Applying Superposed Diverse Coating Or Coating A Coated Base Patents (Class 427/131)
  • Publication number: 20140295073
    Abstract: A method of fabricating a magnetic recording medium by sequentially forming a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body, includes forming the lubricant by depositing a first lubricant on the stacked body after forming the protection layer, by vapor-phase lubrication deposition, without exposing the stacked body to atmosphere, and depositing a second lubricant on the stacked body after depositing the first lubricant, by vapor-phase lubrication deposition, without exposing the stacked body to atmosphere. The first lubricant has a lower molecular mass and a higher chemical polarity than those of the second lubricant.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Takehiko OKABE, Katsuaki To
  • Patent number: 8846136
    Abstract: PROBLEM: To provide a production method of an anisotropic rare earth magnet capable of being enhanced in coercivity without adding a large amount of a rare metal such as Dy and Tb. MEANS FOR RESOLUTION: A production method of a rare earth magnet, comprising a step of bringing a compact obtained by applying hot working to impart anisotropy to a sintered body having a rare earth magnet composition into contact with a low-melting-point alloy melt containing a rare earth element.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Shoji, Noritaka Miyamoto, Shinya Omura, Daisuke Ichigozaki, Takeshi Yamamoto
  • Patent number: 8846137
    Abstract: On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 30, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Koichi Shimokawa, Katsushi Hamakubo, Kae Itoh
  • Patent number: 8840955
    Abstract: A method of manufacturing a magnetic recording medium is disclosed, as well as a magnetic recording medium manufactured by the method. In the manufacturing method, the uneven pattern has magnetic recording elements in protruding portions formed above a substrate, and depressed portions between the recording elements are filled with a filling material. The method allows a high quality magnetic recording medium to be manufactured inexpensively by eliminating the process of removing excess filling material used to fill depressions between magnetic recording elements, because the method allows material to be filled only in the depressed portions of an uneven pattern. The method includes a technique rendering the wettability of the protruding portion surfaces and the depressed portion surfaces different prior to the process of filling with the filling material.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 23, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Narumi Sato
  • Publication number: 20140272471
    Abstract: In accordance with one embodiment, an apparatus can be configured that includes a main pole layer of magnetic material; a second layer of magnetic material; a first gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; and wherein the second gap layer of non-magnetic material is disposed directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, a method of manufacturing such a device may also be utilized.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Seagate Technology LLC
    Inventors: Wei Tian, Venkateswara Rao Inturi, Doug Lin, Huaqing Yin, Jiaoming Qiu
  • Publication number: 20140268422
    Abstract: A data reader and associated method of making are generally provided. A data reader capable of sensing adjacent data bits may be configured at least with a magnetic stack disposed between first and second side shields. Each side shield may have a polish stop layer that is tuned to provide a first predetermined polish rate.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Seagate Technology LLC
    Inventors: Shaun Eric McKinlay, Eric W. Singleton, Carolyn Pitcher Van Dorn, Levent Colak, Thu-Van Thi Nguyen
  • Patent number: 8834962
    Abstract: Methods for improving the strength of glass substrates are described. One such method for strengthening a glass disk substrate for a storage device includes immersing at least a portion of the glass substrate in a solution, the solution including a solvent and a coating material selected from the group consisting of NaOH, KOH, and KNO3, removing the glass substrate from the solution, allowing the solvent to evaporate from the glass substrate, and heating the glass substrate at a preselected temperature for a preselected duration, where the preselected temperature is sufficient to substantially melt the coating material and is less than a transition temperature of the glass substrate.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 16, 2014
    Assignee: WD Media, LLC
    Inventors: Shoji Suzuki, Chris Brisko
  • Publication number: 20140242268
    Abstract: A method of fabricating a magnetic recording medium sequentially forms a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body. The lubricant layer is formed on a surface of the protection layer by vapor-phase lubrication without exposing the stacked body to atmosphere after forming the protection layer on the stacked body. Nitrogen atoms or oxygen atoms are injected onto the surface of the protection layer after forming the protection layer and before forming the lubricant layer.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 28, 2014
    Applicant: SHOWA DENKO K.K.
    Inventor: Ichiro OTA
  • Patent number: 8808793
    Abstract: A method comprising introducing a workpiece support into a chamber of an apparatus. The workpiece support is for supporting thereon a plurality of workpieces. The apparatus comprising: the chamber having an interior space configured to be maintained at a pressure below atmospheric pressure; a vapor source for supplying the interior space of the chamber with a linearly extending stream of lubricant vapor; the workpiece support for supporting thereon a plurality of workpieces with surfaces facing the vapor source; and a conveyor for continuously moving the workpiece support transversely past the linearly extending stream of lubricant vapor from the vapor source. The method also comprising continuously moving the workpiece support with the plurality of workpieces supported thereon transversely past the linearly extending stream of lubricant vapor from the vapor source and depositing a uniform thickness film of the lubricant on at least one surface of each of the plurality of workpieces.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 19, 2014
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Publication number: 20140228252
    Abstract: Provided are encoded polymeric microparticles and a multiplexed bioassay using the encoded polymeric microparticles. Each of the encoded polymeric microparticles includes an encoded polymeric microparticle core and a silica shell surrounding the microparticle core. Further provided is a method for producing encoded polymeric microparticles. The method includes: mixing a photocurable material with a linker having a functional group polymerizable with the photocurable material and an alkoxysilyl group; applying patterned energy to cure the mixture, followed by encoding to obtain encoded polymeric microparticle cores; and treating the encoded polymeric microparticle cores with a silica precursor to form a silica shell on each encoded polymeric microparticle core.
    Type: Application
    Filed: November 18, 2013
    Publication date: August 14, 2014
    Inventor: Sunghoon Kwon
  • Publication number: 20140218824
    Abstract: The present disclosure relates to a magnetic medium that includes a substrate and a bit patterned magnetic layer applied to the substrate. The bit-patterned magnetic layer includes islands and each island includes a first magnetic material having a first magnetic anisotropy and that has a top surface, a bottom surface, and a peripheral surface. Each island also includes a second magnetic material covering the peripheral surface of the first magnetic material and having a second magnetic anisotropy that is higher than the first magnetic anisotropy. In one embodiment, the first magnetic material may comprise a nucleation domain in a centrally located surface portion of the magnetic islands and/or the second magnetic material may comprise an outer shell on the peripheral surface of the islands.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Michael Grobis, Dan S. Kercher, Kurt A. Rubin
  • Publication number: 20140220240
    Abstract: A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. The side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. The free layer may be deposited simultaneously with the soft magnetic layer when they are aligned in the same plane. When the flux absorbing stripes are positioned above or below the MR sensor, then the free layer and flux absorbing stripes are deposited in separate steps.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Yimin Guo
  • Patent number: 8795765
    Abstract: To provide a method for manufacturing a perpendicular magnetic recording medium, which is capable of coping with the much higher recording density.
    Type: Grant
    Filed: May 22, 2010
    Date of Patent: August 5, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Takashi Koike, Shigeaki Furugori
  • Patent number: 8795764
    Abstract: An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 5, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yingguo Peng, Xiaowei Wu, Ganping Ju, Bin Lu
  • Patent number: 8795763
    Abstract: A track shield structure is disclosed that enables higher track density to be achieved in a patterned track medium without increasing adjacent track erasure and side reading. This is accomplished by placing a soft magnetic shielding structure in the space that is present between the tracks in the patterned medium. A process for manufacturing the added shielding structure is also described.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 5, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Lijie Guan, Kunliang Zhang
  • Patent number: 8795790
    Abstract: [Problem] An object is to provide a magnetic recording medium with improved HDI characteristics, such as impact resistance, and its manufacturing method. [Solution] A typical structure of a magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122, a protective layer 126, and a lubricating layer 128, wherein the magnetic recording layer 122 includes, in an in-plane direction, a magnetic recording part 136 configured of a magnetic material and a non-recording part 134 magnetically separating the magnetic recording part 136, and a surface corresponding to the non-recording part 134 protuberates more than a surface corresponding to the magnetic recording part 136.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 5, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Akira Shimada, Tsuyoshi Ozawa, Masanori Aniya
  • Publication number: 20140212579
    Abstract: A method of fabricating a magnetic recording medium by sequentially forming a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body, includes forming the lubricant by depositing a first lubricant on the stacked body after forming the protection layer, by vapor-phase lubrication deposition, without exposing the stacked body to atmosphere, and depositing a second lubricant that is dissolved in an organic solvent onto the stacked body after depositing the first lubricant.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 31, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Takehiko OKABE, Katsuaki To
  • Publication number: 20140212692
    Abstract: A magnetic recording medium, that makes it possible to reduce head flying height, includes a nonmagnetic substrate and provided thereon, in the order recited; an underlayer; a magnetic layer; a protective layer comprised of carbon; and a lubricating layer composed of a lubricant mixture including a lubricant represented by Formula (I) below where m is an integer equal to or greater than 1; and a lubricant represented by Formula (II) below where p and q are integers equal to or greater than 0, provided that p=q=0 is excluded.
    Type: Application
    Filed: November 2, 2012
    Publication date: July 31, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Takako Matsumoto, Takeshi Watanabe
  • Publication number: 20140212575
    Abstract: The present invention includes a novel self-assembling nanocomposite structure comprising a shape-persistent three-dimensional cage molecule. In one aspect, binding of nanoparticles to metal coordinating groups in the cage molecule allows for the self-assembly of the nanoparticles into a nanocomposite material. The present invention further includes methods of preparing such self-assembling nanocomposite structures.
    Type: Application
    Filed: September 24, 2013
    Publication date: July 31, 2014
    Inventors: Wei Zhang, Ryan McCaffrey, Wounjhang Park, Kazunori Emoto, Yinghua Jin
  • Publication number: 20140198409
    Abstract: According to various embodiments, a lubricating layer for providing lubrication to a magnetic recording medium includes a perfluoropolyether (PFPE) represented by: X—CF2CF2O(C3F6O)mCF2CF2—X, wherein m is in a range from 4 to 8 on average, and wherein X is This lubricating layer may be used in a magnetic disk, which includes a recording layer positioned above a nonmagnetic substrate, a protective film layer positioned above the recording layer, and the lubricating layer positioned above the protective film layer.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Yoshihiko Ooeda, Hiroyuki Matsumoto, Sukefumi Ito, Yoko Saito
  • Publication number: 20140199501
    Abstract: A method for producing a magnetic recording medium in one embodiment includes forming a magnetic material layer above a substrate, transferring an uneven pattern to the magnetic material layer to form concave portions and convex portions, the convex portions being magnetic regions, depositing a nonmagnetic material above the concave portions to form nonmagnetic regions, forming an oxide layer and/or hydroxide layer above the magnetic regions of the recording layer, and forming an organic material layer which exhibits a corrosion-inhibiting characteristic with respect to cobalt or cobalt alloy above the oxide layer and/or hydroxide layer.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 17, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Qing Dai, Bruno Marchon, Katsumi Mabuchi, Mina Amo
  • Publication number: 20140199476
    Abstract: A method of fabricating a magnetic recording medium sequentially forms a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body. The stacked body is enclosed in a transfer container unit without exposing the stacked body to atmosphere after forming the protection layer on the stacked body by a deposition apparatus, and the transfer container unit is transported to a vapor-phase lubrication deposition apparatus. The stacked body is removed from the transfer container unit without exposing the stacked body to the atmosphere, in order to form the lubricant layer on the stacked body within the vapor-phase lubrication deposition apparatus.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 17, 2014
    Applicant: SHOWA DENKO K,K.
    Inventors: Yasuyuki TSUTATANI, Daisuke SHIOMI
  • Publication number: 20140186526
    Abstract: A common mode filter having heterogeneous laminates includes a first magnetic layer, a nonmagnetic insulating substrate, a second magnetic layer, a first coil layer, and a second coil layer. The second magnetic layer is formed on the nonmagnetic insulating substrate, between the nonmagnetic insulating substrate and the first magnetic layer. The first coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a first coil. The second coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a second coil. The first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Inpaq Technology Co., Ltd.
    Inventors: YU CHIA CHANG, CHI LONG LIN, HUAI LUH CHANG, CHENG YI WANG
  • Publication number: 20140168812
    Abstract: In one embodiment, a magnetic head includes a first shield; a spin torque oscillator (STO) sensor positioned above the first shield, the STO sensor comprising a reference layer and a free layer positioned above the reference layer; and at least one shield positioned in a plane that is parallel with a media-facing surface of the STO sensor, the plane also intersecting the STO sensor, wherein one or more of the at least one shield comprises a highly magnetically permeable material that is exchange decoupled and electrically decoupled from the STO sensor. Other magnetic heads, systems, and methods for producing the magnetic heads are described according to more embodiments.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Patrick M. Braganca, Bruce A. Gurney, Yang Li
  • Patent number: 8742518
    Abstract: A magnetic tunnel junction device includes a reference magnetic layer and a magnetic free layer including first and second magnetic elements that are magnetically exchange coupled. The magnetic exchange coupling between the first and second magnetic elements is configured to achieve a switching current distribution less than about 200% and a long term thermal stability criterion of greater than about 60 kBT.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 3, 2014
    Assignee: Seagate Technology LLC
    Inventors: Xiaobin Wang, Kaizhong Gao
  • Publication number: 20140146419
    Abstract: A magnetic element may be configured with at least a magnetic stack having first and second magnetically free layers that each has a predetermined stripe height from an air bearing surface (ABS). The first and second magnetically free layers can respectively be configured with first and second uniaxial anisotropies that are crossed in relation to the ABS and angled in response to the predetermined stripe height.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark William Covington, Victor Boris Sapozhnikov, Wonjoon Jung, Dimitar Velikov Demitrov, Dian Song, Taras Pohkil
  • Patent number: 8734894
    Abstract: A method of depositing material onto a base portion of a wafer is disclosed. The method includes forming a bevel into a portion of a surface of the base portion of the wafer and depositing a first layer of conductive material onto the beveled portion of the base portion so that part of the first layer includes a wedge shape above the surface of the base portion. A second layer of conductive material is deposited onto the base portion including the portion of the base portion onto which the first layer of material is deposited.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 27, 2014
    Assignee: Seagate Technology LLC
    Inventors: David Chris Seets, Chang Xie, Christopher J. Cote, Karen Virginia Rud
  • Publication number: 20140140180
    Abstract: Apparatus for recording data and method for making the same. In accordance with some embodiments, a magnetic recording layer is adapted to store data along perpendicular magnetic domains. A protective overcoat layer is formed on the magnetic recording layer to substantially protect the magnetic recording layer from environmental effects. The protective overcoat layer is made of carbon intermixed with at least one transition metal, such as but not limited to chromium.
    Type: Application
    Filed: February 26, 2013
    Publication date: May 22, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Seagate Technology LLC
  • Publication number: 20140127533
    Abstract: A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: Seagate Technology LLC
    Inventors: Shuaigang Xiao, Thomas Young Chang, Yingguo Peng, David S. Kuo, Kaizhong Gao, Thomas P. Nolan, Ganping Ju
  • Publication number: 20140111194
    Abstract: A magnetoresistive sensing device includes a substrate, a magnetoresistive sensing element, a circuitry element and a shielding unit. The magnetoresistive sensing element, the circuitry element and the shielding unit are disposed at the same side of the substrate. The shielding unit is between the magnetoresistive sensing element and the circuitry element. The shielding unit comprises at least one magnetic material.
    Type: Application
    Filed: December 14, 2012
    Publication date: April 24, 2014
    Applicant: Voltafield Technology Corp.
    Inventors: Fu-Tai Liou, Nai-Chung Fu
  • Patent number: 8698259
    Abstract: A magnetic junction is described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The magnetic junction may also include an additional nonmagnetic spacer layer and an additional pinned layer opposing the nonmagnetic spacer layer and the pinned layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer is configured to be switchable using a write current passed through the magnetic junction. The free layer is also configured to be thermally stable in a quiescent state and have a reduced thermal stability due to heating from the write current being passed through the magnetic junction. In some aspects, the free layer includes at least one of a pinning layer(s) interleaved with ferromagnetic layer(s), two sets of interleaved ferromagnetic layers having different Curie temperatures, and a ferrimagnet having a saturation magnetization that increases with temperature between ferromagnetic layers.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mohamad Towfik Krounbi, Dmytro Apalkov, Xueti Tang, Vladimir Nikitin
  • Patent number: 8697180
    Abstract: Certain example embodiments of this invention relate to large-area transparent conductive coatings (TCCs) including carbon nanotubes (CNTs) and nanowire composites, and methods of making the same. The ?dc/?opt ratio of such thin films may be improved via stable chemical doping and/or alloying of CNT-based films. The doping and/or alloying may be implemented in a large area coating system, e.g., on glass and/or other substrates. In certain example embodiments, a CNT film may be deposited and then doped via chemical functionalization and/or alloyed with silver and/or palladium. Both p-type and n-type dopants may be used in different embodiments of this invention. In certain example embodiments, silver and/or other nanowires may be provided, e.g., to further decrease sheet resistance. Certain example embodiments may provide coatings that approach, meet, or exceed 90% visible transmission and 90 ohms/square target metrics.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 15, 2014
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 8696874
    Abstract: An apparatus and method are provided for improving perpendicular magnetic recording media. The present invention provides media, and a method of fabricating media in a cost-effective manner, with a reduced ruthenium (Ru) content interlayer structure, while meeting media performance requirements. A perpendicular magnetic recording medium is provided comprising a non-magnetic substrate having a surface, and a layer stack situated on the substrate surface. The layer stack comprises, in overlying sequence from the substrate surface a magnetically soft underlayer; an amorphous or crystalline, non-magnetic seed layer; an interlayer structure for crystallographically orienting a layer of a perpendicular magnetic recording material situated on the underlayer; and at least one crystallographically oriented, magnetically hard, perpendicular magnetic recording layer situated on the interlayer structure.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 15, 2014
    Assignee: Seagate Technology LLC
    Inventors: Shoutao Wang, Weilu Xu, Chunghee Chang, Xiaoguang Ma, Mark Johnson, Abebe Hailu, Charles Chen
  • Publication number: 20140099437
    Abstract: A method of fabricating a magnetic recording medium sequentially forms a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body. The stacked body is enclosed in a transfer container unit without exposing the stacked body to atmosphere after forming the protection layer on the stacked body by a deposition apparatus, and the transfer container unit is transported to a vapor-phase lubrication deposition apparatus. The stacked body is removed from the transfer container unit without exposing the stacked body to the atmosphere, in order to form the lubricant layer on the stacked body within the vapor-phase lubrication deposition apparatus.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 10, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuyuki TSUTATANI, Daisuke SHIOMI, Satoru UENO
  • Publication number: 20140093747
    Abstract: A magnetic recording medium includes a substrate and a plurality of anisotropic magnetic layers applied over the substrate. The medium further includes at least one anti-ferromagnetic coupling layer between two adjacent anisotropic magnetic layers of the plurality of anisotropic magnetic layers.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventor: Ernesto E. Marinero
  • Publication number: 20140085033
    Abstract: A planar magnetic component and a method for manufacturing the same are provided. The planar magnetic component includes a substrate and a magnetic structure embedded in the substrate; wherein the magnetic structure includes a ferromagnetic material layer and at least one first hard protective layer disposed on a first surface of the ferromagnetic material layer to prevent the ferromagnetic material layer from being breaking in a pressing process.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: Shanghai Zhuo Kai Electronic Technology Co., Ltd
    Inventor: Yao-Long Wen
  • Publication number: 20140079877
    Abstract: A method of fabricating a magnetic recording medium sequentially forms a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body. The lubricant layer is formed by vapor-phase lubrication without exposing the stacked body to atmosphere after forming the protection layer on the stacked body. A region having a gas pressure P3 is provided in a transport path of the stacked body after the formation of the protection layer and before the formation of the lubricant layer, satisfying relationships P3>P1 and P3>P2, where P1 denotes a process gas pressure at a time of forming the protection layer, and P2 denotes a process gas pressure at a time of forming the lubricant layer.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 20, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuyuki Tsutatani, Daisuke Shiomi, Satoru Ueno, Ichiro Ota, Takehiko Okabe
  • Publication number: 20140070341
    Abstract: A synthetic antiferromagnetic (SAF) structure for a spintronic device is disclosed and has an AP2/antiferromagnetic (AF) coupling/CoFeB configuration. The SAF structure is thinned to reduce the fringing (Ho) field while maintaining high coercivity. The AP2 reference layer has intrinsic perpendicular magnetic anisotropy (PMA) and induces PMA in a thin CoFeB layer through AF coupling. In one embodiment, AF coupling is improved by inserting a Co dusting layer on top and bottom surfaces of a Ru AF coupling layer. When AP2 is (Co/Ni)4, and CoFeB thickness is 7.5 Angstroms, Ho is reduced to 125 Oe, Hc is 1000 Oe, and a balanced saturation magnetization-thickness product (Mst)=0.99 is achieved. The SAF structure may also be represented as FL2/AF coupling/CoFeB where FL2 is a ferromagnetic layer with intrinsic PMA.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
  • Publication number: 20140072828
    Abstract: Provided are a perpendicular magnetic recording medium and a method for manufacturing the same, the perpendicular magnetic recording medium including an alloy (FePt, FePd, or CoPt) having a large Ku value with an L10 type ordered structure, and obtained with achievement of controlled crystal orientation and thin film formation without heating. Specifically, in the perpendicular magnetic recording medium, at least a nonmagnetic seed layer, a nonmagnetic underlayer, and a magnetic layer are formed in this order on a nonmagnetic substrate. The nonmagnetic seed layer includes a MgO layer and a metal layer having a body-centered cubic (bcc) structure. The nonmagnetic underlayer has a NaCl type structure of one selected from the group consisting of MgO, NiO, TiO, CrN, Ti carbides, and Ti nitrides. The magnetic layer includes an alloy selected from the group consisting of FePt, FePd, and CoPt having an L10 type ordered structure.
    Type: Application
    Filed: July 8, 2013
    Publication date: March 13, 2014
    Applicant: Fuji Electric Co., Ltd.
    Inventors: Yuki INABA, Takehito SHIMATSU
  • Publication number: 20140062241
    Abstract: A magnetic shear force transfer device for transferring shear forces across a non-magnetic gap includes a first magnetic structure comprising concentric circular tracks of magnetic sources magnetically printed into a first magnetizable material a second magnetic structure comprising concentric circular tracks of magnetic sources magnetically printed into a second magnetizable material. Each concentric circular track has an even number of magnetic sources where adjoining magnetic sources alternate in polarity. One or more tracks of the first magnetic structure are rotated relative to one or more tracks of the second magnetic structure such that a maximum torque condition coincides to one angular orientation between the first and second magnetic structures.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: Correlated Magnetics Research, LLC
    Inventor: Robert S. Evans
  • Publication number: 20140063647
    Abstract: In one embodiment, a magnetic head includes a sensor stack of thin films including a free layer; a hard bias structure comprising a first foundation layer, a second foundation layer formed on the first foundation layer and a hard bias layer formed above the second foundation layer, wherein portions of the first and second foundation layers positioned along a side wall of the sensor stack have a discrete island structure. Additional embodiments are also disclosed.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: HGST NETHERLANDS B.V
    Inventors: Norihiro Okawa, Koji Sakamoto, Koji Okazaki
  • Publication number: 20140042366
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 13, 2014
    Applicant: LUMINEX CORPORATION
    Inventors: Don J. CHANDLER, Jason Bedre
  • Publication number: 20140044992
    Abstract: A perpendicular magnetic recording medium 100 having a magnetic recording layer 122, wherein a particle diameter of crystal grains in layer 122 improves a SNR while a high coercive force is maintained. There also is at least a ground layer 118, a first magnetic recording layer 122a, and a second magnetic recording layer 122b in this order on a disk base 110. The first layer 122a and the second layer 122b are ferromagnetic layers, each having a granular structure in which a grain boundary part made of a non-magnetic substance is formed between crystal grains each grown in a columnar shape, and A<B when an average particle diameter of the crystal grains in the first magnetic recording layer 122a is taken as A nm and an average particle diameter of the crystal grains in the second magnetic recording layer 122b is taken as B nm.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 13, 2014
    Applicant: WD Media (Singapore) Pte. Ltd.
    Inventor: Takahiro ONOUE
  • Publication number: 20140037836
    Abstract: A method for producing a hard bias (HB) structure that stabilizes a free layer in an adjacent spin valve is disclosed. The HB structure includes a composite seed layer and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x laminate. (Co/Ni)x deposition involves low power and high Ar pressure to avoid damaging Co/Ni interfaces and thereby preserves PMA. A capping layer is formed on the HB layer to protect against etchants in subsequent processing. After initialization, HB magnetization direction is perpendicular to the sidewalls of the spin valve and generates an Mrt value that is greater than from an equivalent thickness of CoPt. A non-magnetic metal separation layer may be formed on the capping layer and spin valve to provide an electrical connection between top and bottom shields.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Zhang Kunliang, Li Min, Zhou Yuchen, Zheng Min
  • Patent number: 8638529
    Abstract: A method and system for providing a magnetic read transducer is described. The magnetic read transducer includes a bilayer magnetic seed layer, an antiferromagnetic (AFM) layer, and a read sensor. The bilayer magnetic seed layer includes a Ni1-xFex layer and a Ni1-yFey layer on the Ni1-xFex layer, where x is at least 0.3 and not more than 1 and where y is not more than 0.19. The AFM layer resides on the bilayer magnetic seed layer. The read sensor is on the AFM layer.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: January 28, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Qunwen Leng, Laurence L. Chen, Yimin Guo, Yuankai Zheng, Mahendra Pakala
  • Patent number: 8628868
    Abstract: A surface agent includes two end portions and a middle portion disposed between the end portions. The end portions include a terminal section and a midsection. The terminal section includes at least one surface active functional group. The midsection includes at least one perfluoroethyl ether unit. The middle portion includes at least one perfluorobutyl ether unit.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: January 14, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: John Martin Burns, Norbert A. Feliss, Xing-Cai Guo, Bruno Marchon, Robert Waltman
  • Patent number: 8619467
    Abstract: Multi-period structures exhibiting giant magnetoresistance (GMR) are described in which the exchange coupling across the active interfaces of the structure is ferromagnetic.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: December 31, 2013
    Assignee: Integrated Magnetoelectronics
    Inventors: E. James Torok, Richard Spitzer, David L. Fleming, Edward Wuori
  • Publication number: 20130342193
    Abstract: Disclosed herein are a sensor for a digitizer and a method of manufacturing the same. The sensor includes a magnetic layer having insulation; a first coil embedded in the magnetic layer; a second coil formed on one surface of the magnetic layer; and an insulating layer formed on one surface of the magnetic layer to cover the second coil. Thus, since the first coil and the second coil are formed on the magnetic layer formed of a magnetic material, a magnetic field is stably formed between coils and stability of signals transmitted and received between a coil and an input device is increased.
    Type: Application
    Filed: November 1, 2012
    Publication date: December 26, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Dong Sik Yoo, Hee Bum Lee, Ho Yun Cho, Yun Ki Hong, Kyoung Soo Chae
  • Patent number: 8608896
    Abstract: Methods for liquid adhesive lamination for precision adhesive control are provided. Precision liquid adhesive control can be obtained by first patterning liquid adhesive in a thin pre-coat layer on a substrate. A second adhesive layer can then be patterned on top of the pre-coat layer. When the second substrate is pressed onto the first substrate, the second substrate first comes into contact with the second adhesive layer. The adhesive can then be spread uniformly across the two substrates without forming voids. Alternatively, a single liquid adhesive layer can be formed in a three dimensional gradient pattern.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: December 17, 2013
    Assignee: Apple Inc.
    Inventors: Ralf Horstkemper, Casey J. Feinstein, Kuo-Hua Sung
  • Patent number: 8609263
    Abstract: Systems and methods for forming magnetic media with an underlayer are provided. One such method includes providing a non-magnetic substrate, forming a seed layer above the substrate, the seed layer including MgO, forming an underlayer on the seed layer, the underlayer including a material selected from the group consisting of Pd, Pt, W, Fe, V, Cu, and Ag, and forming a magnetic recording layer on the underlayer, the recording layer including FePt oxide.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 17, 2013
    Assignee: WD Media, LLC
    Inventors: Alexander Chernyshov, Hua Yuan, B. Ramamurthy Acharya, Antony Ajan