iron to produce TiCl.sub.4. In this process a portion of the ore charge is subjected to conventional fluid bed chlorination to produce TiCl.sub.4 and FeCl.sub.2. A second portion is subdivided and submitted to chlorination in a dilute phase chlorination step using FeCl.sub.3 as the chlorinating agent to produce additional TiCl.sub.4. The FeCl.sub.3 is obtained by partial oxidation of the FeCl.sub.2 obtained in the first stage and/or second stage to yield Fe.sub.2 O.sub.3 and FeCl.sub.3. The product streams of TiCl.sub.4 are then combined for further treatment.
    Type: Grant
    Filed: March 1, 1985
    Date of Patent: September 10, 1985
    Assignee: SCM Corporation
    Inventors: James P. Bonsack, Semyon D. Fridman
  • Patent number: 4521384
    Abstract: Process for the production of a nearly aluminum chloride-free titanium tetrachloride from titaniferous raw materials containing larger quantities of aluminum compounds in a fluid bed with the addition of a reducing agent. In the process, sodium chloride is added to or formed in the reaction mixture before the first condensation step. A sodium chloride/aluminum chloride complex is formed thereby, which is discharged together with the chloride mixture and separated from said mixture together with the metal chlorides of lower volatility. The maximum quantity of NaCl needed is 1 mole per mole Al contained in the titaniferous raw material and per mole of iron (III) chloride, calculated as FeCl.sub.3, that may form.
    Type: Grant
    Filed: September 9, 1982
    Date of Patent: June 4, 1985
    Assignee: Kronos Titan - G.m.b.H.
    Inventors: Achim Hartmann, Hans Thumm
  • Patent number: 4519988
    Abstract: There is provided an improved process for chlorinating an iron-containing titaniferous ore, such as ilmenite which comprises dividing the ore charge into 2 parts. The first and major part is chlorinated with chlorine or with a mixture of chlorine and FeCl.sub.3 under fluidized bed conditions to yield principally TiCl.sub.4 and FeCl.sub.2. The FeCl.sub.2 is separated out and utilized as a chlorinating agent for the minor part of the ore in an entrained flow chlorinator to yield more TiCl.sub.4 and metallic iron as principal products. This process avoids the need for disposal of FeCl.sub.2 and retains the advantages of conventional chlorination procedures.
    Type: Grant
    Filed: August 8, 1984
    Date of Patent: May 28, 1985
    Assignee: SCM Corporation
    Inventor: Semyon D. Fridman
  • Patent number: 4440730
    Abstract: There is provided an improved process for the chlorination of particulate titaniferous ores using a particulate reactive carbon in a fluidized bed. The particulate reactive carbon is lignite char.
    Type: Grant
    Filed: November 17, 1982
    Date of Patent: April 3, 1984
    Assignee: SCM Corporation
    Inventor: James P. Bonsack
  • Patent number: 4399118
    Abstract: An improved process for the recovery of substantially anhydrous zirconium tetrafluoride from an aqueous solution of hydrofluoric acid and zirconium fluoride is disclosed wherein the aqueous solution of hydrofluoric acid and zirconium fluoride is sprayed, preferably continuously, into a fluidized bed furnace having a bed comprising zirconium fluoride granules.
    Type: Grant
    Filed: June 25, 1981
    Date of Patent: August 16, 1983
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventor: Wolfgang Fennemann
  • Patent number: 4363789
    Abstract: A method for producing alumina from a material containing alumina values via a chlorination step which process comprises the steps of:(A) dehydrating the material, if necessary, at a temperature of between about 500 and about 1300.degree. K.;(B) chlorinating the product of step (A) in the presence of chlorine and carbon at a temperature below about 1200.degree. K. and under conditions which provide chlorination of a majority of the iron present in the clay without substantial chlorination of titania values which may be present therein with concommittant formation of an iron chloride cloud above the surface of the chlorination reaction mixture;(C) introducing oxygen into the iron chloride cloud under conditions to cause oxidation of a majority of the iron chloride contained in the cloud;(D) chlorinating the non-gaseous product of step (B) in the presence of chlorine and carbon at a temperature above about 1300.degree. K.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: December 14, 1982
    Assignee: Reynolds Metals Company
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4355007
    Abstract: A two stage process is described for chlorinating aluminum value containing materials such as bauxite, clay, fly ash, etc. The process comprises the steps of:(A) dehydrating the material, if necessary, at a temperature of between about 500.degree. and about 1300.degree. K.;(B) chlorinating the product of step (A) in the presence of chlorine and carbon at a temperature below about 1200.degree. K. and under conditions which provide chlorination of a majority of the iron present in the clay without substantial chlorination of titania values which may be present therein with concommittant formation of an iron chloride cloud above the surface of the chlorination reaction mixture;(C) introducing oxygen into the iron chloride cloud under conditions to cause oxidation of a majority of the iron chloride contained in the cloud; and(D) chlorinating the non-gaseous product of step (B) in the presence of chlorine and carbon at a temperature above about 1300.degree. K.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: October 19, 1982
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4355008
    Abstract: There is described a method for producing alumina from a material containing alumina values via a chlorination step which process comprises the steps of:(A) dehydrating the material, if necessary, at a temperature of between about 500 and about 1300.degree. K;(B) chlorinating the product of step (A) in the presence of chlorine and carbon at a temperature below about 1200.degree. K and under conditions which provide chlorination of a majority of the iron present in the clay without substantial chlorination of titania values which may be present therein with concommittant formation of an iron chloride cloud above the surface of the chlorination reaction mixture;(C) introducing oxygen into the iron chloride cloud under conditions to cause oxidation of a majority of the iron chloride contained in the cloud;(D) chlorinating the non-gaseous product of step (B) in the presence of chlorine and carbon at a temperature above about 1300.degree.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: October 19, 1982
    Assignee: Reynolds Metals Company
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4332615
    Abstract: Titaniferous ore is beneficiated to essentially pure titanium dioxide use in the production of titanium dioxide pigments by continuously chlorinating, in the presence of carbon and at high temperature, the ore in a first reactor wherein the iron content is maintained at about 3.5%, by weight, continuously passing the beneficiate-carbon mixture to a second reactor wherein the ratio of the diameters of the first reactor and the second reactor is in the range of 10:1 and wherein the beneficiate-carbon mixture is maintained at an iron content of about 0.1 to 1%, by weight, said beneficiate being continuously chlorinated while continuously removing the beneficiate and coke from the second reactor and continuously separating the product therefrom.
    Type: Grant
    Filed: June 29, 1981
    Date of Patent: June 1, 1982
    Assignee: Titanium Technology (Australia) Ltd.
    Inventor: Wendell D. Dunn, Jr.
  • Patent number: 4329322
    Abstract: Vanadium impurities in chlorinated titaniferous materials are rendered easily removable by reacting said titaniferous materials with a high surface area carbon during the chlorination process. A process for preparing said high surface area carbon is also described.
    Type: Grant
    Filed: January 23, 1981
    Date of Patent: May 11, 1982
    Assignee: SCM Corporation
    Inventors: James P. Bonsack, Fred Schneider, Jr.
  • Patent number: 4310495
    Abstract: A low temperature (less than 800.degree. C.) process for chlorinating titaniferous material in a fluidized bed is disclosed. A porous carbon reductant having micropores with a pore diameter of less than 20 A is utilized together with conventional titaniferous materials and conventional chlorine sources to achieve reaction at the present low temperatures.
    Type: Grant
    Filed: July 2, 1980
    Date of Patent: January 12, 1982
    Assignee: SCM Corporation
    Inventor: James P. Bonsack
  • Patent number: 4279871
    Abstract: Vanadium impurities in chlorinated titaniferous materials are rendered easily removable by reacting said chlorinated titaniferous materials with a high surface area carbon at an elevated temperature. A process for preparing said high surface are a carbon is also described.
    Type: Grant
    Filed: June 6, 1980
    Date of Patent: July 21, 1981
    Assignee: SCM Corporation
    Inventor: James P. Bonsack