Magnetic Coating Patents (Class 427/128)
  • Patent number: 10541070
    Abstract: A method for forming a stabilized bed of magneto-caloric material is provided. The method includes aligning magneto-caloric particles within the casing while a magnetic field is applied to the magneto-caloric particles and then fixing positions of the magneto-caloric particles within the casing. A related stabilized bed of magneto-caloric material is also provided.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: January 21, 2020
    Assignees: Haier US Appliance Solutions, Inc., UT-Batelle, LLC
    Inventors: Michael Alexander Benedict, Ayyoub Mehdizadeh Momen
  • Patent number: 10529368
    Abstract: A magnetic tape includes: a non-magnetic support; a magnetic layer on one surface side of the non-magnetic support; and a back coating layer on the other surface side. The center line average surface roughness Ra measured regarding the surface of the magnetic layer is 1.0 nm to 1.8 nm. The magnetic layer includes ferromagnetic hexagonal ferrite powder and non-magnetic powder. The tilt cos ? of the ferromagnetic hexagonal ferrite powder with respect to a surface of the magnetic layer acquired by cross section observation performed using a scanning transmission electron microscope is 0.85 to 1.00. Further, the logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the back coating layer is less than or equal to 0.060.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: January 7, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10522179
    Abstract: A magnetic tape is provided in which the total thickness of the non-magnetic layer and the magnetic layer is equal to or smaller than 0.60 ?m. The magnetic layer includes ferromagnetic hexagonal ferrite powder and an abrasive. The percentage of a plan view maximum area of the abrasive confirmed in a region having a size of 4.3 ?m×6.3 ?m of the surface of the magnetic layer by plane observation using a scanning electron microscope, with respect to the total area of the region, is equal to or greater than 0.02% and less than 0.06%. Further, the tilt cos ? of the ferromagnetic hexagonal ferrite powder with respect to a surface of the magnetic layer acquired by cross section observation performed by using a scanning transmission electron microscope is 0.85 to 1.00.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 31, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10522171
    Abstract: A magnetic tape includes a non-magnetic support; a non-magnetic layer including non-magnetic powder and a binder on the non-magnetic support; and a magnetic layer including ferromagnetic powder and a binder on the non-magnetic layer. The total thickness of the non-magnetic layer and the magnetic layer is less than or equal to 0.60 ?m. The magnetic layer includes a timing-based servo pattern, and the logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is less than or equal to 0.050.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: December 31, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Tetsuya Kaneko, Eiki Ozawa
  • Patent number: 10515660
    Abstract: A magnetic tape is provided in which the center line average surface roughness Ra measured regarding the surface of the magnetic layer is less than or equal to 1.8 nm, and the logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is less than or equal to 0.050. A back coating layer includes one or more components selected from a fatty acid and a fatty acid amide. In addition, the C—H derived C concentration calculated from the C—H peak area ratio of C1s spectra obtained by X-ray photoelectron spectroscopic analysis performed regarding the surface of the back coating layer at a photoelectron take-off angle of 10 degrees is greater than or equal to 35 atom %.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 24, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Masahito Oyanagi, Norihito Kasada
  • Patent number: 10510369
    Abstract: A magnetic tape includes a non-magnetic support; a non-magnetic layer including non-magnetic powder and a binder on the non-magnetic support; and a magnetic layer including ferromagnetic powder and a binder on the non-magnetic layer. The total thickness of the non-magnetic layer and the magnetic layer is less than or equal to 0.60 ?m. The magnetic layer includes a timing-based servo pattern, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, and the magnetic layer includes an abrasive. In addition, the tilt cos ? of the ferromagnetic hexagonal ferrite powder with respect to the surface of the magnetic layer acquired by cross section observation performed using a scanning transmission electron microscope is 0.85 to 1.00.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 17, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Tetsuya Kaneko, Norihito Kasada, Eiki Ozawa
  • Patent number: 10504546
    Abstract: A magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binder on the non-magnetic support. The total thickness of the magnetic tape is less than or equal to 5.30 ?m. The magnetic layer includes a timing-based servo pattern. The center line average surface roughness Ra measured regarding the surface of the magnetic layer is less than or equal to 1.8 nm. The ferromagnetic powder is ferromagnetic hexagonal ferrite powder, and the magnetic layer includes an abrasive. Further, the tilt cos ? of the ferromagnetic hexagonal ferrite powder with respect to the surface of the magnetic layer acquired by cross section observation performed using a scanning transmission electron microscope is 0.85 to 1.00.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: December 10, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Tetsuya Kaneko, Norihito Kasada, Eiki Ozawa
  • Patent number: 10403319
    Abstract: The magnetic tape includes a nonmagnetic layer containing nonmagnetic powder and binder on a nonmagnetic support, and a magnetic layer containing ferromagnetic powder, abrasive, and binder on the nonmagnetic layer, wherein a thickness of the nonmagnetic layer is less than or equal to 0.50 ?m, a coefficient of friction as measured on a base portion of a surface of the magnetic layer is less than or equal to 0.35, and ?SFD in a longitudinal direction of the magnetic tape as calculated with Equation 1, ?SFD=SFD25° C.?SFD?190° C., is greater than or equal to 0.50, wherein, in Equation 1, SFD25° C. denotes a SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of 25° C., and SFD?190° C. denotes a SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of ?190° C.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 3, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10373632
    Abstract: Provided herein is a magnetic write head including a near field transducer and a magnetic recording media including a media lubricant. The media lubricant includes a first portion and a second portion. The second portion of the media lubricant is evaporated in response to heat emitted from the near field transducer. The second portion of the media lubricant that is evaporated removes a contaminant over the near field transducer.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 6, 2019
    Assignee: Seagate Technology LLC
    Inventors: John L. Brand, James D. Kiely
  • Patent number: 10358716
    Abstract: A hard magnetic material includes ?? Fe16N2. In some examples, the hard magnetic material may be formed by a technique utilizing chemical vapor deposition or liquid phase epitaxy.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: July 23, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Patent number: 10347281
    Abstract: Methods are disclosed for increasing areal density in Heat Assisted Magnetic Recording (HAMR) data storage systems by controlling the media layer grain size, grain size distribution, and pitch via templating techniques that are compatible with the high temperature HAMR media deposition. Embodiments include using current HAMR media seed layers as well as additionally introduced interlayers for the templating process. Topographic as well as chemical templating methods are disclosed that may employ nanoimprint technology or nanoparticle self-assembly among other patterning techniques.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 9, 2019
    Assignee: Western Digital Technologies, Inc.
    Inventors: Hitesh Arora, Bruce Gurney, Olav Hellwig, Jodi Mari Iwata, Tiffany Suzanne Santos, Dieter K. Weller, Frank Zhu
  • Patent number: 10319905
    Abstract: A method for performing post-etch annealing of a workpiece in an annealing system is described. In particular, the method includes disposing one or more workpieces in an annealing system, each of the one or more workpieces having a multilayer stack of thin films that has been patterned using an etching process sequence to form an electronic device characterized by a cell critical dimension (CD), wherein the multilayer stack of thin films includes at least one patterned layer containing magnetic material. Thereafter, the patterned layer containing magnetic material on the one or more workpieces is annealed in the annealing system via an anneal process condition, wherein the anneal process condition is selected to adjust a property of the patterned layer containing magnetic material.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: June 11, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: David F. Hurley, Doni Parnell, Shigeru Tahara, Toru Ishii
  • Patent number: 10269382
    Abstract: A stack includes a heatsink layer, a magnetic recording layer disposed over the heatsink layer, and a Si-based overcoat layer disposed over the magnetic recording layer. The Si-based overcoat layer is substantially devoid of carbon.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 23, 2019
    Assignee: Seagate Technology LLC
    Inventors: Florin Zavaliche, Timothy J. Klemmer, Yukiko Kubota, Paul M. Jones, Fujian Huang
  • Patent number: 10245708
    Abstract: A method of making an abrasive article comprises urging a malleable thermosetting melt-flowable composition through openings extending through a porous abrasive member to form an abrasive article precursor; which is heated to form the abrasive article. Multiple abrasive articles may be stacked prior to heating. Methods can be used to fabricate abrasive articles such as grinding wheels and cut-off wheels.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 2, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Jacob S. Beveridge, Steven J. Keipert
  • Patent number: 10247540
    Abstract: A method of determining a thickness of a submicron carbon of a carbon-coated metal base plate that includes conducting Raman spectroscopy at a target location of the carbon-coated metal base plate to obtain a Raman shift spectrum for the target location. The Raman shift spectrum obtained at the target location is then converted into a calculated thickness of the submicron carbon coating at the target location. The conversion of the Raman shift spectrum into the calculated thickness of the submicron carbon coating at the target location may involve referencing a linear correlation that has been established over the defined wavenumber range between (1) an integrated intensity of a Raman carbon signal obtained from each of a series of reference plates that includes a submicron carbon coating having a verified thickness and (2) the verified thicknesses of the submicron carbon coatings of the series of reference plates.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 2, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ratandeep S. Kukreja, Misle M. Tessema, Daad B. Haddad
  • Patent number: 10101496
    Abstract: A system and method of injection well identification using tracer particles is disclosed. A collector-reader for analyzing magnetic particles in a fluid that is moving with respect to the collector-reader includes an array of magnets whose magnetization direction is varied so as to create regions of high magnetic field gradient in the fluid, a stopper configured to concentrate spatially the particles attracted to the array, and a reader including a source configured to excite the particles concentrated by the stopper and a detector configured to capture a particle excitation signature emitted by the magnetic particles. A method for observing a subterranean reservoir penetrated by a production well and two or more injection wells is also disclosed.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 16, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan J. Bernstein, Julio C. Guerrero, Mitchell Hansberry
  • Patent number: 9987392
    Abstract: A kit for preparing a paste-like bone cement, comprising a paste A and a paste B, wherein paste A contains (a1) at least one monomer for radical polymerization, (a2) at least one polymer that is soluble in (a1); and (a3)at least one polymerization initiator; and paste B contains (b1) at least one monomer for radical polymerization; (b2) at least one polymer that is soluble in (b1); and (b3) at least one polymerization accelerator; wherein at least one of the pastes A and B contains as component (a4) and/or (b4) at least one filling agent that is poorly soluble or insoluble in (a1) and/or (b1), respectively, and wherein the filling agent is a particulate inorganic filling agent possessing a BET surface of at least 40 m2/g.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 5, 2018
    Assignee: HERAEUS MEDICAL GMBH
    Inventor: Sebastian Vogt
  • Patent number: 9940963
    Abstract: A method for manufacturing a magnetic media for magnetic data recording that improves smoothness for reduced magnetic spacing, and also improves mechanical integration to improve reliability and lifespan of the data recording system. A magnetic material such as a magnetic recording layer is deposited over underlying layers that include a substrate. A first etching is performed that employs a Xe plasma. A second etching is then performed that employs an Ar plasma. The two step etching process advantageously improves smoothness of the surface of the magnetic layer which allows for a thinner overcoat for reduced magnetic spacing. The two step etching process also results in less head disk crashes, resulting in improved reliability.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 10, 2018
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Kai Tang
  • Patent number: 9865293
    Abstract: When waviness having a wavelength component of 10 to 500 ?m in the circumferential direction of a main surface of a disk-shaped substrate is acquired and slopes are acquired from the waviness at an interval of 50 to 100 ?m, the substrate being used in a magnetic disk on which recording or reading is performed using a DFH head, an average value of absolute values of the slopes is 0.45×10?4 or less. This magnetic-disk substrate is used in a magnetic disk and a magnetic-disk drive device.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 9, 2018
    Assignee: HOYA CORPORATION
    Inventors: Takashi Maeda, Takumi Kuhara
  • Patent number: 9831022
    Abstract: An embodiment of the present invention relates to a magnetic sheet having both an electromagnetic field shielding function and a heat dissipating function, and to a wirelessly charged magnetic member using same.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: November 28, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: So Yeon Kim, Seok Bae, Soon Young Hyun, Jai Hoon Yeom, Sang Won Lee, Hee Jung Lee, Don Chul Choi
  • Patent number: 9822399
    Abstract: The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 21, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Patent number: 9779772
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on a nonmagnetic support, wherein a timing based servo pattern is present on the magnetic layer, the centerline average surface roughness Ra that is measured on the surface of the magnetic layer is less than or equal to 1.8 nm, and the coefficient of friction that is measured on the base portion of the surface of the magnetic layer is less than or equal to 0.35.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 3, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Tetsuya Kaneko, Eiki Ozawa
  • Patent number: 9724726
    Abstract: A high-quality coating film with a uniform thickness is produced without crush of coating particles even in a case where a wet coating material that does not require a step of drying the coating material is used, while maintaining high productivity. By providing a surface layer with an optimized hardness on the surface of a roll used for supply of a mixture coating material, a high-quality coating film with a uniform thickness can be produced, even in a case where a wet coating material that does not require a step of drying the coating material is used, while maintaining high productivity.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 8, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masashi Hamabe, Takao Kuromiya, Masateru Mikami
  • Patent number: 9693962
    Abstract: A dry-coated tablet 1 comprises an inner core 2 which contains an active component and an outer layer 3 which contains powdery solid components and coats the inner core 2. Openings 8c and 9c are formed in circular surfaces 2a and 2b respectively of the inner core 2, wherein each of the openings is larger than the average particle size of a component the average particle size of which is the smallest of the powdery solid components contained in the outer layer 3, and the inner surface 3a of the outer layer 3 penetrates in the openings 8c and 9c.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: July 4, 2017
    Assignee: Takeda Pharmaceutical Limited
    Inventor: Tetsuya Kawano
  • Patent number: 9697936
    Abstract: A material for a magnetic resonance installation is provided, wherein the material includes a support material and a magnetic doping material which is admixed in a specific proportion. The doping material exhibits an anisotropic susceptibility. In respect of the anisotropic susceptibility, the doping material exhibits a mean orientation along a predefined direction. An essentially homogeneous intermixture of the support material and the doping material is present within a volume of the material which is smaller than 1 mm3.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: July 4, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Stephan Biber
  • Patent number: 9661956
    Abstract: A bathing vessel that includes a multi-layer structure of a first polymer layer and a second, adjacent polymer layer. Prior to formation of the second polymer layer on the first polymer layer, a surface of the first polymer layer is abraded and a surface wetting property of the surface is modified to promote bonding between the layers.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 30, 2017
    Assignee: Delta Faucet Company
    Inventor: Michael Glenn Geels
  • Patent number: 9627114
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a magnetic substrate at least partially covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The apparatus includes a plasmonic nanoparticle having a magnetic element at least partially covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The apparatus includes a dielectric-filled gap between the first plasmonic outer surface and the second outer surface. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to support one or more mutually coupled plasmonic excitations.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 18, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9627115
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a plasmonic nanoparticle dimer. The dimer includes a first plasmonic nanoparticle having a first magnetic element covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The dimer includes a second plasmonic nanoparticle having a second magnetic element covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The dimer includes a separation control structure configured to establish a dielectric-filled gap between the first plasmonic outer surface and the second plasmonic outer surface. A magnetic attraction between the first magnetic element and the second magnetic element binds the first plasmonic nanoparticle and the second plasmonic nanoparticle together, separated by the dielectric-filled gap established by the separation control structure.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: April 18, 2017
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9601146
    Abstract: An aspect of the present invention relates to a magnetic tape comprising a magnetic layer comprising ferromagnetic powder and binder on a nonmagnetic support, wherein ?SFD in a longitudinal direction of the magnetic tape as calculated with Equation 1 ranges from 0.35 to 1.50: ?SFD=SFD25° C.?SFD?190° C.??Equation 1 wherein, in Equation 1, SFD25° C. denotes a switching field distribution SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of 25° C., and SFD?190° C. denotes a switching field distribution SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of ?190° C.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 21, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Masahito Oyanagi, Toshio Tada
  • Patent number: 9488763
    Abstract: The polycyclic organic compounds which are substantially transparent for an electromagnetic radiation in the visible spectral range, an anisotropic optical film comprising at least one polycyclic organic compound and a method of producing thereof are disclosed. The polycyclic organic compounds have a general formula (I) wherein A and B are acid groups; n is the number of phenyl rings in the range from 3 to 10; m is 0, 1, 2 or 3; l is 1, 2, or 3; p is 1, 2, 3, 4, 5 or 6; C is a counterion from a list comprising H+, NH+4, Na+, K+, Li+, Cs+, Ca2+, Mg2+, Sr2+, La3+, Zn2+, Zr4+, Ce3+, Y3+, Yb3+, Gd3+, and any combination thereof; k is the number of counterions necessary for compensation of the negative electric charge equal to (?p).
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: November 8, 2016
    Assignee: Crysoptix K.K.
    Inventors: Valery S. Kuzmin, Alexey Nokel
  • Patent number: 9379599
    Abstract: The tubular linear motor includes an armature having a coil and a magnetic exciter having a permanent magnet provided to face the coil. The armature has a yoke that blocks a magnetic flux, teeth that partition a slot for storing the coil, and the coil that is arranged to extend over the teeth from an inner side of the slot toward the magnetic exciter while a mechanical gap is reserved between the magnetic exciter and the coil. The magnetic exciter has a plurality of permanent magnets by interposing a soft magnetic body.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 28, 2016
    Assignee: SANYO DENKI CO., LTD.
    Inventors: Yuqi Tang, Yasushi Misawa
  • Patent number: 9372127
    Abstract: A printing system is used printing an image on a web of media that is photoelastic and at least partially transparent. A web advance system advances the web of media supplied from an input roll in an in-track direction along a web transport path. At least one printing station is disposed along the web transport path for printing on the web of media. One or more photoelastic measurement devices disposed along the web transport path for characterizing stress in the web of media, and a controller that controls at least one aspect of the printing system responsive to signals received from the one or more photoelastic measurement devices.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: June 21, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: James A. Katerberg, Gary Alan Kneezel
  • Patent number: 9275670
    Abstract: A method for producing a magnetic recording medium in one embodiment includes forming a magnetic material layer above a substrate, transferring an uneven pattern to the magnetic material layer to form concave portions and convex portions, the convex portions being magnetic regions, depositing a nonmagnetic material above the concave portions to form nonmagnetic regions, forming an oxide layer and/or hydroxide layer above the magnetic regions of the recording layer, and forming an organic material layer which exhibits a corrosion-inhibiting characteristic with respect to cobalt or cobalt alloy above the oxide layer and/or hydroxide layer.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 1, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Qing Dai, Bruno Marchon, Katsumi Mabuchi, Mina Amo
  • Patent number: 9274077
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 1, 2016
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 9058832
    Abstract: A method of forming a bit patterned media on a magnetic media disk may include forming topographic features on a substrate and defining trenches therebetween. The method also may include forming non-magnetic material on the topographic features to define non-magnetic portions. In addition, magnetic material may be formed on the non-magnetic portions to define magnetic portions for a recording layer, such that the magnetic portions have a magnetic width that is greater than a non-magnetic width of the non-magnetic portions.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 16, 2015
    Assignee: HGST NETHERLANDS B.V.
    Inventors: Thomas Robert Albrecht, Olav Hellwig
  • Publication number: 20150137904
    Abstract: Provided herein is a microwave device using a magnetic material nano wire array and a manufacturing method thereof, the device including a template having a nano hole array filled with a metal magnetic material.
    Type: Application
    Filed: October 20, 2014
    Publication date: May 21, 2015
    Inventors: Yark Yeon KIM, Han Young YU, Yong Sun YOON, Won Ick JANG
  • Patent number: 9023422
    Abstract: A method of deposition of magnetic nanocomposites. The method comprises providing an electron beam evaporation system having at least two independent hearths with independently controllable electron beams, each to melt and evaporate materials in the respective hearth, each hearth having a respective shutter for selectively controlling the deposition of the respective material in the respective hearth, placing a ferromagnetic material in a first hearth, placing an oxide in a second hearth which, when evaporated and deposited, will form an insulator, maintaining an oxygen environment in the electron beam evaporation system while evaporating the materials in the first hearth and second hearth, and depositing the magnetic nanocomposite on at least one wafer in the electron beam evaporation system. Various aspects of the method are disclosed.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Uppili Sridhar, Joseph Paul Ellul
  • Patent number: 9023421
    Abstract: To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Asahi Glass Company, Limited
    Inventor: Tetsuya Nakashima
  • Patent number: 9003651
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar Murali Subramanian
  • Patent number: 9005699
    Abstract: A method for manufacturing a magnetic recording medium includes the steps of (a) forming a perpendicular magnetic recording layer and (b) applying an ion beam to regions between tracks of the perpendicular magnetic recording layer so as to form separation regions for magnetically separating the tracks from each other. In the step (a), a continuous film layer composed of a multilayer film is formed, and CoB layers and Pd layers are laminated in the multilayer film. In the step (b), the CoB layers and the Pd layers are melted by the ion beam so as to form an alloy of metals contained in the CoB layers and the Pd layers to thereby form the separation regions.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 14, 2015
    Assignee: WD Media, LLC
    Inventors: Yoshiaki Sonobe, Teiichiro Umezawa, Koichi Wago
  • Patent number: 8993071
    Abstract: Embodiments of the present invention provide a manufacturing method that can form a track guide separation area of a magnetic disk substrate constituting a patterned medium represented by a discrete track medium or bit patterned medium suitable for high recording density, uniformly on the whole surface of the magnetic disk substrate, and accurately according to the mask. According to one embodiment, a soft magnetic film, an under coating film, and a magnetic film are formed on a substrate. A mask having an arbitrary pattern shape provided for forming the track guide separation area in the magnetic film is formed on the magnetic film, and the track guide separation area is formed by irradiating ions and electrons onto the surface of the magnetic film and applying an intermittent voltage to the substrate, thereby non-magnetizing the area irradiated.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 31, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Hiroshi Inaba, Hiroshi Kanai, Nobuto Yasui, Toshinori Ono
  • Patent number: 8993133
    Abstract: A perpendicular magnetic recording (PMR) media including a non-magnetic or superparamagnetic grain isolation magnetic anisotropy layer (GIMAL) to provide a template for initially well-isolated small grain microstructure as well as improvement of Ku in core grains of a magnetic recording layer. The GIMAL composition may be adjusted to have lattice parameters similar to a bottom magnetic recording layer and to provide a buffer for reducing interface strains caused by lattice mismatch between the bottom magnetic recording layer and an underlying layer.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 31, 2015
    Assignee: WD Media, LLC
    Inventors: Shaoping Li, B. Ramamurthy Acharya
  • Patent number: 8978240
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Patent number: 8968874
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 8956690
    Abstract: A laminated body which forms a resin mold by compression molding using a master mold, the laminated body having: a pair of mutually facing base materials, a layer of a liquid or gel-like curable resin material sandwiched between the pair of base materials, and one or more flow suppression bodies, which are composed of a cured product of the curable resin material and are sandwiched between the pair of base materials, wherein the layer of the curable resin material is sealed by the pair of base materials and the flow suppression bodies. Also, a method for manufacturing a resin mold using the laminated body.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 17, 2015
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Uchida, Tomokazu Umezawa, Masato Fukushima, Shunsuke Takeyama, Takanori Sakuragi
  • Patent number: 8932667
    Abstract: A method including forming a multilayer structure. The multilayer structure includes a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The multilayer structure also includes an intermediate layer comprising the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The second component is different than the first component. The multilayer structure further includes a cap layer comprising the first component. The method further includes heating the multilayer structure to an annealing temperature to cause a phase transformation of the intermediate layer. Also a hard magnet including a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The hard magnet also includes a cap layer comprising the first component. The hard magnet further includes an intermediate layer between the seed layer and the cap layer.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 13, 2015
    Assignee: Seagate Technology LLC
    Inventors: Jiaoming Qiu, Younghua Chen, Xilin Peng, Shaun McKinlay, Eric W. Singleton, Brian W. Karr
  • Publication number: 20140356525
    Abstract: An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder. The method of manufacturing hexagonal ferrite magnetic powder comprises wet processing hexagonal ferrite magnetic particles obtained following acid treatment in a water-based solvent to prepare an aqueous magnetic liquid satisfying relation (1) relative to an isoelectric point of the hexagonal ferrite magnetic particles: pH0?pH*?2.5, wherein, pH0 denotes the isoelectric point of the hexagonal ferrite magnetic particles and pH* denotes a pH of the aqueous magnetic liquid, which is a value of equal to or greater than 2.0, adding a surface-modifying agent comprising an alkyl group and a functional group that becomes an anionic group in the aqueous magnetic liquid to the aqueous magnetic liquid to subject the hexagonal ferrite magnetic particles to a surface-modifying treatment, and removing the water-based solvent following the surface-modifying treatment to obtain hexagonal ferrite magnetic particles.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Masahiko MORI, Hiroyuki SUZUKI
  • Patent number: 8859033
    Abstract: A production method of a magnetic recording medium of the present invention includes: a step of forming a magnetic layer (2) on a non-magnetic substrate (1); a step of forming a dissoluble layer (3) on the magnetic layer (2); a step of forming a mask layer (4) on the dissoluble layer (3); a step of patterning the dissoluble layer (3) and the mask layer (4) to a shape corresponding to a magnetic recording pattern (2a); a step of performing a partial modification or removal of the magnetic layer (2) by use of the patterned mask layer (4); and a step of dissolving the dissoluble layer (3) with a chemical agent so as to remove the dissoluble layer (3) together with the mask layer (4) formed thereon from the top of the magnetic layer (2), wherein the magnetic recording medium has the magnetically-separated magnetic recording pattern (2a).
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 14, 2014
    Assignee: Showa Denko K.K.
    Inventors: Manabu Ueda, Yuji Murakami, Akira Sakawaki, Zhipeng Wang
  • Patent number: 8852677
    Abstract: A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8846137
    Abstract: On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 30, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Koichi Shimokawa, Katsushi Hamakubo, Kae Itoh