Vacuum Utilized Prior To Or During Coating Patents (Class 427/294)
  • Publication number: 20020142095
    Abstract: A method of forming a film on a base member disposed in a reactor comprises introducing an organic gas into the reactor for use as a starting material for the film, and a dilute gas including an inert gas, irradiating a surface of the base member with vacuum ultraviolet rays; and forming the film on the base member under a normal pressure atmosphere.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 3, 2002
    Inventors: Yoshikazu Motoyama, Kiyohiko Toshikawa, Yosuke Motokawa, Junichi Miyano, Hiroyuki Mutoh, Ko Kurosawa, Atsushi Yokotani
  • Patent number: 6455097
    Abstract: A method of applying a treating liquid to a porous body (11), in particular a pre-baked carbon component of an aluminium production cell, such as an anode block, a cathode block or a sidewall. In this method first the body (11) to be treated is inserted, with its part to be treated facing up, in the treating chamber (12). At least one sealing member (13) is then applied to the body so as to isolate a space (14) in an upper part of the treating chamber (12) around the part of the body to be treated from a lower part (15) of the treating chamber around a bottom part of the body which is not to be treated. Next, treating liquid (10) is supplied to the upper part (14) of the treating chamber to cover the part of the body to be treated with the treating liquid and applying a vacuum to intake an amount of the treating liquid into pores in the part of the body to be treated. Then the body (11) is freed from the sealing member(s) (13), and removed from the treating chamber (12).
    Type: Grant
    Filed: September 16, 2000
    Date of Patent: September 24, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Georges Berclaz, Gaynor Johnston, Vittorio de Nora
  • Patent number: 6455172
    Abstract: A method for producing a laminated metal ribbon comprises the steps of (a) vapor-depositing a third metal layer on at least one welding surface of a first metal ribbon 4 and a second metal ribbon 5 in a vacuum chamber 1, the third metal being the same as or different from a metal or an alloy of the first and second metal ribbons 4, 5; (b) pressure-welding the first metal ribbon 4 to the second metal ribbon 5; and (c) subjecting the resultant laminate 9 to a heat treatment for thermal diffusion.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: September 24, 2002
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kentaro Yano, Noboru Hanai
  • Publication number: 20020132113
    Abstract: A method for coating a micro-electromechanical system (MEMS) device is provided. A coating material, such as a ceramic slurry, may be utilized to form a gas permeable enclosure or shell around the device after the coating material hardens. A vacuum may be applied near the device to exert an attractive force on the coating material to aid in homogenously distributing the coating material over the device. In addition, a vibration may be applied to the device to aid in distributing the coating material. If the device is attached to a substrate, a hole may be formed through the substrate with one opening near the device and a second opening located elsewhere. The vacuum may then be applied to the second opening to draw the coating material over the device and towards the first opening.
    Type: Application
    Filed: January 18, 2002
    Publication date: September 19, 2002
    Applicant: Ball Semiconductor, Inc.
    Inventors: Tomoki Tanaka, Risaku Toda
  • Patent number: 6451385
    Abstract: A process is disclosed for infiltrating a liquid composition, such as a molten metal or thermoplastic or thermosetting polymer, into a porous solid material, such as a ceramic or porous metal, by contacting the porous material with the liquid composition at a first pressure and then increasing the pressure by at least the critical capillary pressure for the liquid composition/porous solid material system to effect infiltration. The infiltrated liquid composition may then be solidified inside the porous material, such as by cooling, to produce composite materials including ceramic-metal composites as well as ceramic-polymer, metal-polymer, and metal—metal composites.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: September 17, 2002
    Assignee: Purdue Research Foundation
    Inventors: Jon L. Hilden, Kevin P. Trumble, Frank R. Cichocki, Jr.
  • Patent number: 6451390
    Abstract: A method for the deposition of a silicon dioxide film onto a substrate using plasma enhanced chemical vapor deposition and TEOS is disclosed. The method includes controlling the deposition rate of silicon dioxide on a substrate by pulsing the radio frequency power supply used to generate a TEOS oxide plasma. The obtained silicon dioxide film is good in electrical and mechanical film properties for the application of forming thin film transistors.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: September 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Haruhiro H. Goto, Takako Takehara, Carl A. Sorensen, William R. Harshbarger, Kam S. Law
  • Publication number: 20020127340
    Abstract: In a coating and developing treatment for a substrate, the present invention comprises the steps of: supplying a coating solution to the substrate to form a coating layer on the substrate; performing a developing treatment for the substrate in the processing zone after it undergoes an exposure processing by an aligner not included in the system; and carrying the substrate into the chamber after the step of forming the coating layer and before the exposure processing and thereafter reducing the pressure inside the airtightly closed chamber to a predetermined pressure to remove impurities adhering to the substrate inside the chamber from the substrate for a predetermined time, wherein the predetermined pressure and the predetermined time are adjusted based on the density of the impurities measured inside the processing zone.
    Type: Application
    Filed: May 7, 2001
    Publication date: September 12, 2002
    Applicant: Tokyo Electron Limited
    Inventors: Junichi Kitano, Yuji Matsuyama, Takahiro Kitano
  • Patent number: 6447850
    Abstract: A method of forming a thin polycrystalline silicon film and a thin film forming apparatus allowing inexpensive formation of a thin polycrystalline silicon film at a relatively low temperature with high productivity. More specifically, a method of forming a thin polycrystalline silicon film and a thin film forming apparatus in which a state of plasma is controlled to achieve an emission intensity ratio of hydrogen atom radicals (H&bgr;) of one or more to the emission intensity of SiH* radicals in the plasma.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: September 10, 2002
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Akinori Ebe, Naoto Kuratani, Eiji Takahashi
  • Patent number: 6447553
    Abstract: A radiation curable monomer and a dystuff are mixed in a curable formulation and fed into a hot evaporator under vacuum. The blend is flash evaporated through a nozzle and recondensed onto a moving substrate in contact with a temperature-controlled rotating drum. The condensed film is then crosslinked with a high-energy ultraviolet or electron-beam radiation source to effect cross-linking of the monomer. The resulting product consists of a crosslinked polymer matrix incorporating dyestuff molecules within its structure, which dramatically enhances the durability, solvent resistance, heat stability and migration fastness of the product. These properties can be further improved by chemically bonding the dyestuff molecules with the crosslinked polymer network, which can be accomplished by judiciously functionalizing the dyestuff with appropriate functional groups designed to polymerize or to react with the curable monomer.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Sigma Technologies International, Inc.
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Publication number: 20020122883
    Abstract: A container, desirably blow molded or extrusion molded, said container having barrier properties and including an upper wall portion having an opening, an intermediate sidewall portion positioned beneath the upper wall portion, and a base portion positioned beneath the intermediate sidewall portion to support the container. The container includes a molded first layer having an inner surface and an outer surface formed from high density polyethylene, and a carbon coating formed on the inner surface of the first layer and adhered thereto and substantially coextensive with the first layer, wherein said carbon coating has a thickness of less than about 10 microns.
    Type: Application
    Filed: April 30, 2002
    Publication date: September 5, 2002
    Applicant: PLASTIPAK PACKAGING, INC.
    Inventors: William A. Slat, Richard C. Darr
  • Patent number: 6444274
    Abstract: A process for producing antiadhesive layers on a web-form material, characterized in that the antiadhesive layers are applied to the web-form material by means of low pressure plasma polymerization by guiding the web-form material continuously through a plasma zone containing a low pressure plasma.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: September 3, 2002
    Assignee: tesa AG
    Inventor: Olaf Görbig
  • Patent number: 6440504
    Abstract: The object of the present invention is to provide a deposited film forming apparatus and deposited film forming method that can efficiently, cheaply, and stably supply high-quality amorphous silicon devices. This object is achieved by providing a vacuum vessel capable of providing a substrate therein, evacuating the inside of the vacuum vessel by an evacuation means, introducing a gas from gas supply means into the vacuum vessel, and applying high-frequency power from a high-frequency power source, thereby generating a plasma, wherein the evacuation means comprises at least two evacuation means as first evacuation means and second evacuation means, wherein the vacuum vessel is moved while maintaining a vacuum between the two evacuation means, and wherein the vacuum vessel is capable of being connected to each of the evacuation means, high-frequency power source, and gas supply means through a detachable connection mechanism.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: August 27, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuyoshi Akiyama
  • Publication number: 20020114881
    Abstract: A method of increasing the color-stability of an electroluminescent phosphor which comprises the steps of forming the phosphor and then firing the formed phosphor in a vacuum in the presence of a material selected from the group of Eu, Ce, and Sm for a time sufficient to provide said increase in color-stability.
    Type: Application
    Filed: July 20, 2001
    Publication date: August 22, 2002
    Inventors: Richard G.W. Gingerich, Clarence D. Vanderpool
  • Patent number: 6428852
    Abstract: A process for coating a solid surface (42) with a conditioned liquid composition of substantially uniform thickness is provided. A liquid composition is conditioned by a) degassing either via vacuum or by sparging with a high kinematic viscosity gas; and b) substantially maintaining the viscosity of the liquid composition. The conditioned liquid may then be dispensed onto a solid surface (42) positioned in a sub-atmospheric environment (37) or in a helium-rich environment (37). The solid surface (42) is rotated so that the liquid composition forms a uniformly thick coating free from bubbles on the solid surface (42) and thereby produces a thin film of uniform thickness.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Mykrolis Corporation
    Inventors: John E. Pillion, Michael E. Clarke, Jill Boski
  • Patent number: 6428859
    Abstract: The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: August 6, 2002
    Assignee: Angstron Systems, Inc.
    Inventors: Tony P. Chiang, Karl F. Leeser
  • Patent number: 6428860
    Abstract: A method for impregnating a porous surface with a magneto-rheological substance includes the steps of providing a porous surface with a porosity sufficient to receive the magneto-rheological substance within the pores and covering a portion of one side of the porous surface with the magneto-rheological substance. The method further includes the step of providing a magnet on the opposite side of the porous surface to apply a magnetic field and draw the magneto-rheological substance into the porous surface.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 6, 2002
    Assignee: Visteon Global Technologies, Inc.
    Inventor: Norman Szalony
  • Publication number: 20020094383
    Abstract: A vacuum treatment workpiece support and method for a vacuum treatment apparatus, uses a sun system that is rotatable with respect to the apparatus about a sun system axle. The sun system is coupled to an apparatus-side drive. At least one planet system supported on the sun system, is rotatable about a planet axle and is provided with a driving coupling with respect to the apparatus. At least one moon system is supported on the planet system, and is rotatable about a moon axle with a driving connection to the sun system. A receiver for at least one workpiece is provided on the moon system. The driving connection is established, at least during operation of the apparatus, in an uninterrupted manner, between the sun system and the moon system.
    Type: Application
    Filed: June 12, 2001
    Publication date: July 18, 2002
    Inventors: Martin Zaech, Anton Kunz
  • Patent number: 6413575
    Abstract: A method of applying a matching layer to a transducer includes placing the transducer on a fixture and covering the transducer with a stencil so that an opening in the stencil allows access to a metal-coated, piezoelectric surface of the transducer, and so that the stencil is affixed to the transducer surface. A roughly cylindrically shaped bead of epoxy is extruded onto the stencil at a predetermined distance from the opening, and a blade is positioned upstanding relative to the transducer surface and located so that the bead lies between the blade and the opening. The fixture is moved laterally so that the blade rolls the bead across the exposed transducer surface to form a layer of epoxy thereon. The fixture can then be moved back in the opposite direction to its initial position if desired. The assembly can also be subjected to a vacuum before the fixture is returned to its initial position. If desired, the fixture can be designed to vibrate during movement.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: July 2, 2002
    Assignee: Scimed Life Systems, Inc.
    Inventors: Don S. Mamayek, Veijo Suorsa
  • Publication number: 20020082329
    Abstract: A solid composition having a solid state film forming substance mixed with an inert carrier. The composition is heated in a vacuum chamber to evaporate the film forming substance by sublimation to form a molecular beam of amphiphilic molecules which settle on a substrate surface within the chamber and bond thereto while self-assembling into a thin film.
    Type: Application
    Filed: August 3, 2001
    Publication date: June 27, 2002
    Inventors: Pramod K. Arora, Brij P. Singh
  • Publication number: 20020081390
    Abstract: A method of bead coating a liquid composition onto the surface of a moving web is taught which provides uniform coatings over a wider range of operating parameters including new coating windows. In addition, the bead coating method typically demonstrates a reduction in coating sensitivity to vacuum pressure noise below the coating bead.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Applicant: Eastman Kodak Company
    Inventors: Robert R. Quiel, Alain E. Gros, Douglas S. Finnicum, Felipe M. Joos
  • Patent number: 6403158
    Abstract: A mixture is formed that comprises at least some to about 10 wt % boron nitride and silicon. A body comprising a component that is wetted by or reacts with silicon is contacted with the mixture and the contacted body is infiltrated with silicon from the mixture.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: June 11, 2002
    Assignee: General Electric Company
    Inventor: Gregory Scot Corman
  • Patent number: 6399146
    Abstract: This invention, in one aspect, relates to a method of applying a corrosion-resistant coating on an article and is particularly, but not exclusively, concerned with a method of applying a corrosion-resistant coating on an Nd—Fe—B magnet. In another aspect, the present invention relates to a method of applying a coherent coating on the surfaces of the particles of a powder. Such powder may be one which is susceptible to oxidative corrosion and/or one which is used to form a magnet (e.g Nd—Fe—B powder).
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: June 4, 2002
    Assignee: The University of Birmingham
    Inventors: Ivor Rex Harris, John D. Speight
  • Patent number: 6398999
    Abstract: A process for making high aspect ratio metal flakes economically and at high production rates comprises applying a multi-layer sandwich of vapor deposited metal and release coats in alternating layers to a rotating chilled drum or suitable carrier medium contained in a vapor deposition chamber. The alternating metallized layers are applied by vapor deposition and the intervening release layers are preferably solvent or water soluble materials applied by suitable coating or vapor deposition sources contained in the vapor deposition chamber. The release coat materials can be a thermoplastic solvent-soluble polymer, a water soluble inorganic salt, or a high boiling point dissolvable wax-like substance. The multi-layer sandwich built up in the vacuum chamber is removed from the drum or carrier and treated with a suitable solvent or water to dissolve the release coating from the metal in a stripping process that leaves the metal flakes essentially release coat free.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: June 4, 2002
    Assignee: Avery Dennison Corporation
    Inventors: Karl Josephy, James P. Rettker, Howard H. Enlow
  • Patent number: 6391377
    Abstract: A method of manufacturing workpieces, includes loading the workpieces into a treatment facility, surface treating the workpieces in at least one vacuum station of the facility grouped as a station batch and controlling at least the timing of the process by a freely programmable process controller unit. At least two stations operating each on workpiece batches can be grouped as respective station batches and be different with respect to number of workpieces. The workpieces can be transported to and from the grouped stations. An embodiment of vacuum treatment system for such a process includes at least one vacuum treatment station for workpieces grouped as a station batch. A transport system supplies the vacuum station with workpieces. A process controller unit has an output operationally connected to a drive arrangement for the transport system. The unit controls operating timing of the treatment system and is freely programmable.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: May 21, 2002
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Rudolf Wagner, Jacques Schmitt, Jerome Perrin
  • Publication number: 20020054958
    Abstract: Thin films are produced by a method wherein a material is heated in a furnace placed inside a vacuum system. An inert gas is flown over/through the heated material. The vapors of the material are entrained in the carrier gas which is then directed onto a substrate heated to a temperature below that of the furnace temperature and placed in close proximity to the exit of the furnace.
    Type: Application
    Filed: March 28, 2001
    Publication date: May 9, 2002
    Inventors: Robert W. Birkmire, Erten Eser, Gregory M. Hanket, Brian E. McCandless
  • Patent number: 6383554
    Abstract: There is provided a process and its system for fabricating plasma with feedback control on plasma density. This process uses a heterodyne millimeter wave interferometer as a sensor to measure the plasma density in the process container and the plasma density that is needed in the plasma fabricating process, and then provides real-time information of the measurements to a digital control device which makes numerical calculations and then drives the RF power generator to change the RF output power so as to enable the plasma density in the plasma fabricating process to be close to the expected plasma density. The conventional operation parameter method is to control air pressure, RF power, gas flow quantity, temperature and so on. However, it does not control the plasma parameter that has the most direct influence on the process. Therefore, this method cannot guarantee that, in the process of fabricating wafers, different batches of wafers will be operated under similar process plasma conditions.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: May 7, 2002
    Assignee: National Science Council
    Inventors: Cheng-Hung Chang, Keh-Chyang Leou, Chaung Lin, Yi-Mei Yang, Chuen-Horng Tsai, I. G. Chen
  • Patent number: 6379740
    Abstract: A prosthesis having an apertured structure is located in a chamber (11) which is taken to sub-atmospheric pressure. Once sub-atmospheric pressure has been reached, a liquid, optionally containing pharmacological agents, is introduced into the chamber. Drawn by the sub-atmospheric pressure, the liquid saturates the apertured structure of the prosthesis. In this way, the invention eliminates the risk of air being trapped in the apertured structure that could give rise to the formation of blood clots after implantation of the prosthesis. The liquid can contain drugs that penetrate the prosthesis, performing their therapeutic action locally and over time after implantation.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: April 30, 2002
    Assignee: Sorin Biomedica Cardio S.p.A.
    Inventors: Stefano Rinaldi, Arnaldo Giannetti, Enrico Pasquino
  • Publication number: 20020049020
    Abstract: A water-vapor-permeable, watertight, heat-reflecting flat composite is made by a process of combining a metal layer and a nonporous, water-vapor-permeable, watertight, hydrophilic flat substrate. The process includes at least the three steps of (1) selecting the substrate, (2) pre-cleaning the substrate, and (3) applying the substrate to the metal layer. Such a composite offers protection from heat loss, infrared-based detection, ultraviolet radiation, electro-smog, and static electricity.
    Type: Application
    Filed: August 31, 2001
    Publication date: April 25, 2002
    Applicant: Sympatex Technologies GmbH
    Inventors: Henricus J.M. Van De Ven, Jozef C.W. Spijkers, Karl W. Kopp
  • Patent number: 6376018
    Abstract: A method and an apparatus for producing unsupported thin film particles are provided. The apparatus includes: (a) a vacuum chamber; (b) a rotatable drum disposed within the vacuum chamber; (c) means within the vacuum chamber for depositing a surface coating onto the drum when the drum is rotating; (d) means for depositing at least one thin film layer onto the surface coating to provide a thin film structure disposed atop the surface coating; and (e) a knife blade disposed proximate to the surface of the drum, such that a thin film structure deposited onto the drum can be scraped away from the drum by the rotation of the drum. In the method, a surface coating, such as a wax, is applied directly to the moving surface. Thereafter, one or more thin film layers is deposited upon the surface coating. The thin film layer or layers are thereafter scraped away from the surface coating using the knife blade.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: April 23, 2002
    Inventor: Wilfred C. Kittler, Jr.
  • Patent number: 6376158
    Abstract: A novel method of filling apertures in substrates, such as through holes, is provided. The method utilizes a phtoimageable film, and comprises the following steps: applying a photoimagable, hole fill film over the apertures, preferably having a solvent content of 7-18%; reflowing the hole fill film to flow into the apertures; exposing the hole fill film to actinic radiation, preferably ultraviolet light, through a phototool, which preferably has openings slightly larger than the diameter of the apertures; then at least partially curing the hole fill film; and developing the hole fill film to remove the unexposed hole fill film. Thus, the apertures may be selectively filled. After the apertures are filled, the hole fill film is cured. Thereafter, the substrate may be subjected to further processing steps, for example, nubs of cured hole fill film can be removed. If desired, the substrate is circuitized and overplated with gold.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: April 23, 2002
    Assignee: International Business Machines Corporation
    Inventors: Gerald Walter Jones, Heike Marcello, Kostas Papathomas
  • Patent number: 6376028
    Abstract: The described device is introduced into a plastic container with a narrow opening and serves a plasma enhanced process for treating the inside surface of the container. The device (2) extends between the container opening and the container bottom along the container axis (X) and comprising a gas feed tube (23) for feeding a process gas into the container and permanent magnets (24) for establishing a stationary magnetic field inside the container. The magnets (24) form a column of superimposed magnets which is arranged inside the gas feed tube (23). The north and south poles of each magnet are positioned on opposite sides of the container axis (X). The device may also comprise cooling means (25) for cooling the gas feed tube and the magnets.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: April 23, 2002
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventors: Jacques Laurent, Pierre Fayet, Robert Devidal
  • Publication number: 20020045007
    Abstract: A solid composition having a solid state film forming substance mixed with an inert carrier. The composition is heated in a vacuum chamber to evaporate the film forming substance by sublimation to form a molecular beam of amphiphilic molecules which settle on a substrate surface within the chamber and bond thereto while self-assembling into a thin film.
    Type: Application
    Filed: August 22, 2001
    Publication date: April 18, 2002
    Inventors: Pramod K. Arora, Brij P. Singh
  • Publication number: 20020041047
    Abstract: A process for making functional or decorative flakes or platelets economically and at high production rates comprises applying a multi-layer sandwich of vapor deposited metal and release coats in alternating layers to a rotating chilled drum or suitable carrier medium contained in a vapor deposition chamber. The alternating metallized layers are applied by vapor deposition and the intervening release layers are preferably solvent soluble thermoplastic polymeric materials applied by vapor deposition sources contained in the vapor deposition chamber. The multi-layer sandwich built up in the vacuum chamber is removed from the drum or carrier and treated with a suitable organic solvent to dissolve the release coating from the metal in a stripping process that leaves the metal flakes essentially release coat free.
    Type: Application
    Filed: May 4, 2001
    Publication date: April 11, 2002
    Inventors: Karl Josephy, James P. Rettker, Howard H. Enlow
  • Patent number: 6368663
    Abstract: There is disclosed a hybrid treatment into which CVI treatment and PIP treatment are combined. A dense matrix is formed around a ceramic fiber by the CVI treatment, and a gap in the matrix is infiltrated/filled well with the matrix by the PIP treatment, so that hermetic properties are enhanced. Moreover, when a volume ratio of the matrix by the CVI treatment in the total matrix is set to about 5% or more, about 80% or less, fine cracks are present in the matrix by the PIP treatment, so that a binding force of the ceramic fiber is weakened, and Young's modulus can be reduced. As a result, a thermal stress is alleviated and a resistance to thermal shock is enhanced.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: April 9, 2002
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd
    Inventors: Takeshi Nakamura, Hiroshige Murata, Shoju Masaki
  • Patent number: 6365229
    Abstract: A method and system for applying a surface treatment to an object. The system comprises: a source chamber (106) for holding a source of surface treatment material (102); a deposition chamber (112) enclosing the object to be treated (104); a recovery chamber (108); a supply of carrier gas (110); conduit (116) connecting the source chamber (106) to the deposition chamber (112) and the deposition chamber (112) to the recovery chamber (108) and for controlling the flow of the carrier gas between the source chamber (106), the deposition chamber (112) and the recovery chamber; and a heater (124) for heating the source chamber (106), the source of surface treatment material (102), the deposition chamber (112), an upper portion (120) of the recovery chamber (108), the carrier gas, and the conduit (116). When heated, the source material (102) evaporates into the carrier gas and is carried to the deposition chamber (112) where is attaches to the surface of the object being treated (104).
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: April 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Roger A. Robbins
  • Publication number: 20020037368
    Abstract: Vacuum treatment system for application of thin layers onto substrates (36, 38, 40, 42) with a transfer chamber (5) and several treatment chambers (6, 8, 10, 12), said treatment chambers peripherally attached to the transfer chamber and being connected to said transfer chamber by means of a common opening (27, 29, 31, 33) for inlet and outlet of substrate (36, 38, 40, 42), and with a handling device (24) for transport of the substrate (36, 38, 40, 42) between the treatment chambers (6, 8, 10, 12), whereby the handling device (24) has at least one substrate holder (37, 39, 41, 43) with one pivot and/or rotating retaining part to hold the substrates (36, 38, 40, 42), by means of which the substrates (36, 38, 40, 42) can pivot and/or rotate in the treatment chambers (6, 8, 10, 12).
    Type: Application
    Filed: February 14, 2001
    Publication date: March 28, 2002
    Inventors: Alfred Rick, Josef Hoffmann, Klaus Michael
  • Patent number: 6361824
    Abstract: Methodology for providing a smooth, thin, highly reflective coating to the walls of microchannels disposed in a plate or substrate. Such plates are commonly used in image intensifiers and have more recently been used to provide high resolution X-ray imaging screens. In the process silver nitrate solution is reacted so as to provide a silver amine complex. In a first embodiment of the process, the microchannel plates are disposed vertically in a beaker and immersed, without stirring, in a solution including the silver amine complex and a reducing agent. In a second embodiment of the process, a fluid flow of filtered reactant is directed through the microchannels. In each embodiment the walls of the microchannels become plated with a highly reflective (>90%), thin (20-50nm) and smooth coating of metallic silver.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: March 26, 2002
    Assignee: Nanocrystal Imaging Corp.
    Inventors: Aleksey Yekimov, Vishal Chhabra
  • Patent number: 6358573
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: March 19, 2002
    Assignee: Applied Materials, Inc.
    Inventors: SĂ©bastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Patent number: 6358565
    Abstract: The present invention relates to a method for making a protective coating containing silicon carbide on at least a portion of the surface of a substrate made from a material with a softening temperature that is above the temperature applied to make the protective coating, where silicon is deposited on the portion of the surface of the substrate and where, under vacuum or in an inert atmosphere, the substrate is heated to a temperature above the melting point of silicon, and the silicon is brought to reaction with carbon that is contained in a porous coating. The surface of the object to be coated is initially provided with a porous carbon coating with an open porosity in a range between 40 and 95%, where said porous carbon coating is covered with a uniform coating of silicon, where the ratio in percent of mass (Ma-%) of the applied silicon to that of the carbon in the porous carbon coating is greater than 2.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: March 19, 2002
    Assignee: Deutsches Zentrum fuer Luft-und Raumfahrt E.V.
    Inventors: Walter Krenkel, Thilo Henke
  • Publication number: 20020031606
    Abstract: For manufacturing a winding protection for tape-wound cores that are surrounded with a winding, a polymer film is provided that is deposited onto the tape-wound cores from a vapor phase at room temperature in a drum process. Due to the end face penetration of the polymer into the tape-wound cores, the polymer is solidified and simultaneously surrounds all sides with a thin, uniformly adhering and directly windable layer.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Inventor: Harald Hundt
  • Patent number: 6352744
    Abstract: In a method of reducing voids in an asphalt roofing product, an asphalt coating material having voids is contacted with a vacuum in an amount effective to reduce the voids in the coating material. A mat is coated with the coating material to make an asphalt roofing product. The vacuum contacting step occurs prior to the coating step. The vacuum contacting step causes the roofing product to have reduced voids visible on a top surface compared to the same roofing product made with a coating material not contacted with vacuum.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: March 5, 2002
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: David Charles Trumbore, David B. Ollett, Frank Joseph Macdonald
  • Patent number: 6348239
    Abstract: The invention is directed to a photoresist-free method for depositing films composed of metals, such as copper, or its oxides from metal complexes. More specifically, the method involves applying an amorphous film of a metal complex to a substrate. The metal complexes have the formula MfLgXh, wherein M is selected from the group consisting of Ti, V, Cr, Au, Mn, Fe, Co, Ni, Cu, Zn, Si, Sn, Li, Na, K, Ba, Sr, Mo, Ru, Pd, Pt, Re, Ir, and Os, L is a ligand of the formula (R2NCR2′CO) wherein R and R′ are independently selected from H, CnHm and CnHmAxBy wherein A and B are independently selected from main group elements and f, g, h, n, m, x and y represent integers and wherein X is an anion independently selected from N3, NCO, NO3, NO2, Cl, Br, I, CN, OH, H and CH3. These films, upon, for example, thermal, photochemical or electron beam irradiation may be converted to the metal or its oxides.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 19, 2002
    Assignee: Simon Fraser University
    Inventors: Ross H. Hill, Yo Mao Shi
  • Patent number: 6348237
    Abstract: The present invention provides a method for the formation of an organic coating on a substrate. The method includes: providing a substrate in a vacuum; providing at least one vaporized organic material comprising at least one component from at least one source, wherein the vaporized organic material is capable of condensing in a vacuum of less than about 130 Pa; providing a plasma from at least one source other than the source of the vaporized organic material; directing the vaporized organic material and the plasma toward the substrate; and causing the vaporized organic material to condense and polymerize on the substrate in the presence of the plasma to form an organic coating.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: February 19, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Gunter A. Kohler, William H. Esswein, Seth M. Kirk, Brian J. Gates
  • Patent number: 6340505
    Abstract: A hydrogenated or fluorinated carbon protective film is formed on a disk through a plasma CVD method by use of a hydrocarbon-containing reaction gas as a raw material, where the disk comprises a non-magnetic substrate on which a non-magnetic undercoat film and a magnetic film are successively formed, wherein the protective film has a thickness of 2.2 g/cm3 or more.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: January 22, 2002
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Mikio Suzuki, Noriyuki Miyamoto, Emi Shimaoka, Kimie Takagi
  • Patent number: 6338870
    Abstract: A packaging laminate (10) including a substrate film (15) coated with a carbon containing silicon oxide layer (16, 17) on both surfaces is disclosed herein. A method for producing the laminate (10), and blanks and packages fabricated from the laminate are also disclosed herein. The PECVD process of the present invention strains the substrate film (15) during deposition thereby creating a very thin oxide layer with superior durability, oxygen and aroma barrier properties. The carbon-containing silicon oxide coating (16, 17) has a stoichiometry of SiOxCy in which x is witin the range of 1.5-2.2 and y is within the range of 0.15-0.80. The substrate film (15) may include a core layer (12) of a material selected from the group consisting of paper, paperboard, a foamed core, polyethylene terephtalate, polyamide, polyethylene and polypropylene.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 15, 2002
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventor: Bertrand Jaccoud
  • Patent number: 6338882
    Abstract: A method for applying a light-blocking layer between a photoconducting layer and a mirror when making an optically addressable spatial light modulator (OASLM) using a chemical vapor deposition process. The light-blocking layer and the photoconducting layer are applied in a shared process step in which both the thickness and composition of the photoconducting layer to be applied to the transparent electrode, as well as the thickness and composition of the light-blocking layer to be applied to the photoconducting layer are determined by a time-related change of the variation of the gas composition during the deposition process. The structure of the OASLM can be optimally adapted to a desired purpose.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: January 15, 2002
    Assignee: Deutsche Telekom AG
    Inventors: Wolfgang Dultz, Wolfgang Haase, Leonid Beresnev, Elena Konshina, Arkadii Onokhov
  • Patent number: 6337105
    Abstract: There is provided a method of forming a thin functional film by vacuum vapor deposition in which a functional material is heated from the above thereof so that bumping or splashing of the functional material is not caused upon evaporation of the functional material. Specifically, the functional material is placed in a receiving vessel and the functional material is heated by a heater which is located above the functional material so that bumping or splashing is suppressed, whereby a uniform functional film is produced without a pinhole.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: January 8, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshiaki Kunieda, Toshibumi Kamiyama, Sadayuki Okazaki
  • Publication number: 20020001672
    Abstract: An overcoat protected diffraction grating. A replica grating having a thin aluminum reflective grating surface is produced by replication of a master grating or a submaster grating. The thin aluminum reflective surface may be cracked or have relatively thick grain boundaries containing oxides and hydroxides of aluminum and typically is also naturally coated with an aluminum oxide film. The grating is subsequently overcoated in a vacuum chamber with one or two thin, pure, dense aluminum overcoat layers and then also in the vacuum the aluminum overcoat layer or layers are coated with one or more thin protective layers of a material transparent to ultraviolet radiation. In preferred embodiments this protective layer is a single layer of MgF2, S1O2 or Al2O3.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 3, 2002
    Inventors: Xiaojiang J. Pan, Richard G. Morton, Alexander I. Ershov
  • Patent number: 6335059
    Abstract: A system (100, 100′, 100″) and method for robotic manipulation of objects (130) is provided wherein particulates (110, 110′) are agitated by the transfer of energy thereto to establish patterned granular motion of the particulates (110, 110′). The patterned granular motion of the particulates (110, 110′) forms standing waves (112). The objects (130) align themselves with the standing waves (112) and thus are dynamically arranged in a configuration established by the location of the standing waves (112). The location of the standing waves (112) can be predetermined by controlling the waveform of the signals applied to the energy application system (140). The predetermined waveforms are supplied from the signal source (150, 154) to the energy application system (140).
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: January 1, 2002
    Assignee: The Mitre Corporation
    Inventor: Alexander D. Wissner-Gross
  • Publication number: 20010055647
    Abstract: A gas adsorptive member is disposed in a space communicating with film deposition chambers, and deposition films are deposited while continuously feeding gas components released from this member, thereby enabling the high quality and uniform deposition films to be formed on the substrate with good reproducibility.
    Type: Application
    Filed: April 30, 2001
    Publication date: December 27, 2001
    Inventors: Hideo Tamura, Masahiro Kanai, Yasuyoshi Takai, Hiroshi Shimoda, Hidetoshi Tsuzuki