Centrifugal Force Utilized Patents (Class 427/240)
  • Patent number: 10784125
    Abstract: Disclosed is a substrate treating apparatus including a first liquid treatment chamber that performs a liquid treatment to a substrate, a second liquid treatment chamber that is disposed below the first liquid treatment chamber and performs a liquid treatment to a substrate, a first feed channel that supplies gases to the first liquid treatment chamber, and a second feed channel that supplies gases to the second liquid treatment chamber. The first feed channel includes a first vertical member that extends substantially vertically. The second feed channel includes a second vertical member that extends substantially vertically. The first vertical member and the second vertical member both extend to a position lower in level than the second liquid treatment chamber.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: September 22, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Yukihiko Inagaki
  • Patent number: 10768527
    Abstract: A method includes providing a photoresist solution that includes a first solvent having a first volume and a second solvent having a second volume, where the first solvent is different from the second solvent and where the first volume is less than the second volume; dispersing the photoresist solution over a substrate to form a film, where the dispersing evaporates a portion of the first solvent and a portion of the second solvent such that a remaining portion of the first solvent is greater than a remaining portion of the second solvent; baking the film; after baking the film, exposing the film to form an exposed film; and developing the exposed film.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chung Su, Kuan-Hsin Lo, Yahru Cheng, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 10766717
    Abstract: An apparatus for conveying dishware through a cleaning cycle. The apparatus includes a magnetic grasping element to grasp dishware having a ferromagnetic component. The magnetic grasping element transitions between at least two states to selectively engage and disengage the dishware. A corresponding system and method are also described herein.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 8, 2020
    Assignee: Dishcraft Robotics, Inc.
    Inventors: Kenneth McAfee Peters, Paul Michael Birkmeyer, Kevin Yuan Ma, Jacob Conor Dooris, Abigail Elizabeth Soong, Kent Michael Anderson
  • Patent number: 10755916
    Abstract: A substrate processing method for processing a surface of a substrate includes: a first solvent supply step (a) of supplying IPA to a surface of a substrate while rotating the substrate to treat the surface; a modification treatment liquid supply step (b) of supplying a silylating solution after the first solvent supply step to form a liquid film; and a step (c) of heating the substrate in the first solvent supply step and the modification treatment liquid supply step. The step (c) is configured such that an amount of heat per unit time to be applied to the substrate in the modification treatment liquid supply step is larger than an amount of heat per unit time applied to the substrate in the first solvent supply step.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 25, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Hiroshi Abe, Manabu Okutani, Takashi Ota
  • Patent number: 10752805
    Abstract: Provided is a composition for forming a film for semiconductor devices, including: a compound (A) including a Si—O bond and a cationic functional group containing at least one of a primary nitrogen atom or a secondary nitrogen atom; a crosslinking agent (B) which includes three or more —C(?O)OX groups (X is a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms) in the molecule, in which from one to six of three or more —C(?O)OX groups are —C(?O)OH groups, and which has a weight average molecular weight of from 200 to 600; and a polar solvent (D).
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 25, 2020
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Yasuhisa Kayaba, Hirofumi Tanaka, Koji Inoue
  • Patent number: 10755951
    Abstract: In a substrate processing apparatus, an outer edge portion of a substrate in a horizontal state is supported from below by an annular substrate supporting part, and a lower surface facing part having a facing surface facing a lower surface of the substrate is provided inside the substrate supporting part. A gas ejection nozzle for ejecting heated gas toward the lower surface is provided in the lower surface facing part, and the substrate is heated by the heated gas when an upper surface of the rotating substrate is processed with a processing liquid ejected from an upper nozzle. Further, a lower nozzle is provided in the lower surface facing part, to thereby perform a processing on the lower surface with a processing liquid. Since the gas ejection nozzle protrudes from the facing surface, a flow of the processing liquid into the gas ejection nozzle can be suppressed during the processing.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: August 25, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kenji Izumoto, Takemitsu Miura, Kenji Kobayashi, Kazuhide Saito, Akihisa Iwasaki
  • Patent number: 10746635
    Abstract: A method for inspecting a process solution is provided. In this method, a process solution is disposed on a surface of a substrate. A liquid of the process solution is removed to form an inspection sample by a spinning method. The surface of the substrate of the inspection sample is inspected by the surface inspection device to identify whether a residue of the process solution is left on the surface of the substrate after removing the liquid of the process solution. Further, an apparatus for inspecting a process solution and a sample preparation apparatus in inspection are also provided herein.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzu-Sou Chuang, Chi-Wen Kuo
  • Patent number: 10747146
    Abstract: A developer container is capable of supplying a liquid developer to a portion, of a surface of a cleaning roller, between a cleaning position X and a contact position Y with respect to a rotational direction of the cleaning roller. A free end of a cleaning blade is positioned in a range of 65° or more and less than 95° as a positive angle of the rotational direction of the cleaning roller when a line passing through a center of the cleaning roller and an upper end portion of the cleaning roller with respect to a direction of gravitation is at 0° (reference line G). In this case, the cleaning blade is disposed so that an angle ? between a line F perpendicular to a line E connecting the center of the cleaning roller and the free end of the cleaning blade, and the cleaning blade is in a range of 35° or more and less than 60° .
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: August 18, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Teppei Nagata, Takehiro Kojima, Ryota Fujioka, Shota Takami
  • Patent number: 10705357
    Abstract: A display substrate including a base substrate and an optical functional layer provided on the base substrate. The optical functional layer includes a black matrix providing a plurality of first shading strips and a plurality of second shading strips. The plurality of first shading strips intersect with the plurality of second shading strips so as to divide the display substrate into a plurality of pixel units. A thickness of the first shading strips is different from that of the second shading strips.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 7, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHONGQING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Xianfu Feng, Zhijun Xu, Yajun Wang, Zujiang Qin, Qiuhang Peng
  • Patent number: 10698315
    Abstract: Disclosed is a substrate treating method including a solvent supplying step of supplying a solvent to a center part of a substrate while increasing a rotation speed of the substrate. In the solvent supplying step, the solvent is successively supplied to the substrate until the solvent reaches a periphery edge of the substrate. With such a substrate treating method, the solvent is able to cover a substrate surface entirely with effective suppression of particles. In other words, a process of supplying the solvent to the substrate is performable with effectively improved quality.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: June 30, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Chikara Sagae, Masanori Imamura
  • Patent number: 10689297
    Abstract: The present invention relates to new multiferroic materials. More particularly, the present invention relates to new multiferroic single phase ceramic materials as well as to thin films formed from these materials, methods of preparing these materials and their use as multiferroic materials in electronic components and devices.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 23, 2020
    Assignee: THE UNIVERSITY OF LIVERPOOL
    Inventors: Matthew J. Rosseinsky, Pranab Mandal, Jonathan Alaria, John Claridge, Michael Pitcher
  • Patent number: 10684548
    Abstract: In a developing method, a developing nozzle starts discharge of developer to a position set in advance on a substrate, spinning about the center thereof, away from the center. This causes a flow of the developer at the center having a small centrifugal force immediately after the discharge is started. Accordingly, a dissolution product of a resist can be ejected outside the substrate more efficiently than the case when the discharge of the developer to the center is started. Moreover, this achieves distributed arrival positions of the developer directly discharged from the developing nozzle immediately after the discharge is started. Consequently, thin resist patterns especially at the center of the substrate are eliminated to obtain suppression in treatment variation.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: June 16, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Yuji Tanaka, Tadashi Miyagi, Masahiko Harumoto, Koji Kaneyama
  • Patent number: 10675608
    Abstract: Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: June 9, 2020
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Mohamed Eddaoudi, Osama Shekhah
  • Patent number: 10665483
    Abstract: An apparatus for treating a substrate includes a chamber including a space in which a substrate is treated, a support member disposed in the chamber and supporting the substrate, and a heating member for heating the substrate. The space is divided into an upper space and a lower space by the support member. The support member includes a support plate receiving the substrate, a base supporting the support plate, exposing a bottom surface of the support plate and including a cut region formed in an edge portion of the base, and an adjustment block held in the cut region and coupled to the base. The cut region fluidly connects the upper space to the lower space. The adjustment block divides the cut region into a plurality of vents.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 26, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gi-Nam Park, Bokyung Jung, Leekwon Gil, Jungwoo Seo, Dongseok Baek, Nam Hoon Lee, Jonghyun Lee
  • Patent number: 10656525
    Abstract: A photoresist baking apparatus is provided. The photoresist baking apparatus comprises a baking chamber including an inlet, an outlet and a cover sealed connected thereon. The cover is applied to guide the hot air entering the baking chamber and includes a heating device for maintaining the temperature of the hot air. The heating device is disposed on the cover for heating the hot air flowing to the cover and maintaining the temperature of the hot air to be consistent when the hot air flowing to the outlet, thereby to prevent from the photoresist volatile condensing and dripping due to decreased temperature after the photoresist volatile contacting the cover and affecting the product quality, and to guarantee the temperature homogeneity inside the baking chamber.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: May 19, 2020
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Chung-jen Chen, Ming-wen Lin, Yan-ze Li, Chilin Wu, Zhikun Wu
  • Patent number: 10589305
    Abstract: In a coating apparatus, a nozzle moving mechanism selectively grips any one of a plurality of coating solution nozzles, moves the gripped coating solution nozzle and a solvent nozzle together, and moves at least the solvent nozzle to a solvent suction unit. The moved solvent nozzle is caused to dispense a solvent to the solvent suction unit, and the gripped coating solution nozzle is caused to suck the solvent retained in the same solvent suction unit to which the solvent has been dispensed. Thus, since dispensation and suction of the solvent are done in the same solvent suction unit, the quantity of the solvent used can be held down. Further, a supply line for supplying the solvent does not need to be provided for the suction unit. The construction of the suction unit can therefore be made simple, and its cost can be held down.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 17, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Yasuo Takahashi
  • Patent number: 10563014
    Abstract: This disclosure relates to dielectric film forming composition containing at least one fully imidized polyimide polymer; at least one inorganic filler; at least one metal-containing (meth)acrylate compound; and at least one catalyst. The dielectric film formed by such a composition can have a relatively low coefficient of thermal expansion (CTE) and a relatively high optical transparency.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: February 18, 2020
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: Sanjay Malik, William A. Reinerth, Binod B. De
  • Patent number: 10529621
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10518199
    Abstract: A treatment solution supply apparatus for supplying a treatment solution to a treatment solution discharge unit that discharges the treatment solution to a treatment body, includes: a temporary storage apparatus that temporarily stores the treatment solution supplied from a treatment solution supply source that stores the treatment solution; a filter that removes a foreign substance in the treatment solution from the temporary storage apparatus; and a pump that sends the treatment solution from which the foreign substance has been removed by the filter to the treatment solution discharge unit, wherein the temporary storage apparatus has a pressure-feeding function of pressure-feeding the treatment solution stored in the temporary storage apparatus.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: December 31, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Sasa, Daisuke Ishimaru, Katsuya Hashimoto, Hideo Shite, Shinya Wakamizu, Kazuhiko Kimura
  • Patent number: 10488753
    Abstract: A nanoimprint lithography method includes contacting a composite polymerizable coating formed from a pretreatment composition and an imprint resist with a nanoimprint lithography template defining recesses. The composite polymerizable coating is polymerized to yield a composite polymeric layer defining a pre-etch plurality of protrusions corresponding to the recesses of the nanoimprint lithography template. The nanoimprint lithography template is separated from the composite polymeric layer. At least one of the pre-etch plurality of protrusions corresponds to a boundary between two of the discrete portions of the imprint resist, and the pre-etch plurality of protrusions have a variation in pre-etch height of ±10% of a pre-etch average height. The pre-etch plurality of protrusions is etched to yield a post-etch plurality of protrusions having a variation in post-etch height of ±10% of a post-etch average height, and the pre-etch average height exceeds the post-etch average height.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 26, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Timothy Stachowiak, Weijun Liu, Fen Wan, Gary Doyle, Niyaz Khusnatdinov
  • Patent number: 10483127
    Abstract: A plasma processing system and methods for high precision etching of microelectronic substrates. The system may include a combination of microwave and radio frequency (RF) power sources that may generate plasma conditions to remove monolayer(s). The system may generation a first plasma to form a thin adsorption layer on the surface of the microelectronic substrate. The adsorbed layer may be removed when the system transition to a second plasma. The differences between the first and second plasma may be include the ion energy proximate to the substrate. For example, the first plasma may have an ion energy of less than 20 eV and the second plasma may have an ion energy greater than 20 eV.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: November 19, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Mingmei Wang, Alok Ranjan, Peter L. G. Ventzek
  • Patent number: 10431446
    Abstract: A wafer cleaner and a method therefor that efficiently cleans a wafer with a little amount of a cleaning liquid and efficiently performs a heating wet cleaning processing. The present invention includes a stage where a wafer is placed, a rotary driving unit that rotates the stage in a circumferential direction, a liquid discharge nozzle disposed facing the wafer placed on the stage and supplies a cleaning liquid on the wafer placed on the stage, and a control unit that causes the liquid discharge nozzle to supply a space between the wafer placed on the stage and the liquid discharge nozzle with a predetermined amount of the cleaning liquid to fill the space. The present invention also includes a lamp disposed on a position facing the wafer placed on the stage to heat at least an interface portion of the wafer and a cleaning liquid.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: October 1, 2019
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Shiro Hara, Sommawan Khumpuang, Shinichi Ikeda, Akihiro Goto, Hiroshi Amano
  • Patent number: 10424490
    Abstract: Provided are a hardmask composition and a method of forming a fine pattern using the hardmask composition, the hardmask composition including a solvent, a 2D carbon nanostructure (and/or a derivative thereof), and a 0D carbon nanostructure (and/or a derivative thereof).
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: September 24, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sangwon Kim, Minsu Seol, Hyeonjin Shin, Dongwook Lee, Seongjun Jeong
  • Patent number: 10289004
    Abstract: A developing apparatus includes: a substrate holder that hold a substrate horizontally; a developer nozzle that supplies a developer onto the substrate to form a liquid puddle; a turning flow generation mechanism including a rotary member that rotates about an axis perpendicular to the substrate while the rotary member is being in contact with the liquid puddle thereby to generate a turning flow in the liquid puddle of the developer formed on the substrate; and a moving mechanism for moving the turning flow generation mechanism along a surface of the substrate. The line-width uniformity of a pattern can be improved by forming turning flows in a desired region of the substrate and stirring the developer.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: May 14, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Hideharu Kyouda, Koshi Muta, Taro Yamamoto, Yasushi Takiguchi
  • Patent number: 10290518
    Abstract: A substrate liquid processing apparatus includes a substrate holding device which holds a substrate in horizontal position and rotate the substrate around vertical axis of the substrate, a liquid discharge device which is positioned underneath central portion of lower surface of the substrate in the horizontal position and discharges processing liquid toward the lower surface of the substrate, and a gas discharge passage structure which has a gas discharge passage formed around the discharge device such that drying gas passes through. The discharge device has a head including a cover which is extending beyond upper end of the passage such that the cover is covering the upper end of the passage, a liquid discharge port which is protruding from the cover toward the substrate in the horizontal position, and a curved portion which is formed between the port and cover such that the curved portion has a surface bending downward.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: May 14, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kento Kurusu, Yukiyoshi Saito, Seiki Ishida
  • Patent number: 10249532
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10236185
    Abstract: A method of forming patterns for a semiconductor device includes preparing a hardmask composition including a carbon allotrope, a spin-on hardmask (SOH) material, an aromatic ring-containing polymer, and a solvent, applying the hardmask composition to an etching target layer, forming a hardmask by heat-treating the applied hardmask composition, forming a photoresist pattern on the hardmask, forming a hardmask pattern by etching the hardmask using the photoresist pattern as an etching mask, and forming an etched pattern by etching the etching target layer using the hardmask pattern as an etching mask.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: March 19, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yool Kang, Kyoung-sil Park, Yun-seok Choi, Boo-deuk Kim, Ye-hwan Kim
  • Patent number: 10204777
    Abstract: A substrate processing apparatus includes a substrate holding part, a substrate rotating mechanism, and a chamber. The substrate rotating mechanism includes an annular rotor part disposed in an internal space of the chamber and a stator part disposed around the rotor part outside the chamber. The substrate holding part is attached to the rotor part in the internal space of the chamber. In the substrate rotating mechanism, a rotating force is generated about a central axis between the stator part and the rotor part. The rotor part is thereby rotated about the central axis, being in a floating state, together with a substrate and the substrate holding part. In the substrate processing apparatus, the substrate can be easily rotated in the internal space having excellent sealability. As a result, it is possible to easily perform single-substrate processing in a sealed internal space.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 12, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Toshimitsu Namba
  • Patent number: 10203605
    Abstract: A development method includes: a development step of supplying a developing solution to a surface of a substrate for manufacturing a semiconductor device after undergoing formation of a resist film and exposure, to perform development; a first rotation step of, after the development step, increasing revolution speed of the substrate to rotate the substrate in a first rotational direction around a central axis so as to spin off and remove part of the developing solution from the substrate; and a second rotation step of, after the first rotation step, rotating the substrate in a second rotational direction reverse to the first rotational direction so as to spin off and remove the developing solution remaining on the substrate from the substrate.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 12, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Yusaku Hashimoto, Takeshi Shimoaoki, Masahiro Fukuda, Kouichirou Tanaka
  • Patent number: 10185219
    Abstract: In a developing method, a developing nozzle starts discharge of developer to a position set in advance on a substrate, spinning about the center thereof, away from the center. This causes a flow of the developer at the center having a small centrifugal force immediately after the discharge is started. Accordingly, a dissolution product of a resist can be ejected outside the substrate more efficiently than the case when the discharge of the developer to the center is started. Moreover, this achieves distributed arrival positions of the developer directly discharged from the developing nozzle immediately after the discharge is started. Consequently, thin resist patterns especially at the center of the substrate are eliminated to obtain suppression in treatment variation.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: January 22, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Yuji Tanaka, Tadashi Miyagi, Masahiko Harumoto, Koji Kaneyama
  • Patent number: 10168618
    Abstract: A liquid processing method includes: accommodating a substrate horizontally in each of a first processing region and a second processing region, for performing therein a process on the substrate by a processing solution from a nozzle; rotating a rotary body about a vertical axis; keeping a plurality of processing nozzles provided at the rotary body; supplying different kinds of processing solutions to the substrate from the plurality of processing nozzles; holding a processing nozzle selected from the plurality of processing nozzles by a nozzle holder provided at the rotary body; transferring the nozzle holder into selected one of the first and the second processing regions by a nozzle transfer device; and rotating the rotary body by a rotation driving unit so as to allow a front of the nozzle holder in a forward/backward direction thereof to face the selected one of the first and the second processing regions.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 1, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Norihiko Sasagawa, Hiroichi Inada, Yasushi Takiguchi
  • Patent number: 10068763
    Abstract: A method of forming a coating film includes horizontally supporting a substrate, supplying a coating solution to a central portion of the substrate and spreading the coating solution by a centrifugal force by rotating the substrate at a first rotational speed, decreasing a speed of the substrate from the first rotational speed toward a second rotational speed and rotating the substrate at the second rotational speed to make a surface of a liquid film of the coating solution even, supplying a gas to a surface of the substrate when the substrate is rotated at the second rotational speed to reduce fluidity of the coating solution, and drying the surface of the substrate by rotating the substrate at a third rotational speed faster than the second rotational speed.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: September 4, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kousuke Yoshihara, Takafumi Niwa
  • Patent number: 10042262
    Abstract: Disclosed is a negative developing method including a puddle-forming step, a diluting step, and a surface drying step. In the puddle-forming step, developer containing an organic solvent is supplied to a resist film formed on a surface of the substrate and keeping a puddle of the developer on the resist film. In the diluting step, a concentration of a dissolution product dissolved in the developer on the resist film is diluted by additionally supplying the developer containing the organic solvent to the resist film after the puddle-forming step. In the surface drying step, the surface of the substrate is dried by rotating the substrate after the diluting step.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: August 7, 2018
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Tadashi Miyagi, Koji Kaneyama
  • Patent number: 9997382
    Abstract: In a substrate processing apparatus, an outer edge portion of a substrate in a horizontal state is supported from below by an annular substrate supporting part, and a lower surface facing part having a facing surface facing a lower surface of the substrate is provided inside the substrate supporting part. A gas ejection nozzle for ejecting heated gas toward the lower surface is provided in the lower surface facing part, and the substrate is heated by the heated gas when an upper surface of the rotating substrate is processed with a processing liquid ejected from an upper nozzle. Further, a lower nozzle is provided in the lower surface facing part, to thereby perform a processing on the lower surface with a processing liquid. Since the gas ejection nozzle protrudes from the facing surface, a flow of the processing liquid into the gas ejection nozzle can be suppressed during the processing.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 12, 2018
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kenji Izumoto, Takemitsu Miura, Kenji Kobayashi, Kazuhide Saito, Akihisa Iwasaki
  • Patent number: 9952965
    Abstract: A method, program product, and computer system is provided for test case self-validating. A probe builder, instruments one or more source code modules with a test probe. The test probe placement is based on at least one criterion including: an application program interface (API), a component, a test case name, a product release, and a product feature. The probe builder registers the test probe in a probe database. The registered test probe has record in the probe database that includes a probe identifier, a probed command, a probed file name, a line number, the test case name, and a location of an executable binary containing the test probe. The probe builder compiles the instrumented source code modules into one or more binary executable modules. The test case generator creates a test case that includes at least one registered test probe. The test case validator validates the test case.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Su Liu, Priya Paul, Jun Su, Cheng Xu
  • Patent number: 9955577
    Abstract: A conductive component including: a substrate, a first layer comprising a plurality of island structures disposed on the substrate, wherein the island structures include graphene; and a second layer disposed on the first layer, wherein the second layer includes a plurality of conductive nanowires. Also, an electronic device including the conductive component.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: April 24, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Youngjin Cho, Hyeon Cheol Park, Kwanghee Kim, Weonho Shin, Daejin Yang
  • Patent number: 9947534
    Abstract: A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 17, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kousuke Yoshihara, Koji Takayanagi, Shinichi Hatakeyama, Kohei Kawakami
  • Patent number: 9817323
    Abstract: A liquid treatment method includes: supplying a first organic solvent to a substrate with the substrate being held horizontally by a substrate holder; and thereafter supplying a second organic solvent to a substrate held by the substrate holder, the second solvent having a higher cleanliness than the first solvent.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 14, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Yuichi Yoshida, Kousuke Yoshihara
  • Patent number: 9814145
    Abstract: A method for forming a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example includes filling a first cavity having a tapered surface with a body material. A first layer of a constraining material is provided on top of the first cavity and has a second cavity having a width that is smaller than the first cavity. The second cavity is filled with the body material. Successive layers of the constraining material are provided on top of the first layer of the constraining material. Cavities of the successive layers of the constraining material are selectively filled with at least the body material to form layers of the main body portion of the Z-directed component. The constraining material is dissipated to release the Z-directed component from the constraining material and the Z-directed component is fired.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: November 7, 2017
    Assignee: Lexmark International, Inc.
    Inventors: Keith Bryan Hardin, Paul Kevin Hall, Qing Zhang, John Thomas Fessler
  • Patent number: 9779926
    Abstract: A method and system for formation and withdrawal of a sample from a surface to be analyzed utilizes a collection instrument having a port through which a liquid solution is conducted onto the surface to be analyzed. The port is positioned adjacent the surface to be analyzed, and the liquid solution is conducted onto the surface through the port so that the liquid solution conducted onto the surface interacts with material comprising the surface. An amount of material is thereafter withdrawn from the surface. Pressure control can be utilized to manipulate the solution balance at the surface to thereby control the withdrawal of the amount of material from the surface. Furthermore, such pressure control can be coordinated with the movement of the surface relative to the port of the collection instrument within the X-Y plane.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: October 3, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Gary J. Van Berkel, Vilmos Kertesz
  • Patent number: 9765431
    Abstract: The present application relates to atomic layer deposition (ALD) processes for producing metal phosphates such as titanium phosphate, aluminum phosphate and lithium phosphate, as well as to ALD processes for depositing lithium silicates.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: September 19, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jani Hamalainen, Jani Holopainen, Timo Hatanpaa, Mikko Ritala, Markku Leskela
  • Patent number: 9757765
    Abstract: Systems and methods are provided for fabricating pyrite thin films from molecular inks. A process is provided that comprises dissolving simple iron-bearing and sulfur-bearing molecules in an appropriate solvent and then depositing the solution onto an appropriate substrate using one of several methods (roll-to-roll coating, spraying, spin coating, etc.), resulting in a solid film consisting of the molecules. These molecular precursor films are then heated to 200-600° C. in the presence of sulfur-bearing gases (e.g., S2, H2S) to convert the molecular films into films of crystalline iron pyrite (FeS2).
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: September 12, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Matthew Law, Amanda S. Weber, Sean Seefeld, James Puthussery
  • Patent number: 9760007
    Abstract: A semiconductor device manufacturing method of the present invention includes a coating step of coating a front surface of a wafer with a material containing a solvent, a volatilization step of volatilizing the solvent by heating the material, and a rinse step of jetting an edge rinse solution for removing the material from a first nozzle to a peripheral portion of the front surface of the wafer while rotating the wafer.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: September 12, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shoichi Kuga
  • Patent number: 9720325
    Abstract: A method includes rotating a wafer at a first speed for a first time duration. The wafer is rotated at a second speed that is lower than the first speed for a second time duration after the first time duration. The wafer is rotated at a third speed that is higher than the second speed for a third time duration after the second time duration. A photoresist is dispensed on the wafer during the first time duration and at least a portion of a time interval that includes the second time duration and the third time duration.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: August 1, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsien Hsu, Hong-Hsing Chou, Hu-Wei Lin, Chi-Jen Hsieh, Jr-Wei Ye, Yuan-Ting Huang, Ching-Hsing Chiang, Hua-Kuang Teng, Yen-Chen Lin, Carolina Poe, Tsung-Cheng Huang, Chia-Hung Chu
  • Patent number: 9630296
    Abstract: A substrate processing apparatus capable of preventing corrosion of metal interconnects of a substrate formed thereon is disclosed. The substrate processing apparatus includes a substrate holder configured to hold a substrate horizontally and rotate the substrate, and a slit nozzle configured to supply a processing liquid onto a surface of the substrate. The slit nozzle is adjacent to the surface of the substrate and extends in approximately a radial direction of the substrate.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: April 25, 2017
    Assignee: Ebara Corporation
    Inventor: Tomoatsu Ishibashi
  • Patent number: 9553007
    Abstract: A coating method includes a step of forming a film of a coating solution having a larger thickness in a central region of a substrate than in an edge region of the substrate by discharging droplets of the coating solution from a plurality of nozzles formed on an inkjet head to the substrate, and a step of moving the coating solution in the film from the central region toward the edge region of the substrate by rotating the substrate. This reduces a difference in thickness of the film between the central region and the edge region of the substrate, thereby to make the film thickness substantially uniform. At the same time, the movement of the coating solution in the film can make the surface of the film smoother.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: January 24, 2017
    Assignee: SCREEN Semiconductor Solutions Co., Ltd.
    Inventors: Yukihiko Inagaki, Tomohiro Goto
  • Patent number: 9541830
    Abstract: Block copolymers and methods of making patterns of organic thin films using the block copolymers. The block copolymers comprise a fluorinated block. Thin films of the block copolymers have microdomains that can be aligned. As a result the patterns of organic thin films having smaller dimensions than the pattern of incident deep-UV or e-beam radiation can be formed. For example, the block copolymers can be used in lithography, filtration, and templating applications.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: January 10, 2017
    Assignee: Cornell University
    Inventors: Christopher K. Ober, Rina Maeda, Nam-ho You, Teruaki Hayakawa
  • Patent number: 9539589
    Abstract: A substrate processing apparatus includes a substrate holding unit, an injection unit that injects droplets of a processing liquid from a plurality of injection ports respectively toward a plurality of collision positions on the substrate, and a liquid film forming unit. The liquid film forming unit discharges a protective liquid from a plurality of discharge ports toward a plurality of liquid contact positions that respectively cover different collision positions. The plurality of injection ports and the plurality of discharge ports may be formed in a nozzle. A nozzle moving unit may be provided, to move the nozzle along the substrate.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 10, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Hiroyuki Araki
  • Patent number: 9475220
    Abstract: The invention relates to an improved process for producing composite elements comprising at least one outer layer and at least one isocyanate-based rigid foam layer by means of a fixed applicator apparatus and in which the flowable starting material comprises the following components: A) at least one polyisocyanate, B) at least one compound which reacts with isocyanate groups to form urethane, C) at least one blowing agent, D) catalysts comprising at least one compound D1) which catalyzes isocyanurate formation and at least one compound D2) which catalyzes polyurethane formation, comprising at least one amino group, and E) optionally auxiliaries and additives, where the manner of use of component A) and of component B) is such that the isocyanate index is at least 180, and where the ratio by weight of the compound D2) to the compound D1) is from 0.75 to 8.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 25, 2016
    Assignee: BASF SE
    Inventors: Olaf Jacobmeier, Gunnar Kampf
  • Patent number: 9478445
    Abstract: A substrate liquid processing apparatus includes a substrate holding unit configured to hold and rotate a substrate; a processing liquid nozzle configured to supply a processing liquid to the substrate; a cylindrical liquid receiving cup configured to receive and recover the processing liquid scattered from the substrate; a housing configured to accommodate the substrate holding unit and the liquid receiving cup; a cup exhaust path connected to the liquid receiving cup to exhaust atmosphere inside the liquid receiving cup; a cup exhaust path pressure sensor configured to detect pressure in the cup exhaust path; a housing pressure sensor configured to detect pressure in the housing outside the liquid receiving cup; and a control unit configured to alert when a difference between a value detected by the housing pressure sensor and a value detected by the cup exhaust path pressure sensor is a predetermined determination reference value or less.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 25, 2016
    Assignee: Tokyo Electron Limited
    Inventor: Norihiro Ito