Vacuum, Vapor, Or Gas Other Than Air Utilized Patents (Class 427/398.4)
  • Patent number: 9023429
    Abstract: A method of manufacturing a semiconductor device including: mounting a substrate on a substrate mounting member that is disposed in a reaction container; heating the substrate at a predetermined processing temperature and supplying a first gas and a second gas to the substrate to process the substrate; stopping supply of the first gas and the second gas, and supplying an inert gas into the reaction container; and unloading the substrate to outside the reaction container.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 5, 2015
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yuichiro Takeshima, Osamu Kasahara, Kazuyuki Toyoda, Junichi Tanabe, Katsuhiko Yamamoto, Hisashi Nomura
  • Patent number: 8950470
    Abstract: Preferably, obtaining internal and external thermal measurement values of a sealed process chamber allows a control system to generate a control signal based on a comparison of the internal and external thermal measurement values to the predetermined value. The control signal is provided to a fluid handling system, wherein the fluid handling system modulates flow of a first fluid around the exterior of the sealed process chamber. The control signal is further provided to a closed loop heat exchange system, wherein the closed loop heat exchange system modulates flow of a second fluid within an interior cavity of the sealed process chamber based on the control signal. The control signal is still further provided to an open loop heat exchange system, wherein the open loop heat exchange system modulates flow of a third fluid within the interior of cavity of the sealed process chamber.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: February 10, 2015
    Assignee: Poole Ventura, Inc.
    Inventors: Mark R. Erickson, Aaron L. Dingus, Arthur W. Custer, III, Henry J. Poole, Nader Jamshidi
  • Patent number: 8871305
    Abstract: A method of forming composite nanostructures using one or more nanomaterials. The method provides a nanostructure material having a surface region and one or more nano void regions within a first thickness in the surface region. The method subjects the surface region of the nanostructure material with a fluid. An external energy is applied to the fluid and/or the nanostructure material to drive in a portion of the fluid into one or more of the void regions and cause the one or more nano void regions to be substantially filled with the fluid and free from air gaps.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 28, 2014
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Patent number: 8770143
    Abstract: The various embodiments of the invention provide for relative movement of the substrate and a process head to access the entire wafer in a minimal space to conduct combinatorial processing on various regions of the substrate. The heads enable site isolated processing within the chamber described and method of using the same are described.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 8, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Rick Endo, Kurt Weiner, Indranil De, James Tsung, Maosheng Zhao
  • Patent number: 8092721
    Abstract: Methods and compositions for the deposition of ternary oxide films containing ruthenium and an alkali earth metal.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 10, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Satoko Gatineau, Julien Gatineau, Christian Dussarrat
  • Patent number: 8071179
    Abstract: A method of forming composite nanostructures using one or more nanomaterials. The method provides a nanostructure material having a surface region and one or more nano void regions within a first thickness in the surface region. The method subjects the surface region of the nanostructure material with a fluid. An external energy is applied to the fluid and/or the nanostructure material to drive in a portion of the fluid into one or more of the void regions and cause the one or more nano void regions to be substantially filled with the fluid and free from air gaps.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 6, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8062705
    Abstract: It is shown a method and apparatus for distributing a viscous liquid over a surface of a substrate, e.g. a semiconductor wafer or a datastorage media, by conditioning the substrate thermally, locally specific before or during the spin coating process.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: November 22, 2011
    Assignee: Singulus Technologies AG
    Inventor: Chieh Ou-Yang
  • Publication number: 20110217469
    Abstract: In accordance with some embodiments described herein, a method for transferring a substrate is provided. The method includes loading one or more substrates into a respective mobile chamber of one or more mobile chambers. The mobile chambers are movable on a first rail positioned adjacent to two or more process modules. Each mobile chamber is configured to maintain a specified gas condition. The respective mobile chamber is moved along the first rail. The respective mobile chamber is docked to a respective process module of the two or more process modules. At least one of the one or more substrates is conveyed from the respective mobile chamber to the respective process module.
    Type: Application
    Filed: December 20, 2010
    Publication date: September 8, 2011
    Inventors: Lawrence Chung-Lai Lei, Alfred Mak, Rex Liu, Kon Park, Samuel S. Pak, Tzy-Chung Terry Wu, Simon Zhu, Ronald L. Rose, Gene Shin, Xiaoming Wang
  • Patent number: 7699960
    Abstract: Methods for producing cast-coated papers showing a reduced level of curling and reduced curling or wavy deformation caused by moisture absorption or other reasons as well as showing a high surface quality in the cast-coated surface. The steps for producing cast-coated papers include applying a coating color based on a pigment and an adhesive on one side of a base paper, and pressing/drying the coated layer in the wet state against a casting drum mirror surface, where moisture is added to the coated paper by passing it through conditioned air at a high temperature and a high humidity (for 20 seconds or more) after pressing/drying the coated layer against a casting drum.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 20, 2010
    Assignee: Nippon Paper Industries Co., Ltd.
    Inventors: Katsumasa Ono, Hidenobu Todoroki, Yuji Abe
  • Patent number: 7622145
    Abstract: Processes for coating implantable medical devices that improve the stability of therapeutic agents contained within the coating.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: November 24, 2009
    Assignee: Cordis Corporation
    Inventors: Eugena A. Akerman, Dirk Cleeren, Gerard Llanos, Cynthia A. Maryanoff, Georgios Papandreou, William Rion, Karel Six, Thomas L. Todd
  • Patent number: 7241477
    Abstract: A method for forming an electrode comprises: combining a platinum precursor with a gold precursor to form an electrode ink; forming the electrode ink into an electrode precursor; firing the electrode precursor to form the electrode; treating the electrode in an environment having an oxygen partial pressure of less than or equal to 500 ppm oxygen for a period of time sufficient produce an electrode with an exposed surface gold concentration of greater than or equal to about 6 times a bulk gold concentration in the electrode.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: July 10, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Fenglian Chang, Rick D. Kerr, Earl Lankheet, David A. Thompson
  • Patent number: 7106488
    Abstract: A method of producing an electrochromic device, includes the steps of: providing a first electron conducting layer on a substrate, providing a working electrode in communication with the first electron conducting layer, providing an ion conducting layer in communication with the working electrode, providing an ion storage electrode in communication with the ion conducting layer, and providing a second electron conducting layer in communication with the ion storage electrode, wherein at least one and less than all of the providing steps include(s) plasma chemical vapor deposition. An electrochromic device produced by the method of the invention is disclosed, as is an apparatus adapted to perform the method of the invention, including plasma CVD devices and vacuum sputtering devices.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: September 12, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Philip Bruce Henderson
  • Patent number: 7070833
    Abstract: A method of passivating the surface of a substrate to protect the surface against corrosion, the surface effects on a vacuum environment, or both. The substrate surface is placed in a treatment environment and is first dehydrated and then the environment is evacuated. A silicon hydride gas is introduced into the treatment environment, which may be heated prior to the introduction of the gas. The substrate and silicon hydride gas contained therein are heated, if the treatment environment was not already heated prior to the introduction of the gas and pressurized to decompose the gas. A layer of silicon is deposited on the substrate surface. The duration of the silicon depositing step is controlled to prevent the formation of silicon dust in the treatment environment. The substrate is then cooled and held at a cooled temperature to optimize surface conditions for subsequent depositions, and the treatment environment is purged with an inert gas to remove the silicon hydride gas.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 4, 2006
    Assignee: Restek Corporation
    Inventors: David A. Smith, Gary A. Barone, Martin E. Higgins, Bruce R. F. Kendall, David J. Lavrich
  • Patent number: 7059044
    Abstract: For the purpose of achieving enhanced reliability with respect to interlayer connections of printed wiring boards, a manufacturing method of printed wiring boards of the present invention includes any one of the steps of A) restricting the resin flowing in hot press processing, B) joining fiber reinforcements together by fusion or adhesion, C) having the thickness of a board material reduced after a filling process and D) forming a low fluidity layer via a filler mixed in a board material. Such properties as allowing the resin flowing in hot press processing to be controlled are provided to a material for manufacturing printed wiring boards of the present invention or to a volatile ingredient contained therein to allow the thickness of a board material to be reduced efficiently after a filling process.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: June 13, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toshihiro Nishii
  • Patent number: 6838115
    Abstract: Single wafer processing methods and systems for manufacturing films having low-k properties and low indices of refraction. The methods incorporate a processing station in which both curing and post-cure, in situ gas cooling take place.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: January 4, 2005
    Assignee: FSI International, Inc.
    Inventors: Devendra Kumar, Jeffrey D. Womack, Vuong P. Nguyen, Jack S. Kasahara, Sokol Ibrani
  • Patent number: 6743462
    Abstract: A method of forming a coating for an implantable medical device, such as a stent, is provided which includes applying a composition to the device in an environment having a selected pressure. An apparatus is also provided for coating the devices. The apparatus comprises a chamber for housing the device wherein the pressure of the chamber can be adjusted during the coating process.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: June 1, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 6719885
    Abstract: A method of reducing stress induced defects in a substrate according to an HDP-CVD process including providing a substrate for depositing a layer of material according to an HDP-CVD process; igniting a plasma for carrying out an HDP-CVD process; adjusting plasma operating parameters to achieve a first deposition-sputter ratio with respect to the substrate; depositing a first portion of the layer of material according to a first range of substrate temperatures; and, depositing at least a second portion of the layer of material according to at least a second range of substrate temperatures.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chun-Sheng Lin, Jui-Hei Huang, Chi-Sheng Lo, Long-Siang Chuang
  • Patent number: 6685987
    Abstract: A method for producing an orthopaedic implant having enhanced fatigue strength. A forged implant substrate having an elongated stem is incorporated with a melting point lowering substance. Then, metal particles are sintered to the substrate, forming a porous layer on the substrate which enhances bone in growth or the mechanical interlock with bone cement. Advantageously, the sintering occurs at a lower temperature than if the substance were not incorporated into the substrate, which in turn results in an enhanced fatigue strength of the inventive implant. The fatigue strength of a forged or cast implant can also be improved by nitrogen diffusion hardening and/or thermally processing the implant after the porous coating is adhered by sintering. Further, the fatigue strength can be further improved by combining incorporating the melting point lowering substance with nitrogen diffusion hardening and/or aging treatment subsequent to sintering.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: February 3, 2004
    Assignee: Zimmer Technology, Inc.
    Inventor: H. Ravindranath Shetty
  • Patent number: 6610422
    Abstract: The method for manufacturing coated steel sheet has the steps of: immersing a steel sheet in a hot-dip coating bath to form an Al—Zn base coating layer containing 20 to 95 mass % Al on the steel sheet, forming a passivated layer on the coating layer; and applying thermal history to the coating layer. The thermal history is applied immediately after the steel sheet left the hot-dip coating bath or in a temperature range of from T(° C.) between 130° C. and 300° C. to 100° C.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: August 26, 2003
    Assignee: NKK Corporation
    Inventors: Toshihiko Ooi, Takafumi Yamaji, Keiji Yoshida, Yuichiro Tanaka, Junichi Inagaki, Masaaki Yamashita, Yasuhiro Majima, Nobuyuki Ishida, Yuichi Fukushima, Norio Inoue, Shinji Hori
  • Patent number: 6602348
    Abstract: The present invention provides a cooldown chamber allowing more efficient and rapid cooling of a substrate. The substrate is cooled in the cooldown chamber utilizing a pair of cooling members, preferably mating “clam shell” style members, positioned adjacent the top and bottom surfaces of the substrate. While the top surface of the substrate should not be contacted directly, the upper cooling member can approach the substrate surface, preferably to within about 0.01 to about 0.03 inches. The bottom cooling member should also approach the bottom substrate surface, preferably making contact or being within about 0.01 to about 0.03 inches. With the cooling members closed to define an enclosure around a hot substrate, an inert gas is supplied into the enclosure at pressures between about 5 and about 30 torr to allow efficient thermal conduction from the substrate to the cooling members.
    Type: Grant
    Filed: September 17, 1996
    Date of Patent: August 5, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Terrance R. Rogelstad
  • Patent number: 6579615
    Abstract: This invention provides a plated steel wire with high corrosion resistance and excellent workability, wherein the average composition of the plating alloy in the plated steel wire comprises, in terms of weight percentage, Al: 4-20%, Mg: 0.8-5%, and if necessary one or more from among Si: ≦2%, Na: 0.001-0.1% and Ti: 0.01-0.1%, with the remainder Zn, and an Fe—Zn alloy layer of no greater than 20 &mgr;m thickness is present at the plating-base metal interface; it is produced by coating a steel wire with a molten zinc plating composed mainly of zinc as the first stage and then.coating it with a molten zinc alloy plating with the aforementioned average composition as the second stage. The maximum plating bath immersion time is 20 seconds, and the part of the plated steel wire drawn out from the plating bath is purged with nitrogen gas.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 17, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Satoshi Sugimaru, Satoru Tanaka, Seiki Nishida, Akira Takahashi, Atsuhiko Yoshie, Kazumi Nishimura
  • Patent number: 6479095
    Abstract: A high-pressure vessel is allowed to be in an initial state, and a first chamber is disposed downward. Copper or copper alloy is placed in the first chamber, and SiC is set in a second chamber. The high-pressure vessel is tightly sealed, and then the inside of the high-pressure vessel is subjected to vacuum suction through a suction pipe. An electric power is applied to a heater to heat and melt the copper or copper alloy in the first chamber. At a stage at which the molten copper in the first chamber arrives at a predetermined temperature, the high-pressure vessel is inverted by 180 degrees to give a state in which SiC is immersed in the molten copper. An impregnating gas is introduced into the high-pressure vessel through a gas inlet pipe to apply a pressure to the inside of the high-pressure vessel. Thus, SiC is impregnated with the molten copper.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: November 12, 2002
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuhei Ishikawa, Tsutomu Mitsui
  • Publication number: 20020132052
    Abstract: Single wafer processing methods and systems for manufacturing films having low-k properties and low indices of refraction. The methods incorporate a processing station in which both curing and post-cure, in situ gas cooling take place.
    Type: Application
    Filed: July 11, 2001
    Publication date: September 19, 2002
    Inventors: Devendra Kumar, Jeffrey D. Womack, Vuong P. Nguyen, Jack S. Kasahara, Sokol Ibrani
  • Patent number: 6447553
    Abstract: A radiation curable monomer and a dystuff are mixed in a curable formulation and fed into a hot evaporator under vacuum. The blend is flash evaporated through a nozzle and recondensed onto a moving substrate in contact with a temperature-controlled rotating drum. The condensed film is then crosslinked with a high-energy ultraviolet or electron-beam radiation source to effect cross-linking of the monomer. The resulting product consists of a crosslinked polymer matrix incorporating dyestuff molecules within its structure, which dramatically enhances the durability, solvent resistance, heat stability and migration fastness of the product. These properties can be further improved by chemically bonding the dyestuff molecules with the crosslinked polymer network, which can be accomplished by judiciously functionalizing the dyestuff with appropriate functional groups designed to polymerize or to react with the curable monomer.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Sigma Technologies International, Inc.
    Inventors: Michael G. Mikhael, Angelo Yializis
  • Patent number: 6436469
    Abstract: The present invention relates to a transparent conductive thin film and a method for the preparation of the same., and more particularly to a method for the preparation of a transparent conductive thin film comprising the steps of a) preparing a sol solution of antimony-tin oxides (ATO) or indium-tin oxides (ITO), b) forming a transparent coating layer on an outer surface of a cathode ray tube using the sol solution, and c) rapidly increasing a temperature of the transparent coating layer to a predetermined temperature of 300 to 1200° C., and rapidly cooling the transparent coating layer either immediately or after maintaining the predetermined temperature for up to 20 seconds, and a transparent conductive thin film prepared by this preparation method, i.e., a transparent conductive thin film which not only has superior conductivity, high hardness, and non-reflectivity but also saves production process time and increases production process effectiveness, and a method for the preparation of the same.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: August 20, 2002
    Assignee: Samsung Chemical Paint Co., Ltd.
    Inventors: Hyun-Gon Lee, Eu-Gene Kim, Jung-Hyun Oh, Sang-Soo Oh, Jun-Beom Kim
  • Publication number: 20020102357
    Abstract: A method for imparting an aluminide coating to an alloy gas turbine engine component, heat treating the component, and quenching the component. The component is exposed to a source of aluminum at an elevated temperature in a coating furnace to deposit an aluminum-based oxidation barrier on the component, heated in the coating furnace to a temperature of at least the solution temperature of the alloy, and quenched by flowing a chilled inert gas around the component in the coating furnace to cool the component from the temperature of at least the solution temperature of the alloy to a temperature at which a gamma′ phase of the alloy is set in the alloy in less than about 10 minutes.
    Type: Application
    Filed: January 29, 2001
    Publication date: August 1, 2002
    Inventors: Nripendra N. Das, Terri K. Brown, Matthew D. Saylor, Brian H. Pilsner, Carl H. Snyder
  • Patent number: 6177137
    Abstract: Method and arrangement for coating a web in a film press nip defined by a pair of rotating rolls and through which the web runs and in which a coating agent is applied as a film onto a face of at least one of the rolls and transferred in the nip from the face of the roll(s) onto a respective side of the web to thereby coat the respective side of the web. Steam jets are applied to each side of the web that is being coated to prevent formation of coating-agent mist at a web-outlet side of the nip. The steam jets can be directed from a location after the nip to the web-outlet side of the nip and/or substantially to a point of separation of the web from contact with the roll(s).
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: January 23, 2001
    Assignee: Valmet Corporation
    Inventor: Rauno Rantanen
  • Patent number: 6171653
    Abstract: An apparatus applies a liquid or viscid coating medium onto a moving material web, especially one made of paper or cardboard. A coating mechanism first applies the coating medium onto an applicator element or an applicator roll, which subsequently transfers the coating medium at a coating location onto the material web in the form of a coating layer. Furthermore, if so desired, a doctoring device can be positioned at a doctor station, adjacent to the coating location, on the downstream side relative to the movement of the material web for the purpose of smoothing and/or metering the coating. The coating apparatus incorporates an apparatus for the generation and/or supplying of a fluid, preferably steam. This apparatus is positioned adjacent to the coating location or to the doctor station on the downstream side relative to the movement L of the material web.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: January 9, 2001
    Assignee: Voith Sulzer Papiertechnik Patent GmbH
    Inventors: Bernhard Kohl, Martin Kustermann, Oswald Satzger, R{umlaut over (u)}diger Kurtz, Harald Hess, Karl-Heinz Hannen, Hans Peter Hoffmann, Franz Kustos
  • Patent number: 6168845
    Abstract: A new method for making patterned magnetic storage media with magnetic and substantially non-magnetic zones utilizes a selective oxidation processes. Selective oxidation is achieved by subjecting a magnetic layer to an oxygen plasma through voids in a patterned mask. A high resolution patterned mask is made by embossing and reactive ion etch processes. The method is used to fabricate patterned magnetic disks media with alternating magnetic and non-magnetic zones ranging from 10 to 1000 Nanometers in width. Magnetic storage disks produced by this method have high-bit densities, minimal topography and reduced signal noise.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: January 2, 2001
    Assignee: International Business Machines Corporation
    Inventors: Robert Edward Fontana, Jr., Richard Hsiao, Ernesto Esteban Marinero, Hugo Alberto Emilio Santini, Bruce David Terris