Metal Is Ni, Fe, Or Co Patents (Class 427/126.6)
  • Publication number: 20020024041
    Abstract: The method for producing a positive electrode active material for an alkaline storage battery is disclosed. The method includes a first oxidation treatment of a raw material powder comprising a nickel hydroxide solid solution and cobalt hydroxide to oxidize the cobalt hydroxide to a cobalt oxyhydroxide; and a second oxidation treatment of the powder obtained in the first oxidation treatment to oxidize the nickel hydroxide solid solution to a nickel oxyhydroxide solid solution.
    Type: Application
    Filed: April 9, 2001
    Publication date: February 28, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd
    Inventors: Futoshi Tanigawa, Yasushi Nakamura, Yoshitaka Dansui, Kohji Yuasa
  • Patent number: 6340497
    Abstract: Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: January 22, 2002
    Assignee: The Regents of the University of California
    Inventors: Michael J. Wilson, David A. Goerz
  • Publication number: 20010031311
    Abstract: Disclosed is a method for surface treatment of lithium manganese oxide for positive electrodes in lithium secondary batteries and, more particularly, a method for surface treatment of lithium manganese oxide in which the surface of the lithium manganese oxide is coated with lithium transition metal oxides. The lithium secondary batteries using the coated lithium manganese oxide as an anode material not only solves the problems with the conventional lithium secondary batteries in regard to the lifetime of the electrodes at high temperature and the fat discharge efficiency but also replace the conventional expensive lithium cobalt oxide to reduce the production cost.
    Type: Application
    Filed: December 7, 2000
    Publication date: October 18, 2001
    Inventors: Jai Young Lee, Sung Chul Park, Young Soo Han, Youn Seon Kang, Yong Mook Kang, Sang Cheol Han
  • Publication number: 20010022274
    Abstract: A method of manufacturing an anode for use in a cell for the electrowinning of aluminium comprises oxidising before cell operation an iron-nickel alloy substrate in an oxygen-containing atmosphere, such as air, at a temperature which is at least 50° C., preferably 100° C., above the operating temperature of the cell to form on the surface of the iron-nickel substrate a coherent and adherent iron oxide-containing outer layer, in particular a hematite-containing layer having a limited ionic conductivity for oxygen ions and acting as a partial barrier to monoatomic oxygen. The outer layer is electrochemically active for the oxidation of oxygen ions and reduces also diffusion of oxygen to the iron-nickel alloy substrate when the anode is in use.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 20, 2001
    Inventors: Olivier Crottaz, Jean-Jacques Duruz
  • Publication number: 20010020590
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14; 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active transition metal oxide layer, in particular an iron oxide-based outside layer (16) such as a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina. The cell operating temperature is sufficiently low so species and dissolved alumina.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 13, 2001
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Publication number: 20010019017
    Abstract: An anode of a cell for the electrowinning of aluminum comprises an iron-nickel alloy body or layer whose surface is oxidized to form a coherent and adherent outer iron oxide-based layer, in particular hematite, the surface of which is electrochemically active for the oxidation of oxygen ions and which reduces diffusion of oxygen from the electrochemically active surface into the iron-nickel alloy body or layer. The anode may be kept dimensionally stable during cell operation by maintaining a sufficient amount of dissolved alumina and iron species in the electrolyte to prevent dissolution of the outer oxide layer of the or each anode and by reducing the electrolyte operating temperature to limit dissolution of iron and by reducing the electrolyte operating temperature to limit dissolution of iron species in the electrolyte.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 6, 2001
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Publication number: 20010014423
    Abstract: Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
    Type: Application
    Filed: March 27, 2001
    Publication date: August 16, 2001
    Applicant: LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
    Inventor: John B. Bates
  • Publication number: 20010012586
    Abstract: This invention discloses a method to make a positive electrode and the nickel hydride battery using same. The positive electrode at least comprises a nickel hydroxide plus 1-15 wt. % of fine additive powders selected from the group consisting of Co/CoO, Ni, Cu, Zn, ZnO, C, Mg, Al, Mn, silver oxide, hydride, conductive polymer, and combinations thereof. Said positive electrode further comprises one, two or more additives, 0.01-10 wt. %, selected from the group of MgCl2, CaCl2, SrCl2, SrF2, BaCl2, BaF2, MgF2, and other fluorides/chlorides of alkali metals, alkaline earth metals, Al, Y, Sn, Sb, Ag, transition metals, rare earth metals, and composite metal oxide/halide to improve the performance of said positive electrode at high temperature.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 9, 2001
    Inventors: Kuochih Hong, Yee-Ming Lin
  • Patent number: 6248658
    Abstract: Submicron-dimensioned metallization patterns are formed on a substrate surface by a photolytic process wherein portions of a metal-compound containing fluid layer on the substrate surface which are exposed through a pattern of submicron-sized openings in an overlying exposure mask are irradiated with UV to near X-ray radiation. Photo-decomposition of the metal-containing compound results in selective metal deposition on the substrate surface according to the exposure mask pattern. When liquid, the fluid layer is prevented from contacting the mask surfaces during photolysis in order to prevent closing off of the very small apertures by deposition thereon. The inventive method is of particular utility in forming multi-level, in-laid, “back-end” metallization of high density integrated circuit semiconductor devices.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: June 19, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Matthew S. Buynoski
  • Patent number: 6232042
    Abstract: A method for manufacturing a microelectronic assembly to have a resistor, and particularly a metal resistive film, with desirable processing and dimensional characteristics. The method generally entails applying a photosensitive dielectric to a substrate to form a dielectric layer. The dielectric layer is photoimaged to polymerize a first portion of the dielectric layer on a first region of the substrate, leaving the remainder of the dielectric layer unpolymerized. An electrically resistive film is then applied to the dielectric layer, and the dielectric layer is developed to remove concurrently the unpolymerized portion thereof and the portion of the resistive film overlying the unpolymerized portion, so that a portion of the resistive film remains over the second portion to form the resistor. An alternative process order is to apply the resistive film prior to exposing the dielectric layer to radiation, and then exposing the dielectric layer through the resistive film.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: May 15, 2001
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Jovica Savic, Allyson Beuhler
  • Patent number: 6210779
    Abstract: Multi-functional materials which have a photocatalytic layer with a photocatalytic function disposed on the surface of a base through an amorphous binder layer 6 interposed therebetween. Photocatalytic particles of the photocatalytic layer are joined together by a surface energy or solid-state sintering. The photocatalytic layer may have a structure in which fine particles fill interstices defined between photocatalytic particles or a structure in which no fine particles fill interstices defined between photocatalytic particles. A metal such as Ag, Pt, or the like may be fixed or not fixed to surfaces of the photocatalytic particles. A lower layer of the photocatalytic layer is embedded in the binder layer such that an intermediate layer is formed between the binder layer and the photocatalytic layer, the intermediate layer including components of the binder and photocatalytic layers in varying concentrations therethrough.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: April 3, 2001
    Assignee: Toto Ltd.
    Inventors: Toshiya Watanabe, Eiichi Kojima, Keiichiro Norimoto, Tamon Kimura, Mitsuyoshi Machida, Makoto Hayakawa, Atsushi Kitamura, Makoto Chikuni, Yoshimitsu Saeki, Tatsuhiko Kuga, Yasushi Nakashima
  • Patent number: 6206269
    Abstract: The present invention relates to a method of soldering a semiconductor chip to a substrate, such as to a capsule in an RF-power transistor, for instance. The semiconductor chip is provided with an adhesion layer consisting of a first material composition. A solderable layer consisting of a second material composition is disposed on this adhesion layer. An antioxidation layer consisting of a third material composition is disposed on said solderable layer. The antioxidation layer is coated with a layer of gold-tin solder. The chip is placed on a solderable capsule surface, via said gold-tin solder. The capsule and chip are exposed to an inert environment to which a reducing gas is delivered and the capsule and chip are subjected to a pressure substantially beneath atmospheric pressure whilst the gold-tin solder is heated to a temperature above its melting point.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: March 27, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Lars-Anders Olofsson
  • Patent number: 6191062
    Abstract: A photocatalytic functional material having an excellent photocatalytic activity even by a low temperature heat treatment and having a high mechanical strength of the surface. The photocatalytic functional material of the present invention comprises a surface layer (a photocatalytic functional layer) containing a photocatalyst, an electron trapping metal and a photodegradation-resistant matrix. Though the major proportion of the photocatalyst (TiO2 particles, and the like) in the photocatalytic functional layer are covered with the photodegradation-resistant matrix (a thermosetting resin, and the like), the electron-trapping metal effectively traps the electrons generated by the photocatalytic reaction, retains positive holes and generates active oxygen species, so that the photocatalytic function such as deodorant and antimicrobial activities can be fully exhibited.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: February 20, 2001
    Assignee: Toto Ltd.
    Inventors: Makoto Hayakawa, Makoto Chikuni, Toshiya Watanabe