Contacting Feed Solids With Chlorine Gas Patents (Class 423/79)
  • Patent number: 4329322
    Abstract: Vanadium impurities in chlorinated titaniferous materials are rendered easily removable by reacting said titaniferous materials with a high surface area carbon during the chlorination process. A process for preparing said high surface area carbon is also described.
    Type: Grant
    Filed: January 23, 1981
    Date of Patent: May 11, 1982
    Assignee: SCM Corporation
    Inventors: James P. Bonsack, Fred Schneider, Jr.
  • Patent number: 4327062
    Abstract: The chlorides of elements of Groups III, IV and V of the Periodic Table, such as, boron trichloride, silicon tetrachloride, zirconium tetrachloride and vanadium tetrachloride are prepared by heating activated carbon particles having a supported aqueous solution of compounds of the elements of Groups III, IV and V of the Periodic Table thereon at a temperature of from 300.degree. through 1000.degree. C. and, then, reacting the resultant activated carbon particles with chlorine.
    Type: Grant
    Filed: February 4, 1981
    Date of Patent: April 27, 1982
    Assignee: UBE Industries, Ltd.
    Inventors: Tadashi Iwai, Hisayuki Mizuno, Masao Miura
  • Patent number: 4310495
    Abstract: A low temperature (less than 800.degree. C.) process for chlorinating titaniferous material in a fluidized bed is disclosed. A porous carbon reductant having micropores with a pore diameter of less than 20 A is utilized together with conventional titaniferous materials and conventional chlorine sources to achieve reaction at the present low temperatures.
    Type: Grant
    Filed: July 2, 1980
    Date of Patent: January 12, 1982
    Assignee: SCM Corporation
    Inventor: James P. Bonsack
  • Patent number: 4288414
    Abstract: A process for recovering aluminum from clays associated with coal or bauxite containing iron, siliceous material and titanium which comprises: (a) chlorinating the clay or bauxite in an oxidizing atmosphere to selectively chlorinate and vaporize iron chloride from the remaining chlorides, (b) chlorinating the residue from step (a) in a reducing atmosphere or carbon monoxide and vaporizing the chlorides of aluminum, silicon, titanium, and the residual iron, (c) separating and recovering the formed vaporized chlorides by selective condensation. Silicon tetrachloride may be added to step (b) to suppress the chlorination of silicon. If the clay contains alkali or alkaline earth metals, then the residue of step (b) is treated with sulfuric acid to convert the soluble chlorides, e.g., gypsum, to sulfates and to regenerate a chloridizing and binder solution for pelletizing the clay or bauxite.
    Type: Grant
    Filed: June 20, 1979
    Date of Patent: September 8, 1981
    Assignee: Public Service Company of New Mexico
    Inventors: James E. Reynolds, Alan R. Williams
  • Patent number: 4283371
    Abstract: A continuous process for recovering substantially pure aluminum chloride from chlorination products of aluminum ore. The chlorination products are contacted with a first selective solvent to dissolve a substantial portion of the aluminum chloride and some ferric chloride. The solvent is separated from the chlorides which then are treated to produce a ferric chloride-rich stream and an aluminum chloride-rich stream in which the aluminum chloride to ferric chloride ratio is higher than the ratio prior to solvent separation. The aluminum chloride-rich stream is contacted with a second solvent to dissolve any ferric chloride present and saturate the solution with aluminum chloride. Aluminum chloride in excess of that soluble in the second solvent separates as a substantially pure solid phase. The solution is separated from solid phase and recycled in process to recover additional aluminum chloride.
    Type: Grant
    Filed: January 28, 1980
    Date of Patent: August 11, 1981
    Assignee: Kerr-McGee Corporation
    Inventor: Theodore A. Rado
  • Patent number: 4277446
    Abstract: A process for the removal of iron and titanium minerals from aluminum bearing materials in at least one chlorination stage by the use of an excess of aluminum trichloride as at least the major chlorinating agent for the contained iron and titanium minerals, condensing the excess aluminum trichloride to recover the aluminum trichloride in an impure form, and recycling the impure aluminum trichloride to the chlorination stage together with additional aluminum trichloride or starvation amounts of chlorine, or alternately additional amounts of aluminum trichloride and starvation amounts of chlorine.
    Type: Grant
    Filed: January 25, 1980
    Date of Patent: July 7, 1981
    Assignee: Reynolds Metals Company
    Inventor: David Weston
  • Patent number: 4252774
    Abstract: A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.
    Type: Grant
    Filed: March 25, 1980
    Date of Patent: February 24, 1981
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Raouf O. Loutfy, Rudolf Keller, Neng-Ping Yao
  • Patent number: 4244926
    Abstract: A process for the selective removal of iron from a ferruginous ore which comprises feeding the dried heated ore into a countercurrent reactor comprising a sulphidizing zone, an intermediate zone and a chlorination zone, through which zones the ore moves in sequence and wherein(a) in the sulphidizing zone, a reductant is introduced and the iron values present in the ore react selectively with sulphur and/or volatile sulphur-containing compounds in the presence of the reductant to form iron sulphides;(b) in the intermediate zone, volatile ferric chloride formed in the chlorinating zone is introduced and reacts with the sulphidized ore to convert the iron sulphides into ferrous chloride and reform the sulphur and/or volatile sulphur containing compounds;(c) in the chlorination zone, chlorine is introduced and converts the ferrous chloride formed in the intermediate zone into volatile ferric chloride;(d) the volatile iron chlorides and the upgraded host oxide are separately removed from the chlorination zone; and
    Type: Grant
    Filed: June 15, 1979
    Date of Patent: January 13, 1981
    Assignee: Commonwealth Scientific and Industrial Research Organization
    Inventors: Ernest Foley, Michael W. Wadsley
  • Patent number: 4242320
    Abstract: The invention relates to a method for the reduction of ferric chloride to produce ferrous chloride. The method comprises using gaseous sulphur or a gaseous sulphur chloride in which the atomic ratio of sulphur to chlorine is more than 1:1 as the reducing agent. The reaction is conveniently performed in a fluidised bed. According to a particular aspect, the ferric chloride reduction forms part of a process for the recovery of chlorine values from iron chloride by-produced by industrial processes such as the chlorination of a titaniferrous or aluminous material.
    Type: Grant
    Filed: May 10, 1979
    Date of Patent: December 30, 1980
    Assignee: Mineral Process Licensing Corporation
    Inventor: John A. Clarke
  • Patent number: 4241038
    Abstract: The invention relates to a method for the reduction of ferric chloride to produce ferrous chloride. The method involves using as the reducing agent sulphur monochloride optionally in combination with sulphur or sulphur dichloride to produce ferrous chloride and sulphur dichloride. The sulphur monochloride may be introduced as a gas or as a liquid and the reaction is conveniently performed in a fluidized bed. According to a particular aspect, the ferric chloride reduction forms part of a process for the recovery of chlorine values from iron chloride by-produced by industrial processes such as the chlorination of a titaniferous or aluminous material.
    Type: Grant
    Filed: May 10, 1979
    Date of Patent: December 23, 1980
    Assignee: Mineral Process Licensing Corporation BV
    Inventors: Philip J. Gabb, Hayden Monk, John Lumsden
  • Patent number: 4187117
    Abstract: A process for the production of titanium tetrachloride from titanium oxide earing material in a fluid bed chlorinator at low temperatures and articles of manufacture suitable for use in fluid bed chlorinators for obtaining titanium tetrachloride.
    Type: Grant
    Filed: April 24, 1978
    Date of Patent: February 5, 1980
    Assignee: Quebec Iron and Titanium Corporation - fer et Titane du Quebec, Inc.
    Inventor: Michel Gueguin
  • Patent number: 4183899
    Abstract: Ferruginous titaniferous material is chlorinated with chlorine for producing a product stream of titanium chlorides and by-product metallic iron in a laminar flow process.
    Type: Grant
    Filed: March 10, 1978
    Date of Patent: January 15, 1980
    Assignee: SCM Corporation
    Inventor: James P. Bonsack
  • Patent number: 4179489
    Abstract: A process for the chlorination of a material containing iron and titanium chemically combined with oxygen, comprising feeding the material to be chlorinated, in particulate solid form, into a reaction bed of solids containing ferrous chloride, and reacting it within that bed, at a temperature below the melting point of ferrous chloride, with a controlled amount of chlorine in the presence of sulphur in free or combined form, to produce solid ferrous chloride, titanium chloride, which is volatile at a temperature of operation, and sulphur dioxide, as the principal products of the process.
    Type: Grant
    Filed: May 19, 1978
    Date of Patent: December 18, 1979
    Assignee: Mineral Process Licensing Corporation B.V.
    Inventor: John Lumsden
  • Patent number: 4159310
    Abstract: A process for recovering aluminum from fly ash containing iron, silicon and titanium which comprises: (a) chlorinating the fly ash in an oxidizing atmosphere to selectively chlorinate and vaporize iron chloride from the remaining chlorides, (b) chlorinating the residue from step (a) in a reducing atmosphere of carbon monoxide, in the presence of added silicon chloride to suppress the chlorination of silicon, and vaporizing the chlorides of aluminum, silicon, titanium, and the residual iron, (c) separating and recovering the vaporized chlorides by selective condensation, and treating the residue of step (b) with sulfuric acid to convert calcium chloride to gypsum, and to regenerate a chloridizing and binder solution for pelletizing fly ash feed.
    Type: Grant
    Filed: January 30, 1978
    Date of Patent: June 26, 1979
    Assignee: Public Service Company of New Mexico
    Inventors: James E. Reynolds, Alan R. Williams
  • Patent number: 4140746
    Abstract: The invention relates to the recovery of chlorine values from iron chloride by-produced from the chlorination of a titaniferous material containing more than 5% by weight iron oxide, and particularly from the carbo-chlorination of ilmenite, which, for example, can be the first stage in the so-called chloride route to form titanium dioxide pigment.The iron chloride which may be ferric chloride or ferrous chloride is subjected to a combination of reduction and oxidation reactions. In the reduction reaction, ferric chloride is dechlorinated to ferrous chloride by a reducing agent suitable for producing a chloride compound for recycle to the chlorination process or for sale and in the oxidation reaction ferrous chloride is oxidized to ferric oxide and ferric chloride, the ferric chloride being recycled to the reduction reaction.
    Type: Grant
    Filed: November 3, 1977
    Date of Patent: February 20, 1979
    Assignee: Mineral Process Licensing Corporation B.V.
    Inventors: John H. W. Turner, Charles E. E. Shackleton
  • Patent number: 4117076
    Abstract: A process for the production of titanium tetrachloride from titanium oxide bearing material in a fluid bed chlorinator at low temperatures and articles of manufacture suitable for use in fluid bed chlorinators for obtaining titanium tetrachloride.
    Type: Grant
    Filed: June 30, 1977
    Date of Patent: September 26, 1978
    Assignee: Quebec Iron and Titanium Corporation
    Inventor: Michel Gueguin
  • Patent number: 4083923
    Abstract: The present invention provides a process for the production of aluminum chloride and alumina of metallurgical grade purity, and valuable by-products from aluminous ores like clay, bauxites and laterites. The process comprises carbo-chlorination of the ore to produce aluminum chloride and other metal chlorides. The aluminum chloride is separated, purified and utilized as such or oxidized to make alumina while the other metal chlorides are processed to recover maximum values.
    Type: Grant
    Filed: January 22, 1976
    Date of Patent: April 11, 1978
    Assignee: Toth Aluminum Corporation
    Inventors: Alfred Lippman, Roger Frank Sebenik
  • Patent number: 4082833
    Abstract: One of the major obstacles toward the needed and economic production of alumina and other values from kaolinitic clay and other ores by chlorination has been the slow reaction rates and low yields of the metal values. The present information provides methods for improving reaction rates and/or yields in the halogenation of various ores which comprises the addition of sulfur and/or functionally equivalent sulfur containing compounds as an ore conditioning agent and/or reaction promoter. These improvements also permit operation at low temperatures with advantage of savings of energy and of equipment and maintenance costs. The invention is applicable to both displacement halogenation and carbo-halogenation processes. The sulfur and/or functionally equivalent sulfur containing compounds can be added to the reaction mass during pre-halogenation steps or to the halogenation step or to combinations of steps ordinarily with additional benefits.
    Type: Grant
    Filed: January 6, 1976
    Date of Patent: April 4, 1978
    Assignee: Toth Aluminum Corporation
    Inventors: Ronald Wyndham, John Christopher Terry
  • Patent number: 4078039
    Abstract: Recovery of titanium as a titanium tetrachloride from slags produced from ectrosmelting of relatively low content titanium bearing materials such as ilmenites.
    Type: Grant
    Filed: February 15, 1977
    Date of Patent: March 7, 1978
    Assignee: Quebec Iron and Titanium Corporation - Fer et Titane du Quebec, Inc.
    Inventor: Michel Gueguin
  • Patent number: 4066424
    Abstract: Process for selectively recovering metal chlorides from a gaseous mixture of metal chlorides by contacting the gaseous mixture at a temperature above the condensation point of the mixture with at least one stream of liquid to cool all the mixture to below the freezing point of at least one metal chloride in the mixture, the average velocity of the mixture being at least the pneumatic conveyance velocity at the point of contact. This process provides for recovery of metal chlorides without plugging the apparatus.
    Type: Grant
    Filed: October 13, 1976
    Date of Patent: January 3, 1978
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Arnold William Kilgren, David Nicholson Low, Robert Warwick Porter
  • Patent number: 4060584
    Abstract: The dust produced in the chlorination of titaniferous ores comprises essentially particulate ferrous chloride plus solid contaminants including coke and various metal chlorides and oxides and is oxidized in successive stages at relatively low temperatures to recover particulate iron oxide and gaseous chlorine.
    Type: Grant
    Filed: February 14, 1977
    Date of Patent: November 29, 1977
    Assignee: Kronos Titan G.m.b.H.
    Inventors: Achim Hartmann, Achim Kulling, Hans Thumm
  • Patent number: 4055621
    Abstract: A process for obtaining chlorine and iron oxide from iron chloride by adding iron oxide to iron chloride prepared by chlorinating iron-containing titanium ore, in an amount of above 10 percent by weight of the resulting mixture, charging the mixture in solid phase into a fluidizing roasting furnace for oxidizing roasting, extracting the overflow from the fluidized bed in the furnace, and charging the extract into another secondary furnace for additional oxidizing roasting. The iron oxide thus obtained is cooled and recycled to the fluidized bed in the primary fluidizing roasting furnace for the purpose of controlling the reaction temperature in the furnace.
    Type: Grant
    Filed: June 3, 1975
    Date of Patent: October 25, 1977
    Assignee: Nihon Kogyo Kabushiki Kaisha
    Inventors: Shigenori Okudaira, Mitsuo Takahashi, Takefumi Irie, Eiji Itoh, Koh Kashiwagi
  • Patent number: 4046853
    Abstract: The simultaneous chlorination of the iron and titanium values in an iron containing titaniferous ore such as ilmenite is advantageously conducted to convert the iron values to ferrous chloride but the resulting gaseous effluent is difficult to process to recover the titanium tetrachloride. The iron values in the effluent are partially oxidized according to the equation3FeCl.sub.2 + 3/4O.sub.2 .fwdarw. 1/2Fe.sub.2 O.sub.3 + 2FeCl.sub.3thereby reducing the vapor partial pressure of the ferrous chloride while maintaining the presence of some ferrous chloride to scavenge any chlorine emitted from the chlorination stage. The residual gaseous iron chlorides are condensed and chlorine-free titanium tetrachloride may be recovered from the remaining gases. If chlorine-free titanium tetrachloride is not required the mixture of gases resulting from the partial oxidation are reduced in temperature of from 500.degree. C to 800.degree.
    Type: Grant
    Filed: June 15, 1976
    Date of Patent: September 6, 1977
    Assignee: Laporte Industries Limited
    Inventor: Michael Robinson
  • Patent number: 4017304
    Abstract: A reduction/chlorination process is provided for the treatment of titaniferous materials such as ilmenite ores. The chlorination is selective in that the titanium constituent of the titaniferous material is chlorinated, but there is no appreciable net yield of iron chloride from the iron constituent. Where other metals such as vanadium are present they may be chlorinated with the titanium. The reduction utilizes as the reductant an amount of carbonaceous material which, based on oxygen in the titaniferous material, is at least stoichiometric to produce carbon monoxide. The selective chlorination utilizes as the chlorinating agent either ferrous chloride (FeCl.sub.2) alone or certain combinations of ferrous chloride and one or more other chlorine-containing members, notably molecular chlorine (Cl.sub.2) and hydrogen chloride (HCl). The use of ferric chloride (FeCl.sub.3) as a part or all of the chlorinating agent is the equivalent of using a FeCl.sub.2 /0.5 Cl.sub.2 mixture.
    Type: Grant
    Filed: September 18, 1973
    Date of Patent: April 12, 1977
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Hans Hellmut Glaeser
  • Patent number: 4014976
    Abstract: Titanium tetrachloride is produced by reacting a titaniferous material having a particle size of 150 mesh or less (Tyler standard) as a median value with a chlorine-containing gas in the presence of a coarse carbonaceous substance in a dilute-phase fluidization system.
    Type: Grant
    Filed: March 24, 1976
    Date of Patent: March 29, 1977
    Assignee: Ishihara Sangyo Kaisha Ltd.
    Inventors: Masaaki Adachi, Takayoshi Shirai, Norio Nakasuzi
  • Patent number: 3991157
    Abstract: A chlorine-containing gas is introduced as an upward flow into a vertical, upwardly widening column-type reactor, and a titaniferous material and a solid carbonaceous reducing agent are charged into the reactor at its upper and lower parts to effect chlorination in a dilute-phase fluidization system accompanied by reflux of part of the solid materials and thereby yield titanium tetrachloride.
    Type: Grant
    Filed: March 20, 1975
    Date of Patent: November 9, 1976
    Assignee: Ishihara Sangyo Kaisha Ltd.
    Inventors: Masaaki Adachi, Kenichi Ichimura, Takayoshi Shirai
  • Patent number: 3977862
    Abstract: A reduction/chlorination process is provided for the treatment of titaniferous materials such as ilmenite ores. The chlorination is selective in that the titanium constituent of the titaniferous material is chlorinated, but there is no appreciable net yield of iron chloride from the iron constituent. Where other metals such as vanadium are present they may be chlorinated with the titanium. The reduction utilizes as the reductant an amount of carbonaceous material which, based on oxygen in the titaniferous material, is at least stoichiometric to produce carbon monoxide. The selective chlorination utilizes as the chlorinating agent either ferrous chloride (FeCl.sub.2) alone or certain combinations of ferrous chloride and one or more other chlorine-containing members, notably molecular chlorine (Cl.sub.2) and hydrogen chloride (HCl). The use of ferric chloride (FeCl.sub.3) as a part or all of the chlorinating agent is the equivalent of using a FeCl.sub.2 /0.5 Cl.sub.2 mixture.
    Type: Grant
    Filed: February 26, 1975
    Date of Patent: August 31, 1976
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Hans Hellmut Glaeser
  • Patent number: 3944647
    Abstract: Vapor feed containing titanium tetrachloride and ferric chloride vapor is contacted with sodium chloride for complexing said ferric chloride as liquid sodium ferric chloride salt complex while leaving titanium tetrachloride as vapor residue. The salt complex is reacted with molecular oxygen for providing recovered chlorine gas product. Such gas can be recycled to said complexing operation for providing a high grade of chlorine and titanium tetrachloride-rich product. Substantially complete chlorination of ilmenite is a prime source of said vapor feed.
    Type: Grant
    Filed: April 8, 1974
    Date of Patent: March 16, 1976
    Assignee: SCM Corporation
    Inventor: James Paul Bonsack