Vacuum Utilized Prior To Or During Coating Patents (Class 427/294)
  • Publication number: 20140272748
    Abstract: The invention relates to a shaped body comprising a substrate with a firmly adhering separating layer, wherein the separating layer comprises 92-98 wt. % silicon nitride (Si3N4) and 2-8 wt. % silicon dioxide (SiO2) and wherein the separating layer has a total oxygen content of ?8 wt. % and a hardness of at least 10 HB 2.5/3 according to DIN EN ISO 6506-1. The invention further relates to a process for producing such a shaped body, a coating suspension for use in such a process and the use of a shaped body according to the invention in the field of corrosive nonferrous metal melts.
    Type: Application
    Filed: August 2, 2012
    Publication date: September 18, 2014
    Applicant: ESK CERAMICS GMBH & CO. KG
    Inventors: Krishna Uibel, David W. Worthey
  • Patent number: 8834969
    Abstract: For vacuum treatment of workpieces by a multitude of distinct processing stations (P11-P1n, P21-P2m) the processing stations are grouped in two groups (I and II). The workpieces are handled towards and from the processing stations of the first group (I) simultaneously, whereat the workpieces are treated by the processing stations of the second group (II) in a selectable individual sequence.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: September 16, 2014
    Assignee: Oerlikon Advanced Technologies AG
    Inventor: Bernd Heinz
  • Patent number: 8834963
    Abstract: A method for depositing a particle on a work piece is disclosed. The housing is coupled to the work piece to form a chamber and a separation distance between a surface of the work piece and a surface of the housing is controlled using a coupling device. A working gas having a particle entrained therein is directed within the chamber to deposit the particle at the work piece. The coupling between the housing and the work piece may be a slidable coupling. The coupling device may include an air-bearing surface or a gasketed coupling.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Theodore G. van Kessel, Brent A. Wacaser
  • Publication number: 20140234542
    Abstract: A method for inhibiting oxygen and moisture degradation of a device and the resulting device are described herein. To inhibit the oxygen and moisture degradation of the device, a low liquidus temperature (LLT) material which typically has a low low liquidus temperature (or in specific embodiments a low glass transition temperature) is used to form a barrier layer on the device. The LLT material can be, for example, tin fluorophosphate glass, chalcogenide glass, tellurite glass and borate glass. The LLT material can be deposited onto the device by, for example, sputtering, evaporation, laser-ablation, spraying, pouring, frit-deposition, vapor-deposition, dip-coating, painting or rolling, spin-coating or any combination thereof. Defects in the LLT material from the deposition step can be removed by a consolidation step (heat treatment), to produce a pore-free, gas and moisture impenetrable protective coating on the device. Although many of the deposition methods are possible with common glasses (i.e.
    Type: Application
    Filed: March 24, 2014
    Publication date: August 21, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Bruce Gardiner Aitken, Mark Alan Lewis, Mark Alejandro Quesada
  • Patent number: 8808797
    Abstract: Methods of manufacturing a gas barrier plastic container include a method in which the inside of a vacuum chamber which houses a plastic container is exhausted to form a pre-set pressure, and while maintaining a state where electricity is supplied to a thermal catalyst arranged inside the vacuum chamber to generate heat above a pre-set temperature, a source gas is blown on the thermal catalyst to decompose the source gas and create chemical species, whereby a gas barrier thin film is formed by the chemical species reaching at least one of either the inner surface or the outer surface of the plastic container.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 19, 2014
    Assignee: Kirin Beer Kabushiki Kaisha
    Inventors: Akio Mishima, Masaki Nakaya, Akira Shirakura
  • Patent number: 8808793
    Abstract: A method comprising introducing a workpiece support into a chamber of an apparatus. The workpiece support is for supporting thereon a plurality of workpieces. The apparatus comprising: the chamber having an interior space configured to be maintained at a pressure below atmospheric pressure; a vapor source for supplying the interior space of the chamber with a linearly extending stream of lubricant vapor; the workpiece support for supporting thereon a plurality of workpieces with surfaces facing the vapor source; and a conveyor for continuously moving the workpiece support transversely past the linearly extending stream of lubricant vapor from the vapor source. The method also comprising continuously moving the workpiece support with the plurality of workpieces supported thereon transversely past the linearly extending stream of lubricant vapor from the vapor source and depositing a uniform thickness film of the lubricant on at least one surface of each of the plurality of workpieces.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 19, 2014
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Patent number: 8802191
    Abstract: Disclosed is a process for the reprocessing or production of a sputter target or an X-ray anode wherein a gas flow forms a gas/powder mixture with a powder of a material chosen from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, mixtures of two or more thereof and alloys thereof with at least two thereof or with other metals, the powder has a particle size of 0.5 to 150 ?m, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed on to the surface of the object to be reprocessed or produced.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 12, 2014
    Assignee: H. C. Starck GmbH
    Inventors: Stefan Zimmermann, Uwe Papp, Heinrich Kreye, Tobias Schmidt
  • Patent number: 8802186
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 12, 2014
    Assignee: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky
  • Patent number: 8802195
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 12, 2014
    Assignee: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky
  • Patent number: 8790751
    Abstract: In a method of promoting adhesion between a copper body and a dielectric layer in contact therewith, the copper body and dielectric layer are placed in a vacuum chamber, in a chamber, the copper body and dielectric layer within the chamber are heated, and SiH4 is provided in the chamber.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 29, 2014
    Assignee: Spansion LLC
    Inventor: King-Sang Lam
  • Publication number: 20140202355
    Abstract: A fluorinated ether composition comprising at least two types of fluorinated ether compounds represented by A-O—RF—B, differing in group B, in a proportion of group (5-1) being from 90 to 95 mol % and a proportion of group (5-2) being from 5 to 10 mol % to the total amount of groups B. A is a C1-6 perfluoroalkyl group or B. RF is —(CF2CF2O)b(CF(CF3)CF2O)c(CF2O)d(CF2CF2CF2O)e—, and the binding order of repeating units is not limited. b, c, d and e are each independently an integer of at least 0, and b+c+d+e is from 5 to 150. —(CF2)aCFXCH2OCH2CH2CH2SiLmRn??Group (5-1) —(CF2)aCFXCH2OCH2CH(SiLmRn)CH3??Group (5-2) —(CF2)aCFXCH2OCH2CH?CH2??Group (5-3) —(CF2)aCFXCH2OCH?CHCH3??Group (5-4) a is 0 or 1, X is F or CF3, L is a hydrolyzable group, R is a hydrogen atom or a monovalent hydrocarbon group, m is an integer of from 1 to 3, n is an integer of from 0 to 2, and m+n=3.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventor: Taiki HOSHINO
  • Publication number: 20140199499
    Abstract: A method for depositing a particle on a work piece is disclosed. The housing is coupled to the work piece to form a chamber and a separation distance between a surface of the work piece and a surface of the housing is controlled using a coupling device. A working gas having a particle entrained therein is directed within the chamber to deposit the particle at the work piece. The coupling between the housing and the work piece may be a slidable coupling. The coupling device may include an air-bearing surface or a gasketed coupling.
    Type: Application
    Filed: August 20, 2013
    Publication date: July 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Theodore G. van Kessel, Brent A. Wacaser
  • Publication number: 20140197355
    Abstract: Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs), such as NaNO3, NaCl, KNO3, have very low thermal conductivities. To enhave the storage of PCMs, macroencapsulation of PCMs was performed using a metal oxide, such as SiO2 or a graphene-SiO2, over polyimide-coated or nickel-embedded, polyimide-coated pellets The macro encapsulation provides a self-supporting structure, enhances the heat transfer rate, and provides a cost effective and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO3 was selected for thermal storage in a temperature range of 300° C. to 500° C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 17, 2014
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Manoj Kumar Ram, Chand K. Jotshi, Elias K. Stefanakos, Dharendra Yogi Gaswami
  • Publication number: 20140199500
    Abstract: An apparatus for particle deposition is disclosed. The apparatus includes a housing configured to couple to a work piece to form a chamber. A nozzle directs a working gas into the chamber to deposit a particle entrained in the working gas at the work piece. The nozzle may be coupled to a flow channel within the chamber that directs the working gas through the nozzle. The coupling between the housing and the work piece may be a slidable coupling.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Theodore G. van Kessel, Brent A. Wacaser
  • Publication number: 20140199486
    Abstract: The disclosure relates to a coating method including the steps of providing a multi-component coating composition including two or more components, applying each component to a porous substrate, mixing each component with at least one other component thereby causing at least two components to undergo a chemical reaction.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: Valspar Sourcing, Inc.
    Inventors: Kevin W. Evanson, Brian L. Marty, Stephen M. Carlson, Andrew Ubel
  • Publication number: 20140193661
    Abstract: A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes the steps of: (a) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (b) maintaining the suspension by agitation in the reservoir; (c) immersing the substrate in the reservoir; (c) applying a first coating of the suspension to the substrate; (d) removing the substrate with the applied first coating from the reservoir; and (e) sintering the sinterable particles to the substrate thereby forming a coated substrate.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicant: Mott Corporation
    Inventors: James K. Steele, Wayne F. White, Alfred M. Romano, Kenneth L. Rubow
  • Publication number: 20140193583
    Abstract: A method and device for coating with polyimide solution are provided. The method includes the following steps: placing a glass substrate onto a support surface to form a face contact therebetween; heating the glass substrate to a preset coating temperature through the support surface; and coating the glass substrate with the polyimide solution. With the glass substrate heated before being coated, the polyimide solution diffusion and solvent evaporation during coating can be accelerated, which is conducive to controlling the temperature uniformity and consistency and preventing the cloud-like spots. The glass substrate in face contact with the support plate is more conducive to being fully heated, and can prevent the glass substrate from being heated non-uniformly due to the contact of the glass substrate with the supporting legs, thereby preventing the foot-like spots.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 10, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Ming Liu
  • Patent number: 8771793
    Abstract: Systems, apparatuses, techniques and processes for applying a wet film to a substrate using a slot die are provided. In one form, the air pressure around at least a portion of the discharge end of the slot die is adjustable by the application of a vacuum force in order to control the width and thickness of the wet film being applied to the substrate. In one aspect of this form, the wet film is a narrow, continuous stripe of reagent material applied to a moving web of the substrate from which a plurality of test elements will be obtained. However, different forms and applications are also envisioned.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: July 8, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christopher D. Wilsey, Abner D. Joseph, Sergio Buccilli
  • Patent number: 8765229
    Abstract: A method for producing a porous thin film with variable transmittance, includes placing a polymer into an oven for an drying process to remove water vapor from the polymer and obtain a dry polymer; mixing the dry polymer, a salt and a solvent in accordance with a mixing ratio so as to obtain a first mixed solution; placing the first mixed solution into an ultrasonic vibrator, dissolving the salt to form a second mixed solution; coating the second mixed solution on a glass plate to form a solution thin film; placing solution thin film into an exhaust cabinet to obtain a composite thin film; and washing the composite thin film to remove the salt from the composite thin film to obtain a porous thin film wherein the polymer is a polyacrylonitrile, the salt is a lithium chloride, the porous thin film changes its transmittance via dry and wet state.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: July 1, 2014
    Assignee: National Tsing Hua University
    Inventors: Wen-Kuang Hsu, Ying-Tzu Chen
  • Publication number: 20140174514
    Abstract: The present disclosure relates to a metal oxide-carbonaceous hybrid thin film, a preparing method of the metal oxide-carbonaceous hybrid thin film, and a dye-sensitized solar cell using a photoelectrode including the metal oxide-carbonaceous hybrid thin film.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Ewha University - Industry Collaboration Foundation
    Inventors: Dong Ha Kim, Yoon Hee Jang
  • Patent number: 8741387
    Abstract: A system and process is disclosed for binding particles to a carrier material in an isolated relationship for use in composite fabrication. A slurry comprising particles dispersed in fluid is created in particle suspension tanks, deposited as a uniform layer and filtered using reduced pressure applied to a filter belt to leave behind isolated particles, the reduced pressure further acting to overcome electrostatic and other forces of attraction between the particles until they can be permanently bound to the carrier with a binder or adhesive and collected on a take-up roll.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: June 3, 2014
    Assignee: United Technologies Corporation
    Inventors: John H. Vontell, John Putnam
  • Patent number: 8728374
    Abstract: A panel for use in a foundation or above-grade may be made with studs for strength, and for attachment to an interior wall. The composite panel has two outer facing sheets, and a core. Studs are provided on one of the outer facing sheets. The manufacturing process involves forming the panel on a mold by laying down a gel coat (optional), a lower facing sheet (used instead of, or with, the gel coat), the core piece(s), and the top facing layer. This can be done by a lamination process, or preferably is done by laying down fibrous material for the facing sheet(s) and vacuum-infusing it with resin, and curing the panel. The core pieces may either be pre-made, or (if infusion is used) may themselves be made in this process, by infusing them with the resin as well. The studs are preferably of galvanized steel and are secured by means of an adhesive.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Crane Composites Inc.
    Inventors: Robert Hancock, Wenping Zhao
  • Publication number: 20140134448
    Abstract: The laminated body includes a ceramic base member having an insulating property, an intermediate layer including metal or alloy as a main component formed on a surface of the ceramic base member, and a metal film layer (a circuit layer and a cooling fin) formed on a surface of the intermediate layer by accelerating a powder of metal or alloy with a gas and spraying and depositing the powder on the surface of the intermediate layer as the powder is in a solid state.
    Type: Application
    Filed: July 11, 2012
    Publication date: May 15, 2014
    Applicant: NHK SPRING CO., LTD.
    Inventors: Yuichiro Yamauchi, Satoshi Hirano, Shinji Saito, Toshihiko Hanamachi
  • Publication number: 20140123991
    Abstract: A flavorant-carrying adsorbent particle comprising an adsorbent core particle having a BET specific surface area of 700 m2/g or greater, and a flavor-generating medium carried on the surface of the adsorbent core particle and including a flavorant and a flavorant-holding material holding the flavorant, wherein the flavorant-holding material is present in an amount of 5 to 20% with respect to a total weight of the flavorant-carrying adsorbent particle, and the flavorant is present in an amount of 10 to 50% with respect to a weight of the flavorant-holding material.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: JAPAN TOBACCO INC.
    Inventors: Ryoji FUJITA, Michihiro INAGAKI, Masahiro CHIDA, Mitsuharu SUGYO, Hiromichi MUTO, Kiyohiro SASAKAWA
  • Publication number: 20140113077
    Abstract: A manufacturing method of a composite cloth has steps of: preparing a work-in-process composite cloth, surface treating the work-in-process composite cloth, and coating the work-in-process composite cloth with a non-shielding metallized layer. In the step of preparing a work-in-process composite cloth, a work-in-process composite cloth allowing electromagnetic waves to pass through is prepared. In the step of surface treating the work-in-process composite cloth, a surface of the work-in-process composite cloth is coupling-processed, and then is dried. In the step of coating the work-in-process composite cloth with a non-shielding metallized layer, the surface of the work-in-process composite cloth is coated with a non-shielding metallized layer whose thickness ranges from 10 ? (angstrom) to 100 ? (angstrom). Accordingly, a boring step and a patching step are spared.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Inventor: KAI-HSI TSENG
  • Publication number: 20140109756
    Abstract: A siliconized boron carbide composite material is made by infiltrating molten silicon metal into a porous mass including boron carbide. The porous mass contains little or no reactable carbon. The infiltration is designed and intended such that the infiltrant is substantially non-reactive with the constituents of the porous mass. The composite body so formed contains boron carbide and silicon metal, but substantially no silicon carbide formed in-situ from a reaction of the silicon metal with a carbon source. Such siliconized boron carbide composite materials have utility in armor applications.
    Type: Application
    Filed: July 12, 2012
    Publication date: April 24, 2014
    Inventors: Michael K. Aghjanian, Allyn L. McCormick, Bradley N. Morgan, Anothony F. Liszkiesicz, JR., Jeffrey R. Ramberg, David W. McKenna
  • Patent number: 8697190
    Abstract: The disclosure relates to a coating method including the steps of providing a multi-component coating composition including two or more components, applying each component to a porous substrate, mixing each component with at least one other component thereby causing at least two components to undergo a chemical reaction.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 15, 2014
    Assignee: Valspar Sourcing, Inc.
    Inventors: Kevin W. Evanson, Brian L. Marty, Stephen M. Carlson, Andrew Ubel
  • Patent number: 8689726
    Abstract: The present invention comprises an automated apparatus capable of spray depositing polyelectrolytes via the LbL mechanism with minimal or no human interaction. In certain embodiments, the apparatus sprays atomized polyelectrolytes onto a vertically oriented substrate. To counteract the effects of irregular spray patterns, the substrate is preferably slowly rotated about a central axis. In certain embodiments, the apparatus also includes a forced pathway for the droplets, such as a pathway created by using a vacuum. In this way, a thicker or three-dimensional substrate can be coated. In certain embodiments, the apparatus is designed so as to be scalable. Thus, through the use of multiple instantiations of the apparatus, a large or irregularly shaped substrate can be coated. Rolls of textile can therefore be coated using the apparatus. Additionally, the present invention includes a method to uniformly coat a substrate, such as a hydrophobic textile material, using aqueous solutions of polyelectrolytes.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 8, 2014
    Assignee: Massachusetts Institute Of Technology
    Inventors: Kevin C. Krogman, Paula T. Hammond, Nicole S. Zacharia
  • Publication number: 20140093657
    Abstract: A method is provided for joining a filler material to a substrate material. The method includes melting the filler material within a melting chamber of a crucible such that the filler material is molten. The crucible has an outlet fluidly connected to the melting chamber. The method also includes holding the filler material within the melting chamber of the crucible by applying a first pressure differential across the outlet of the crucible, and releasing the filler material from the melting chamber of the crucible by applying a second pressure differential across the outlet of the crucible to deliver the filler material to a target site of the substrate material. The second pressure differential has a different value than the first pressure differential.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: General Electric Company
    Inventors: Qi Zhao, Robert John Zabala, Laurent Cretegny, Jeffrey Jon Schoonover, Mark Kevin Meyer, Keith Anthony Lauria, William R. Catlin
  • Publication number: 20140093652
    Abstract: The invention relates to a process for the continuous production of a flexible substrate, preferably a plastics film containing a multi-layer coating in a roll-to-roll coating process, in which at least one vacuum coating process and at least one wet coating process are combined together, and to a device for use in such a process.
    Type: Application
    Filed: March 28, 2012
    Publication date: April 3, 2014
    Applicants: BAYER (SOUTH EAST ASIG) PTE LTD., BAYER INTELLECTUAL PORPERTY GMBH
    Inventors: Min (Martin) Yan, Axel Schmidt, Peter Reichert
  • Patent number: 8680178
    Abstract: The in-line repair operations in the automotive industry require high-temperature masking tapes which satisfy a particular profile of requirements. Hence such masking tapes must be temperature-stable and must have a high crosslinking potential. Masking tapes employed are tapes coated with thermally crosslinking natural rubber (NR) adhesives which have a crosslinker resin/phenolic resin component.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 25, 2014
    Assignee: Tesa SE
    Inventors: Andreas Meier, Matthias Seibert, Sabine Thormeier, Karsten Seitz
  • Publication number: 20140065368
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Tolga AYTUG, Mariappan Parans PARANTHAMAN, John T. SIMPSON, Daniela Florentina BOGORIN
  • Patent number: 8663731
    Abstract: A detachable framework used for winding optical fiber coils and a method of producing optical fiber coils with this framework. A framework with a suitable structure is designed considering comprehensively three factors, i.e., the window ratio of an optical fiber coil, the precision of an optical fiber gyro and the easy detachment of the framework from the optical fiber coil. A surface treatment with the framework is performed by coating a layer of thermosol on the surface of the framework so the optical fiber coil can be easily detached from the framework after curing. The required length of optical fiber is winded around the optical fiber coil framework, accompanying with vacuum pressure impregnating with curing adhesive after winding and optical fiber coil curing subsequently. The framework is taken off from the optical fiber coil under the heating circumstances, thereby completing production of the non-framework optical fiber coil.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 4, 2014
    Assignee: Beijing Aerospace Times Optical-Electronic Technology Co., Ltd.
    Inventors: Wei Wang, Jing Li, Qingsheng Yang, Xuefeng Wang, Jinquan Tan
  • Publication number: 20140044876
    Abstract: The present invention provides a method for the production of small-size titanium oxide particles, comprising the steps of: e) providing a solid containing titanic acid; f) contacting the solid with an acidic aqueous medium thereby forming an aqueous precursor solution at given conditions of temperature lower than 100° C., Titanium cation concentration lower than 20 wt % and higher than 0.1 wt %, pH lower than 1 and strong acid concentration higher than 2.5% and lower than 30%; g) optionally, adding one or more capping agents to the aqueous precursor solution; and h) modifying at least one of the conditions of the aqueous precursor and maintaining the aqueous precursor at the modified conditions, whereupon precipitation of a precipitate comprising small-size titanium oxide particles takes place, the modifications being selected from at least one of temperature elevation by at least 5° C. and pH elevation by at least 0.1 pH units.
    Type: Application
    Filed: November 21, 2011
    Publication date: February 13, 2014
    Applicant: Joma International AS
    Inventors: Asher Vitner, Matti Ben-Moshe, Mubeen Baidossi
  • Patent number: 8642112
    Abstract: A prosthetic implant having a thermally treated ceramic coating and a method of producing a coated prosthetic implant. The ceramic coating is deposited onto the prosthetic implant such as by a plasma spray coating process. The prosthetic implant is thermally treated in a low oxygen environment to increase the hardness and wear-resistance of the ceramic coating for improved articulation of the prosthetic implant.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 4, 2014
    Assignee: Zimmer, Inc.
    Inventors: Joel G. Scrafton, Jeffrey P. Anderson, David M. Miller, Oludele O. Popoola
  • Publication number: 20140030510
    Abstract: Such a vapor-deposited barrier film is provided that has a vapor-deposited layer having uniform film quality, a high film density and high barrier performance in the initial stage. The vapor-deposited barrier film contains a substrate having on at least one surface thereof at least one layer of a vapor-deposited layer (a). The vapor-deposited layer (a) contains a metal oxide, has a thickness of from 10 to 500 nm, and has an average value of an elemental ratio of oxygen (O) and the metal (oxygen (O)/metal) of 1.20 or more and 1.90 or less and a difference between the maximum value and the minimum value of the (oxygen (O)/metal) of 0.35 or less on analysis of the vapor-deposited layer in the depth direction thereof by an X-ray photoelectron spectroscopy (ESCA) method.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 30, 2014
    Applicant: Mitsubishi Plastics, Inc.
    Inventors: Shigeto Kimura, Tooru Hachisuka, Koji Yamauchi, Shigenobu Yoshida
  • Publication number: 20140023864
    Abstract: A system and method for forming graphene on a substrate and an opposed wear member having a DLC coating. The system includes graphene formed by an exfoliation process to dispose solution processed graphene onto a substrate. The system further includes an opposing wear member of DLC disposed on another substrate and a gas atmosphere of an inert gas like N2.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventors: Anirudha V. Sumant, Ali Erdemir, Junho Choi, Diana Berman
  • Patent number: 8617314
    Abstract: An organic material deposition system and method are provided. The organic material deposition apparatus may include a chamber having a processing space formed therein, a source supply device that generates an organic source and injects and diffuses the organic source into the processing space through a shower head provided in the processing space. The substrate is supported by a stage device that moves the substrate upward and downward within the processing space to adjust a distance between the substrate and the shower head. A pumping port provided at an upper positioned at an upper portion of the processing space provides a vacuum exhaust path that directs flow through the processing space toward the stage device. This allows an organic thin film with a uniform thickness to be deposited using an apparatus with a relatively simple configuration.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: December 31, 2013
    Assignee: ADP Engineering Co., Ltd.
    Inventors: Young Ung An, Ki Taek Jung, Jong Yeoul Ji, Sang Leoul Kim
  • Patent number: 8609191
    Abstract: The present invention provides an air-permeable filtration media that includes an air-permeable backing and an adsorbent. The adsorbent is at least partially embedded in the air-permeable backing. The present invention also provides a method of manufacturing an air-permeable filtration media. The present invention also provides a method of substantially removing contaminants form air, employing the air-permeable filtration media.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 17, 2013
    Assignee: Point Source Solutions, Inc.
    Inventors: James A. Raetz, Gregory J. Raetz
  • Publication number: 20130327574
    Abstract: A method for manufacturing a metal reinforced open cell carbon foam component comprises (a) placing a block of open cell carbon foam in a mold. The block comprise a plurality of interconnected pores distributed throughout the block. In addition, the method comprises (b) pouring a molten metal into the mold. Further, the method comprises (c) infiltrating the interconnected pores in the block during (b). Still further, the method comprises (d) allowing the molten metal to cool after (c) to form a metal reinforced open cell carbon foam casting.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Applicant: NATIONAL OILWELL VARCO, L.P.
    Inventors: Adrian Marica, Kenneth S. Kondo
  • Patent number: 8603585
    Abstract: A method for making a carbon nanotube composite includes: forming a self-supporting carbon nanotube film structure; providing a hardenable liquid material; immersing the carbon nanotube film structure in the hardenable liquid material; and solidifying the hardenable liquid material to achieve a carbon nanotube composite.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: December 10, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jia-Ping Wang, Qun-Feng Cheng, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8586151
    Abstract: A process for the preparation of nano structured silicon thin film using radio frequency (rf) plasma discharge useful for light emitting devices such as light emitting diode, laser etc. which allows precise control of the nanocrystal size of silicon and its uniform distribution without doping using a plasma processing for obtaining efficient photoluminescence at room temperature.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 19, 2013
    Assignee: Council of Scientific & Industrial Research
    Inventors: Sushil Kumar, Prakash Narain Dixit, Chandra Mohan Singh Rauthan
  • Patent number: 8574677
    Abstract: A layer-by-layer fabrication method of sprayed nanopaper is disclosed in the present invention. According to one embodiment, a plurality of nano-micro particles are suspended in a solvent to form a sprayable particle precursor. Afterwards, one or more sprayed nanopapers are formed by vacuum-assisted layer-by-layer spray of the sprayable particle precursor on a porous substrate.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 5, 2013
    Inventors: James L. Lee, Dante Guerra, Yong G. Min, Siva Movva
  • Patent number: 8574670
    Abstract: A method and apparatus for applying a uniform membrane coating to a substrate, such as a honeycomb structure, having a plurality of through-channels, wherein the through-channels have an average diameter of less than or equal to 3 mm. The method includes providing a liquid precursor comprising membrane-forming materials to the substrate and applying a pressure differential across the substrate. The pressure differential causes the liquid precursor to travel uniformly through the through-channels, depositing the membrane-forming materials on the walls of the through-channels and forming the membrane on the walls of the through-channels. The apparatus includes a chamber capable of holding the substrate and of maintaining a pressure differential across the plurality of through-channels.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: November 5, 2013
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Curtis Robert Fekety, Todd P St Clair
  • Patent number: 8568899
    Abstract: Provided is a metal covered polyimide composite comprising a tie-coat layer and a metal seed layer formed on a surface of a polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating, wherein the copper plated layer or copper alloy plated layer comprises three layers to one layer of the copper layer or copper alloy layer, and there is a concentrated portion of impurities at the boundary of the copper layer or copper alloy layer when the copper layer or copper alloy layer is three layers to two layers, and there is no concentrated portion of impurities when the copper layer or copper alloy layer is a single layer. Additionally provided are a method of producing the composite and a method of producing an electronic circuit board.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: October 29, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Michiya Kohiki, Naonori Michishita, Nobuhito Makino
  • Publication number: 20130280414
    Abstract: [Object] To provide a deposition method that enables fine particles having a relatively large particle diameter (at least larger than 0.5 ?m diameter) to be more stably deposited on a substrate by using a simple configuration. [Solving Means] In the deposition method, fine particles P whose surface is at least insulative are placed in an airtight container 2, and a carrier gas is introduced into the container, thereby triboelectrically charging the fine particles and generating an aerosol A of the fine particles. The fine particles in question are charged by friction with the inner surface of a transfer tubing 6 connected to the container, and the aerosol is conveyed via such tubing to a deposition chamber 3 which is maintained at a pressure lower than that in the airtight container. The charged fine particles are deposited on a substrate S placed in the deposition chamber.
    Type: Application
    Filed: December 15, 2010
    Publication date: October 24, 2013
    Applicant: FUCHITA NANOTECHNOLOGY LTD.
    Inventors: Eiji Fuchita, Eiji Tokizaki, Eiichi Ozawa
  • Publication number: 20130280550
    Abstract: A device housing includes a metallic substrate, a pattern element formed in the substrate, and a transparent or translucent decorative layer formed on the substrate and the pattern layer. The substrate defines a receiving space therein, and the pattern element is formed in the receiving space. The pattern element is made of thermosetting plastic. A method for making the device housing is also described.
    Type: Application
    Filed: September 27, 2012
    Publication date: October 24, 2013
    Inventors: CHAO-SHENG HUANG, XIAO-WEI LI, XIN-WU GUAN, PO-FENG HO
  • Publication number: 20130256605
    Abstract: Composite materials having a multi-wall carbon nanotube content of from 4 to 15% by weight, based on total weight of the composite, are produced from a dispersion of multi-wall carbon nanotubes (MWCNTs) and a fiber reinforcing material in a carrier fluid which is processed to form a shaped article that may then be infused with a liquid polymer or polymer-forming mixture to form the composite.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: Bayer MaterialScience LLC
    Inventors: Usama E. Younes, Serkan Unal, Eric Giles, Joel Matsco
  • Publication number: 20130236738
    Abstract: It is possible to obtain a laminate having high adhesion strength between ceramic and a metal coating by providing the following: an insulating ceramic substrate; an intermediate layer formed on the surface of the ceramic substrate and having a metal-containing principal component metal layer and an active ingredient layer including metal, a metal oxide, or a metal hydride; and a metal coating formed on the surface of the intermediate layer by accelerating a metal-containing powder with gas, and depositing the same on the surface thereof by spraying while in a solid state.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 12, 2013
    Applicant: NHK SPRING CO., LTD.
    Inventors: Yuichiro Yamauchi, Shinji Saito, Masaru Akabayashi, Satoshi Hirano
  • Patent number: 8529983
    Abstract: A coating system for coating an Insertable Medical Device (IMD) with one or more drugs is disclosed. The coating system includes a spray nozzle unit for coating the IMD with one or more drugs. The IMD includes a guiding member, a coating member and a supporting member. The IMD is passed through a protection tube such that the guiding member is located within the protection tube and an end of the supporting member is connected to a holder to expose the coating member of the IMD to the spray nozzle unit. The protection tube is received by a mandrel fixture which includes a circular disc for holding and rotating the protection tube and the IMD within the protection tube. When the protection tube along with the IMD is rotated, the spray nozzle unit coats the coating member of the IMD with the one or more drugs.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: September 10, 2013
    Assignee: Envision Scientific Pvt. Ltd.
    Inventors: Manish Doshi, Divyesh Sherdiwala, Prakash Sojitra, Ashwin Vyas, Pankaj Gandhi, Bhavesh Chevli, Yavar Pothiawala