Silver, Gold, Platinum, Or Palladium Patents (Class 427/125)
  • Patent number: 10350679
    Abstract: In a fine silver particle dispersing solution wherein 30 to 75% by weight of fine silver particles, which are coated with an organic acid having a carbon number of 5 to 8 or a derivative thereof and which have an average particle diameter of 1 to 100 nm, are dispersed in a water-based dispersion medium which is a solvent containing water as a main component, the fine silver particle dispersing solution containing ammonia and nitric acid, there is added 0.15 to 0.6% by weight of a surface regulating agent, which preferably contains a polyether-modified polydimethylsiloxane and a polyoxyethylene alkyl ether or a polyether, or 0.005 to 0.6% by weight of an antifoaming agent which is preferably a silicone antifoaming agent.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: July 16, 2019
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yu Murano, Hidefumi Fujita, Daisuke Itoh, Shuji Yamashita, Daiki Yoshihara
  • Patent number: 9806347
    Abstract: Disclosed herein is a method of preparing an alloy catalyst for fuel cells, which is suitable for mass production and can reduce manufacturing costs. The method includes vaporizing at least two catalyst precursors in separate vaporizers; supplying the at least two vaporized catalyst precursors to a reactor while preventing contact therebetween; and synthesizing an alloy catalyst in the reactor. The method can prepare an alloy catalyst through a one-step process unlike typical multi-step methods for preparing catalysts, and can prepare an alloy catalyst at a much lower temperature than the typical methods for preparing alloys, thereby enabling mass production and cost reduction.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: October 31, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Hee-yeon Kim, Seok-yong Hong
  • Patent number: 9783874
    Abstract: A thick film paste comprising at least one particulate platinum (alloy), at least one metal compound, and an organic vehicle, wherein the at least one metal compound is selected from the group consisting of in each case particulate NiO, SiO2, RuO2, Rh2O3, IrO2, Cu2O, CuO, TiO2, ZrO2, PbO, SnO2, CeO2, Al2O3, MgO, MnO2 and MoO2, and metal compounds capable of forming a metal oxide on firing, the metal oxide being selected from the group consisting of NiO, SiO2, RuO2, Rh2O3, IrO2, Cu2O, CuO, TiO2, ZrO2, PbO, SnO2, CeO2, Al2O3, MgO, MnO2 and MoO2.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: October 10, 2017
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Howard David Glicksman, Adele Amelia Pliscott
  • Patent number: 9776282
    Abstract: Methods for laser additive manufacture are disclosed in which a plurality of powder layers (48, 50 and 52) are delivered onto a working surface (54A) to form a multi-powder deposit containing at least two adjacent powders layers in contact, and then applying a first laser energy (74) to a first powder layer (48) and a second laser energy (76) to a second powder layer (52) to form a section plane of a multi-material component. The multi-powder deposit may include a flux composition that provides at least one protective feature. The shapes, intensities and trajectories of the first and second laser energies may be independently controlled such that their widths are less than or equal to widths of the first and second powder layers, their intensities are tailored to the compositions of the powder layers, and their scan paths define the final shape of the multi-material component.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 3, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ramesh Subramanian, Ahmed Kamel, Gerald J. Bruck
  • Patent number: 9655248
    Abstract: There is provided a method of manufacturing a wiring board, including the steps of: preparing an insulating layer 1a including a cavity formation region X, and a separable metallic foil M formed of first and second metallic foils M1 and M2; allowing the separable metallic foil M to adhere to at least a lower face side of the insulating layer 1a with the first metallic foil M1 serving as an adhering surface; forming a cavity 2 by digging the insulating layer 1a and the separable metallic foil M in a cavity formation region X from an upper surface side of the insulating layer 1a to a depth that does not penetrate the second metallic foil M2; inserting an electronic component D into the cavity 2, and fixing the electronic component D by a fixing resin J; and peeling off the second metallic foil M2.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 16, 2017
    Assignee: Kyocera Corporation
    Inventor: Daisuke Narumi
  • Patent number: 9627556
    Abstract: The present invention relates to a composition for preparing solar cell electrodes including: a silver (Ag) powder; a glass frit containing about 0.1 mole % to about 50 mole % of elemental silver; and an organic vehicle, the composition introduces a glass frit including a silver cyanate or a silver nitrate to enhance contact efficiency between an electrode and a wafer, and solar cell electrodes prepared from the composition have minimized contact resistance (Rc) and serial resistance (Rs), thereby exhibiting excellent conversion efficiency.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: April 18, 2017
    Assignee: Cheil Industries, Inc.
    Inventors: Sang Hee Park, Dong Il Shin
  • Patent number: 9620732
    Abstract: A method of forming a light-emitting device comprises: forming patterned portions of precursor material over a substrate, the edges of the patterned portions defining sidewalls; performing a shaping control process on the patterned portions of precursor material to control the sidewall profile to reduce the angle the sidewalls of the precursor material make with the substrate to less than 15 degrees; selectively applying from solution a conductive coating onto the portions of shaped precursor material so as to form a plurality of first conducting contacts such that an upper surface of said conductive coating follows the sidewall profile of the precursor material; forming a light-emitting layer over the conductive contacts and substrate, and forming a plurality of second conducting contacts over the light-emitting layer. The precursor material may comprises an activator catalyst and the conductive coating comprises a metal selectively applied to the shaped precursor material by electroless plating.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 11, 2017
    Assignee: Cambridge Display Technology, Ltd.
    Inventors: Surama Malik, Colin Baker, Laurence Scullion
  • Patent number: 9556321
    Abstract: The present invention relates to composite materials with a high dielectric constant and high dielectric strength and to methods of producing the composite materials. The composite materials have high dielectric constants at a range of high frequencies and possess robust mechanical properties and strengths, such that they may be machined to a variety of configurations. The composite materials also have high dielectric strengths for operation in high power and high energy density systems. In one embodiment, the composite material is composed of a trimodal distribution of ceramic particles, including barium titanate, barium strontium titanate (BST), or combinations thereof and a polymer binder.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: January 31, 2017
    Assignee: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Randy D. Curry, Kevin O'Connor
  • Patent number: 9449734
    Abstract: The present invention relates to a conductive metal ink composition, comprising: a first metal powder having conductivity; a non-aqueous solvent; an attachment improving agent; and a polymer coating property improving agent, and a method for forming a conductive pattern by using the conductive metal ink composition, and the conductive metal ink composition can be appropriately applied to a roll printing process and a conductive pattern exhibiting more improved conductivity and excellent attachment ability with respect to a board can be formed.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: September 20, 2016
    Assignee: LG CHEM, LTD.
    Inventors: Jiehyun Seong, Kyoung Su Jeon, Soo Yeon Heo, Jong Taik Lee, Ji Young Hwang, In-Seok Hwang, Seung-Heon Lee
  • Patent number: 9271397
    Abstract: A circuit device having superior voltage resistance is provided. A structure is achieved that omits the resin layer that is normally provided to the top surface of a circuit board. Specifically, a ceramic substrate (22) is disposed on the top surface of a circuit board (12) comprising a metal, and a transistor (34) such as an IGBT is mounted to the top surface of the ceramic substrate (22). As a result, the transistor (34) and the circuit board (12) are insulated from each other by the ceramic substrate (22). The ceramic substrate (22), which comprises an inorganic material, has an extremely high voltage resistance compared to the conventionally used insulating layer comprising resin, and so even if a high voltage on the order of 1000V is applied to the transistor (34), short circuiting between the transistor (34) and the circuit board (12) is prevented.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: February 23, 2016
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Takashi Shibasaki, Hidefumi Saito, Takahisa Makino, Masanori Shimizu, Daisuke Sasaki
  • Patent number: 9263188
    Abstract: A conductive resin composition which allows a resin electrode which is favorable in terms of shape and adhesion to a ceramic device to be formed reliably, and a chip-type electronic component including resin electrodes formed with the conductive resin component are described. The conductive resin composition contains a linear bifunctional epoxy resin having a molecular weight of 11000 to 40000 and a terminal glycidyl group, a conductive silver powder, and a solvent, and has a yield value of 3.6 Pa or less. In addition, the conductive powder can have a surface attached to a fatty acid or a salt thereof, and the ratio of the fatty acid or salt thereof to the conductive powder is 0.5 wt % or less. Furthermore, the conductive powder can be spherical, and the ratio of the conductive powder in solids constituting the conductive resin composition can be 42 to 54 vol %.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 16, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shinji Otani, Akihiro Nomura
  • Patent number: 9236606
    Abstract: An electrode with a porous protective film includes an electrode in which an active material layer is disposed on a collector and a porous protective film which is disposed on a surface of the active material layer and which contains fine particles, a binder, a surfactant, and a thickener. A nonaqueous electrolyte secondary battery includes a negative electrode in which a negative electrode active material layer is disposed on a negative electrode collector, a positive electrode in which a positive electrode active material layer is disposed on a positive electrode collector, a nonaqueous electrolyte, a separator, and a porous protective film which is disposed on at least one of a surface of the negative electrode active material layer or a surface of the positive electrode active material layer and which contains fine particles, a binder, a surfactant, and a thickener.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 12, 2016
    Assignee: Sony Corporation
    Inventor: Junichi Tadano
  • Patent number: 9148969
    Abstract: A process for manufacturing silver nanowires is provided, comprising: providing a silver ink core component containing ?60 wt % silver nanoparticles dispersed in a silver carrier; providing a shell component containing a film forming polymer dispersed in a shell carrier; providing a substrate; coelectrospinning the silver ink core component and the shell component depositing on the substrate a core shell fiber having a core and a shell surrounding the core, wherein the silver nanoparticles are in the core; and, treating the silver nanoparticles to form a population of silver nanowires, wherein the population of silver nanowires exhibit an average length, L, of ?60 ?m.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 29, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jerome Claracq, Garo Khanarian, Lujia Bu, Jaebum Joo, Peter Trefonas
  • Patent number: 9040114
    Abstract: A method of manufacturing a silver miniwire film is provided, wherein the film exhibits a reduced sheet resistance.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Rohm and Haas Electronic Material LLC
    Inventors: Garo Khanarian, Kathleen M. O'connell, Peter Trefonas, Jerome Claracq, Lijia Bu, Jaebum Joo
  • Publication number: 20150140333
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like. A method of producing nanofibers is disclosed including providing a plurality of microparticles or nanoparticles such as carbon black particles having a catalyst material deposited thereon, and synthesizing a plurality of nanofibers from the catalyst material on the microparticles or nanoparticles. Compositions including carbon black particles having nanowires deposited thereon are further disclosed.
    Type: Application
    Filed: October 3, 2014
    Publication date: May 21, 2015
    Inventor: Chunming NIU
  • Patent number: 9034761
    Abstract: Disclosed are metal-containing precursors having the formula Compound (I) wherein: —M is a metal selected from Ni, Co, Mn, Pd; and —each of R-1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are independently selected from H; a C1-C4 linear, branched, or cyclic alkyl group; a C1-C4 linear, branched, or cyclic alkylsilyl group (mono, bis, or tris alkyl); a C1-C4 linear, branched, or cyclic alkylamino group; or a C1-C4 linear, branched, or cyclic fluoroalkyl group. Also disclosed are methods of synthesizing and using the disclosed metal-containing precursors to deposit metal-containing films on a substrate via a vapor deposition process.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 19, 2015
    Assignees: L'Air Liquide, SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc.
    Inventors: Clément Lansalot-Matras, Andrey V. Korolev
  • Publication number: 20150125624
    Abstract: A three-dimensional article having spray-applied ink and a spray application process for three-dimensional articles are disclosed. The article includes a substrate and conductive ink spray-applied to a non-planar region of the substrate. The conductive ink on the non-planar region is at least a portion of a power trace, an antenna, a resistive heater, a conductive lead, a sensor, a functional electrical device, or a combination thereof. The process includes spray-applying conductive ink, ablating the conductive ink, photo-sintering the conductive ink, or a combination thereof.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: Tyco Electronics Corporation
    Inventors: Forest I. Bohrer, Jeanine M.W. Olson
  • Publication number: 20150125596
    Abstract: Systems and methods of flexographically printing a pattern comprising a plurality of lines or a first antenna loop array on a first side of a substrate, wherein printing the first antenna loop array comprises using an ink and at least one flexomaster. The ink comprises an acrylic monomer resin and a catalyst which may be an organometallic acelate or oxolate at a concentration from 1 wt %-20 wt %. The substrate may have one pattern on one surface of the substrate or may be printed as a double-sided substrate with at least one pattern on each side of the substrate. The ink is cured to dissociated the catalyst in the ink prior to electroless plating, this may be done using one curing process on each side, using one curing process in total, or by performing a partial cure on a first pattern and then curing the second pattern.
    Type: Application
    Filed: March 12, 2013
    Publication date: May 7, 2015
    Inventors: Ed S. Ramakrishnan, Danliang Jin
  • Publication number: 20150109715
    Abstract: In one embodiment, a method for forming an electrostatic chuck includes forming vias in a ceramic plate and printing a metal paste in the vias and curing the ceramic plate. The method includes printing the metal paste on a front surface of the ceramic plate and curing the ceramic plate, and printing the metal paste on a bottom surface of the ceramic plate and curing the ceramic plate to form one or more contact pads. The method also includes printing a dielectric film on the front surface of the ceramic plate and curing the ceramic plate. The method may further include printing one or more heating elements on a bottom surface of the ceramic plate and curing the ceramic plate, printing the dielectric film on the bottom, and bonding the ceramic plate to a backing plate.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Karl M. BROWN
  • Publication number: 20150102272
    Abstract: A silver compound having a silver complex structure composed of silver ion, 2,2,6,6-tetramethyl-3,5-heptanedionato, and diethylenetriamine is disclosed. A silver ink is prepared by the silver compound applied for inkjet printing of a flexible substrate. A method for inkjet printing of the flexible substrate comprises the steps of pre-heating the flexible substrate to the temperature of 60° C., inkjet printing the flexible substrate with the silver ink thereon, and heating the flexible substrate under a low temperature to form a thin film of silver conductive pattern thereon. The silver conductive pattern has excellent electrical conductivity and a resistance value proximate to that of a general silver slug.
    Type: Application
    Filed: June 2, 2014
    Publication date: April 16, 2015
    Applicant: National Sun Yat-sen University
    Inventors: Teng-yuan DONG, Chen-Ni Chen
  • Publication number: 20150104636
    Abstract: A method for manufacturing a transparent conductive film, said method comprising: forming a compound layer containing a silazane compound on a substrate; supplying energy to the compound layer and thus converting at least a part of the silazane compound into a compound having a siloxane bond to thereby modify the compound layer; and then forming a metal layer, that is configured from silver or an alloy comprising silver as the main component, on the unmodified compound layer or the modified compound layer.
    Type: Application
    Filed: April 15, 2013
    Publication date: April 16, 2015
    Applicant: Konica Minolta, Inc.
    Inventor: Chiyoko Takemura
  • Publication number: 20150104567
    Abstract: A method for forming a functional pattern such as an electrode or the like on a substrate is provided. The method includes a) coating a polymer layer on an upper surface of the substrate, b) forming a pattern having an opening in the polymer layer, c) coating a functional fluid on the upper surface of the substrate through the opening of the pattern, d) removing the functional fluid coated on the polymer layer using a scraping process, e) curing the functional fluid through a heat treatment, and f) dissolving and removing the polymer layer using a solvent. The present method is capable of forming a functional pattern having a small line width and a clear shape.
    Type: Application
    Filed: June 13, 2014
    Publication date: April 16, 2015
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Seung Seob LEE, Jin Ha Kim, Hun Kwang Im
  • Publication number: 20150104625
    Abstract: Provided is an electroconductive composition which not only shows excellent adhesion to a substrate and can easily form a smooth film, but also is applicable to the formation of a fine-pitched circuit and the like and capable of providing high electroconductivity even when dried at a relatively low temperature. The electroconductive composition comprises (A) a crystalline flake silver powder and (B) an organic binder, wherein the blending ratio of the (A) crystalline flake silver powder is 90% by mass to 98% by mass with respect the total solid content of the composition. In a preferred embodiment, the (A) crystalline flake silver powder contains polygonal single particles and has an average particle size (D50), which is determined by a laser diffraction-scattering particle size distribution analysis, of 1 ?m to 3 ?m.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 16, 2015
    Applicant: TAIYO INK MFG. CO., LTD.
    Inventor: Naoyuki Shiozawa
  • Publication number: 20150101745
    Abstract: Disclosed herein are systems methods for using ink comprising organometallics in a flexographic printing process using engraved anilox rolls to transfer ink to an impression roll that prints a pattern on a substrate. A banded anilox roll with more than one geometry and/or volume of cells may be used in these production systems and methods. The pattern printed may comprise a plurality of lines which are each from 1 micrometer-25 micrometers wide and may be part of an electronics application such as a touch screen sensor or an RF antenna that requires microscopic conductive patterns such as touch screen displays or antennas.
    Type: Application
    Filed: March 12, 2013
    Publication date: April 16, 2015
    Inventors: Ed S. Ramakrishnan, Danliang Jin
  • Publication number: 20150097111
    Abstract: An optoelectronic sensor, in particular used for the detection of an angle of rotation, includes a dimensional scale, a light transmitter, which transmits transmission light in transmission light directions, and a light receiver having a light reception surface, which is arranged in such a way that the light reception surface is substantially located between the dimensional scale and the light receiver. The light receiver receives backwardly reflected transmission light as received light. The light receiver also includes a transmission light directing unit. The light directing unit is configured such that a predefined angle of deflection of the transmission light results with respect to the transmission light directions when the transmission light again exits from the transmission light directing unit. The transmission light directing unit is provided in the light receiver; and the transmission light directing unit is composed of at least one aperture which is incorporated into the light receiver.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: David Hopp, Stefan Basler, Reinhold Mutschler
  • Publication number: 20150099641
    Abstract: The present invention provides a method for manufacturing an electrode of a lithium battery electrode, comprising: (a) providing a substrate; (b) coating a paste on a portion of the substrate; (c) plating a metal film onto the paste or the substrate; (d) disposing a welding point at an end of the substrate; wherein the advantages of the present invention are to conduct current in three-dimensional direction and reduce the problem of electric conductivity because of thermal effect. In addition, the present invention can further avoid the problem of the electrode oxidation.
    Type: Application
    Filed: April 10, 2014
    Publication date: April 9, 2015
    Inventor: Christine Jill LEE
  • Publication number: 20150090578
    Abstract: There is provided a touch panel including: a substrate; mesh pattern electrodes formed on the substrate; and hard coating layers formed on the substrate and filling air gaps of the mesh pattern electrode.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 2, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jang Bae SON, Kang Heon Hur, Sang Hoon Park, Hyun Chul Jung
  • Publication number: 20150093500
    Abstract: The electrical and optical performance of silver LED reflective contacts in III-V devices such as GaN LEDs is limited by silver's tendency to agglomerate during annealing processes and to corrode on contact with silver-reactive materials elsewhere in the device (for example, gallium or aluminum). Agglomeration and reaction are prevented, and crystalline morphology of the silver layer may be optimized, by forming a diffusion-resistant transparent conductive layer between the silver and the source of silver-reacting metal, (2) doping the silver or the diffusion-resistant transparent conductive layer for improved adhesion to adjacent layers, or (3) doping the silver with titanium, which in some embodiments prevents agglomeration and promotes crystallization of the silver in the preferred <111> orientation.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 2, 2015
    Applicant: Intermolecular, Inc.
    Inventors: Teresa B. Sapirman, Jianhua Hu, Minh Huu Le
  • Publication number: 20150083466
    Abstract: The invention relates to a method for the functionalisation of metal nanowires and the use of said nanowires. The functionalisation method of the invention includes a step comprising the formation of a self-assembled monolayer on at least part of the external surface of metal nanowires, using a compound of formula R1—Zn—R2, wherein Z is S or Se, and n is equal to 1 or 2, and R1 is a hydrogen atom or an acyl group or a hydrocarbon group comprising between 1 and 100 carbon atoms and R2 is an electron-attracting or -donating group. The method if the invention is particularly suitable for use in the field electrode production.
    Type: Application
    Filed: July 20, 2012
    Publication date: March 26, 2015
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Jean-Pierre Simonato, Alexandre Carella
  • Patent number: 8986819
    Abstract: A non-catalytic palladium precursor composition is disclosed, including a palladium salt and an organoamine, wherein the composition is substantially free of water. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: March 24, 2015
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu
  • Publication number: 20150080678
    Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
    Type: Application
    Filed: June 18, 2014
    Publication date: March 19, 2015
    Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
  • Publication number: 20150079421
    Abstract: An electrical component includes an interior layer that includes an exterior surface. The electrical component includes an intermediate layer that includes at least one platinum group metal (PGM). The intermediate layer extends on the exterior surface of the interior layer. The intermediate layer has an exterior PGM surface. The electrical component includes a silver layer that includes silver. The silver layer extends on the exterior PGM surface such that the intermediate layer extends between the interior layer and the silver layer.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicants: TYCO ELECTRONICS AMP GMBH, TYCO ELECTRONICS CORPORATION
    Inventors: Marjorie Myers, Helge Schmidt
  • Patent number: 8968824
    Abstract: A silver conductive film is formed on a substrate in a continuous roll-to-roll system by applying a fine silver particle dispersing solution, which contains 30 to 70 wt % of fine silver particles dispersed in a water based dispersing medium, to a halide, such as a chlorine compound, which is applied to the substrate, by flexographic printing, and thereafter, heating the substrate at 60 to 200° C. for 0.1 to 5 seconds in an infrared (IR) heating open, which is installed on the printing path, to carry out calcination.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Michael A. Mastropietro, Kimitaka Sato, Hidefumi Fujita
  • Patent number: 8968825
    Abstract: The disposable palladium nanoparticle-modified graphite pencil electrode (PdNP-GPE) is a graphite pencil electrode having palladium nanoparticles disposed on the surface of the electrode. The electrode is prepared by adding ascorbic acid to an aqueous solution of ammonium tetrachloropalladate(II) [(NH4)2PdCl4] at room temperature to form the palladium nanoparticles (PdNPs), immersing a GPE in the aqueous solution of PdNPs, and heating the solution to about 75° C. to deposit the PdNPs on the GPE. The palladium nanoparticle modified graphite pencil electrode may be used in an electrochemical cell for quantitative analysis of hydrogen peroxide content in an unknown solution.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: March 3, 2015
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Abdel-Nasser Metwally Aly Kawde, MD Abdul Aziz
  • Publication number: 20150050428
    Abstract: The invention concerns a method for producing a metal coating on a portion of the surface of a substrate of a microelectronic device, wherein it comprises, using a modified nucleic acid strand comprising a nucleic acid strand structure, at least one metal nanoparticle and/or a metal atom and at least one chemical function, at least one step of fixing the chemical function of the at least one modified nucleic acid strand on the portion of the surface of the substrate.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 19, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Xavier BAILLIN, Didier GASPURATTO
  • Publication number: 20150045860
    Abstract: One aspect provides a method of forming a feedthrough device for an implantable medical device. The method includes providing a bulk insulator having a longitudinal length extending between first and second end faces, and including one or more conducting elements extending therethrough between the first and second end faces, the bulk insulator having a perimeter surface along the longitudinal length, and depositing one of a metal, metal alloy, or cermet on the perimeter surface to form a ferrule directly thereon, wherein the ferrule can be joined to other components of the implantable medical device.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Inventors: Jacob Markham, Ulrich Hausch
  • Publication number: 20150044428
    Abstract: A method for fabricating articles for use in optics, electronics, and plasmonics includes large scale lithography or other patterning and conformal deposition such as by atomic layer deposition.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Sang-Hyun Oh, Xiaoshu Chen
  • Publication number: 20150037550
    Abstract: The present invention relates to a silver-containing aqueous ink formulation for production of electrically conductive structures, wherein the formulation is provided in the form of a two-component system composed of a vehicle component A at least comprising an organic solvent, additives and water, and a silver nanoparticle sol as component B, at least comprising a liquid dispersant, stabilized silver nanoparticles and an electrostatic dispersion stabilizer, and the formulation composed of components A and B comprises at least a) 1-50% by weight of organic solvent, b) 0.005-12% by weight of additives, and c) 40-70% by weight of water, and d) 15-50% by weight of electrostatically stabilized silver nanoparticles, where the sum of the total proportions in the ink formulation adds up to 100% by weight in each case.
    Type: Application
    Filed: June 13, 2012
    Publication date: February 5, 2015
    Applicant: BAYER TECHNOLOGY SERVICES GMBH
    Inventors: Venkataramanan Balasubramaniam, Daniel Rudhardt, Frank Sicking, Stefanie Eiden
  • Publication number: 20150030878
    Abstract: The present application provides an ultrathin shielding film of high shielding effectiveness, comprising two or more solid shielding layers. An electrically-conductive adhesive layer is coated onto the outer surface at one side of the solid shielding layers, and one or more insulation film layers are formed on the outer surface at the other side of the solid shielding layers. A carrier film layer is provided on the outer surface of the insulation film layers. A protective film covers the lower surface of the electrically-conductive adhesive layer. The present application further discloses a manufacturing method of an ultrathin shielding film of high shielding effectiveness.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 29, 2015
    Applicant: GUANGZHOU FANG BANG ELECTRONICS CO., LTD.
    Inventor: Su Zhi
  • Publication number: 20150028334
    Abstract: To provide an electroconductive thin film, containing: a metal oxide containing indium and tin; and gold.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 29, 2015
    Applicant: RICOH COMPANY, LTD.
    Inventors: Shinji Matsumoto, Naoyuki Ueda, Yuki Nakamura, Yukiko Abe, Mikiko Takada, Yuji Sone, Ryoichi Saotome
  • Patent number: 8940197
    Abstract: A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony James Wigglesworth
  • Patent number: 8940219
    Abstract: An ophthalmic device is formed by additive fabrication, the optical device having an optical surface with a surface roughness on the order of less than 10 microns. A method is provided for making an ophthalmic device including an optical surface having a surface roughness of less than 10 microns by depositing on a stage in a first relative position a first lamina of particulates having a size less than 10 microns and in select configurations less than two microns and certain configurations less than one micron, and, synergistically stimulating the first lamina of particulates to form a first solidified layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 27, 2015
    Inventors: Ronald Spoor, Sanjay M. Rastogi, Charles P. Henning
  • Publication number: 20150024123
    Abstract: Catalysts include iminodiacetic acid and derivatives thereof as ligands for metal ions which have catalytic activity. The catalysts may be used to electrolessly plate metal on metal clad and un-clad substrates.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 22, 2015
    Inventors: Kristen M. MILUM, Donald E. CLEARY, Maria Anna RZEZNIK
  • Publication number: 20150017414
    Abstract: Disclosed herein are a conducting network for storing gas such as hydrogen, carbon dioxide, or the like, and a method for preparing the same, and particularly, a conducting network composite including: dopant-doped polyaniline nanofiber supporter; and a polypyrrole layer laminated on the supporter, and a method for preparing the same. According to the present invention, a novel conducting network composite suitable for being used as an energy storage material for various purposes may be provided by a simple and economical method, and since a polyaniline nanofiber having the entangled structure may function as an excellent supporter for forming a network composite material and a thickness of the polypyrrole layer may be easily adjusted, the nanocomposite for being used in various fields may be simply and economically prepared.
    Type: Application
    Filed: December 31, 2013
    Publication date: January 15, 2015
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kurt E. GECKELER, Nour Fathi Attia
  • Publication number: 20150009432
    Abstract: A method for manufacturing of a conductive member include forming one of a conductive layer including metal nanowires or a light-scattering layer including insulating light-scattering fine particles on a substrate in a pattern shape; and forming the other of the conductive layer including metal nanowires or the light-scattering layer including insulating light-scattering fine particles on a space of the substrate wherein the one of the conductive layer or the light-scattering layer is not formed.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Applicant: FUJIFILM Corporation
    Inventor: Kensuke KATAGIRI
  • Publication number: 20150001452
    Abstract: The present invention provides silver nano-particles that are excellent in stability and develop excellent conductivity by low-temperature calcining, a producing method for same, and a silver coating composition comprising the silver nano-particles.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 1, 2015
    Inventors: Masato Kurihara, Kazuki Okamoto, Yuki Iguchi
  • Publication number: 20150004325
    Abstract: An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120° C. or less.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 1, 2015
    Inventors: Steven B. Walker, Jennifer A. Lewis
  • Publication number: 20140362434
    Abstract: A transparent panel is described. The transparent panel has at least one transparent substrate and at least one electrically conductive coating on at least one surface of the transparent substrate. The electrically conductive coating has at least two functional layers which are arranged one above the other, and each functional layer has at least an optically highly refractive material layer, which has a refractive index greater than or equal to 2.1, and a smoothing layer, which is above the optically highly refractive material layer. The smoothing layer contains at least one non-crystalline oxide, a first matching layer, which is above the smoothing layer, an electrically conductive layer, which is above the first matching layer, and a second matching layer, which is above the electrically conductive layers. The total thickness of all the electrically conductive layers is between 40 nm and 75 nm, and the electrically conductive coating has a low ohm/square sheet resistance.
    Type: Application
    Filed: October 4, 2012
    Publication date: December 11, 2014
    Inventors: Christoph Schmitz, Klaus Fischer, Sebastian Janzyk, Marcus Neander, Ulrich Billet, David Luxembourg
  • Publication number: 20140345921
    Abstract: Disclosed are a nanowire composition and a method of fabricating a transparent electrode. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent. The metallic nanowire has a diameter of 30 nm to 50 nm, and a length of 15 ?m to 40 ?m, and a weight percentage of the metallic nanowire is in a range of 0.01% to 0.4%. The method of fabricating the transparent electrode includes preparing a nanowire composition, coating the nanowire composition on a substrate, and performing heat treatment with respect to the nanowire composition. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent, and the metallic nanowire has a diameter of 30 nm to 50 nm, a length of 15 ?m to 40 ?m, and a weight percentage of 0.01% to 0.4%.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Jong Woon Moon, Sun Young Lee, Bo Ra Kang, Young Sun You, Kyoung Hoon Chai
  • Patent number: RE45297
    Abstract: A method for enhancing the solderability of a metallic surface is disclosed where the metallic surface is plated with an immersion silver plate prior to soldering, which immersion silver plate is treated with an additive selected from the group consisting of fatty amines, fatty amides, quaternary salts, amphateric salts, resinous amines, resinous amides, fatty acids, resinous acids, ethoxylated derivatives of any of the foregoing, and mixtures of any of the foregoing. The immersion silver deposits created are resistant to electromigration.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 23, 2014
    Inventors: Ronald Redline, David Sawoska, Peter Kukanskis, Donald Ferrier, Eric Yakobson