Superposed Diverse Oxide Coatings Patents (Class 427/419.3)
  • Patent number: 10294803
    Abstract: Coating systems are provided for use on a CMC substrate, that can include: a bond coat on a surface of the CMC substrate; a first rare earth silicate coating on the bond coat; a sacrificial coating of a reinforced rare earth silicate matrix on the at least one rare earth silicate layer; a second rare earth silicate coating on the sacrificial coating; and an outer layer on the second rare earth silicate coating. The first rare earth silicate coating comprises at least one rare earth silicate layer, and the second rare earth silicate coating comprises at least one rare earth silicate layer. The sacrificial coating has a thickness of about 4 mils to about 40 mils. Methods are also provided for tape deposition of a sacrificial coating on a CMC substrate.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 21, 2019
    Assignee: General Electric Company
    Inventor: Glen Harold Kirby
  • Patent number: 10145252
    Abstract: Coating systems on a surface of a CMC component, such as a CMC shroud, are provided. The coating system can include an environmental barrier coating on the surface of the CMC component and an abradable coating on the environmental barrier coating and defining an external surface opposite of the environmental barrier coating. The abradable coating includes a compound having the formula: Ln2ABO8, where Ln comprises scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, or mixtures thereof; A comprises Si, Ti, Ge, or a combination thereof; and B comprises Mo, W, or a combination thereof. In one embodiment, the abradable coating has a first coefficient of thermal expansion at an interface with the environmental barrier coating that changes to a second coefficient of thermal expansion at its external surface. Methods are also provided for applying an abradable coating onto a CMC component.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 4, 2018
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Paul Stephen Manicke
  • Patent number: 9126860
    Abstract: An optical member includes a glass substrate and an antireflection film disposed on a surface of the glass substrate. The antireflection film includes an oxide layer mainly composed of aluminum oxide and having a textured shape in a surface and an intermediate layer disposed between the glass substrate and the oxide layer. The intermediate layer includes sheet-like crystals that are stacked so that their surfaces are parallel to the surface of the substrate.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: September 8, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Norishige Kakegawa
  • Patent number: 9012044
    Abstract: A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 21, 2015
    Assignee: 3M Innovative Properties Company
    Inventor: Clark I. Bright
  • Patent number: 8974864
    Abstract: A method of coating a substrate is disclosed. The method includes providing a substrate; depositing an infrared reflecting layer over at least a portion of a substrate; depositing a primer layer over at least a portion of the infrared reflective layer; depositing a dielectric layer over at least a portion of the primer layer; and forming an absorbing layer. The absorbing layer includes an alloy and/or mixture of (a) a metal having an index of refraction at 500 nm less than or equal to 1.0 and (b) a material having a ?G°f of greater than or equal to ?100 at 1000° K. The metal can be silver and the material can be tin.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 10, 2015
    Assignee: PPG Industries Ohio, Inc.
    Inventors: James J. Finley, James P. Thiel, Harry Buhay
  • Patent number: 8961682
    Abstract: Hydrophilic coating compositions and methods to make and use the compositions are disclosed. The compositions include a photocatalytic pigment material made up of an inorganic pigment and a monomeric anti-oxidants and free radical scavenger that is contacted to the surface of the inorganic pigment.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 24, 2015
    Assignee: Empire Technology Development LLC
    Inventors: William Brenden Carlson, Angele Sjong, Feng Wan, Timothy Londergan
  • Publication number: 20150021417
    Abstract: The invention relates to a fuel injector (1) for an internal combustion engine. The fuel injector (1) is comprised of an injector body (5) with an injector tip (6). The injector tip (6) is used for the injection of fuel into the combustion chamber (4) of the internal combustion engine. For this reason, the injector tip (6) is designed so as to be at least partially extended into the combustion chamber (4). If the injector tip (6) is designed to be flush with the surface of the combustion chamber (4), the injector tip (6) is arranged so that it directly faces toward the combustion chamber (4). Furthermore, the injector tip (6) is at least partially coated with a first oxide layer (9). According to the invention, a catalytic second oxide coating (10) composed of cerium oxide (CeO2), praseodymium oxide (PrO2), zirconium oxide (ZrO2), or any bi-component combination thereof is applied on top of the first oxide coating (9).
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: Robert Ukropec, Oliver Berkemeier, Clemens Maria Verpoort
  • Publication number: 20150024182
    Abstract: Coated article having antireflective property together with self cleaning, moisture resistance and antimicrobial properties can be prepared with a topmost layer of titanium oxide on an antireflective layer, which can be formed by a sol-gel process. The antireflective layer can comprise a porosity forming agent, or an alkyltrialkoxysilane-based binder. The antireflective coating can comprise silica and titania components, with pores to achieve low index of refraction and titania to achieve self-cleaning and antimicrobial properties.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Inventor: Nikhil Kalyankar
  • Patent number: 8883252
    Abstract: Coated article having antireflective property together with self cleaning, moisture resistance and antimicrobial properties can be prepared with a topmost layer of titanium oxide on an antireflective layer, which can be formed by a sol-gel process. The antireflective layer can comprise a porosity forming agent, or an alkyltrialkoxysilane-based binder. The antireflective coating can comprise silica and titania components, with pores to achieve low index of refraction and titania to achieve self-cleaning and antimicrobial properties.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: November 11, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Nikhil D. Kalyankar
  • Patent number: 8865851
    Abstract: Disclosed is a moisture-curing coating composition based on aprotic solvents comprising a binder with a polyacrylate or polymethacrylate obtained using monomer (I) and a phosphorous- and nitrogen-containing catalyst. Also disclosed is a method of producing a multicoat finish using these coating compositions and also to the use of this method to coat interior or exterior bodywork components or to coat components for shipbuilding and aircraft construction or to coat components for household and electrical appliances or to coat plastics moldings or films.
    Type: Grant
    Filed: February 20, 2010
    Date of Patent: October 21, 2014
    Assignee: BASF Coatings GmbH
    Inventors: Peter Hoffmann, Benedikt Schnier, Elke Westhoff, Bernadette Möller
  • Patent number: 8859052
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability include providing a component, applying an environmental barrier coating to the component, where the environmental barrier coating includes a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Patent number: 8852740
    Abstract: An electrode active material including a lithium-transition metal complex oxide having a layered rock salt structure or spinel structure and a fluorine and nitrogen introduced therein. Also disclosed is an electrode active material production method including a nitrogen introduction step of synthesizing a lithium-transition metal complex oxide (c) having a layered rock salt structure or spinel structure and a fluorine and nitrogen introduced therein, by firing a material composition including a lithium-transition metal complex oxide (a) having a fluorine introduced therein and a nitriding agent (b) being represented by the formula (1) and being solid or liquid at ordinary temperature.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Oki, Toshihiro Seguchi
  • Publication number: 20140261084
    Abstract: A pigment is disclosed wherein the pigment includes a platy substrate or uniform platy substrate coated with an odd number of layers of alternating layers of high or low refractive index material, wherein each layer has a refractive index that differs from adjacent layers by at least 0.2; and the pigment has from about 40 to about 100% reflectance of light having a wavelength of 280 nm to 400 nm. Processes for making and using the pigments are also disclosed. These pigments can find application in paints, plastics, cosmetics, glass, printing inks, and glazes.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Steven Jones, Markus Rueckel, Thomas Servay, Stefan Dahmen, Geoffrey Johnson
  • Patent number: 8835023
    Abstract: Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Sandia Corporation
    Inventor: Jon Ihlefeld
  • Patent number: 8828194
    Abstract: A layer system that can be annealed comprises a transparent substrate, preferably a glass substrate, and a first layer sequence which is applied directly to the substrate or to one or more bottom layers that are deposited onto the substrate. The layer sequence includes a substrate-proximal blocking layer, a selective layer and a substrate-distal blocking layer. Also provided is a method for producing a layer system that can be annealed and has a sufficient quality even under critical climatic conditions and/or undefined conditions of the substrate. During the heat treatment (annealing, bending), the color location of the layer system is maintained substantially stable and the color location can be widely varied at a low emissivity of the layer system. For this purpose, a first dielectric intermediate layer is interposed between the substrate-proximal blocking layer and the selective layer and is configured as a substoichiometric gradient layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 9, 2014
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Joerg Fiukowski, Matthias List, Hans-Christian Hecht, Falk Milde
  • Patent number: 8815378
    Abstract: The invention relates to a transparent or semi-transparent substrate having, over at least a portion of at least one of its surfaces, a photocatalytic coating based on titanium oxide and characterized in that the coated surface has a luminous reflectance less than that of a non-coated surface of the substrate. The invention also relates to methods for obtaining a substrate of this type and to uses for this substrate.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: August 26, 2014
    Assignee: Saint Gobain Glass France
    Inventors: Lethicia Gueneau, Mauricette Rondet, Eric Mattmann
  • Patent number: 8808407
    Abstract: A method of manufacturing a lithium ion secondary battery comprising the steps of: forming a laminate by laminating an electrolyte green sheet and a positive electrode green sheet; and sintering the laminate is provided. At least one of the electrolyte green sheet and the positive electrode green sheet contains an amorphous oxide glass powder in which a crystalline having a lithium ion conducting property is precipitated in the step of sintering. A solid state battery produced in accordance with the method is provided.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Ohara Inc.
    Inventor: Yasushi Inda
  • Patent number: 8795798
    Abstract: A method for producing a recording medium, including a step of coating one or more ink receiving layers provided on at least one surface of a substrate with an outermost layer coating liquid to form an outermost layer, where an ink receiving layer of the one or more ink receiving layers, which is nearest to the outermost layer contains alumina hydrate and a binder. The outermost layer coating liquid contains monodispersive and spherical cationic colloidal silica particles having an average particle size of 30 nm or more and 60 nm or less, polyvinyl alcohol having a saponification degree of 75% by mol or more and 85% by mol or less and a viscosity-average polymerization degree of 1,500 or more and 2,200 or less, and cationic polyurethane emulsion particles having an average particle size of 10 nm or more and 100 nm or less.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 5, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Isamu Oguri, Hisao Kamo, Yasuhiro Nito, Tetsuro Noguchi, Ryo Taguri, Olivia Herlambang
  • Patent number: 8771790
    Abstract: A method of reducing magnetite formation in the bore of a pipe including the steps of selecting a pipe with a pre-existing oxide layer on its inner bore surface and coating the pre-existing oxide layer with an oxidation resistant metal to thereby reduce magnetite formation in the bore of the pipe.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: July 8, 2014
    Inventor: Michael John de Vink
  • Patent number: 8765221
    Abstract: A film forming method includes a step of arranging a wafer, on which an insulating film is formed, in a processing chamber of a film forming apparatus and a surface modification step of supplying a compound gas containing silicon atoms and an OH group-donating gas into the processing chamber so that Si—OH groups are formed on the surface of the insulating film. The film forming method further includes a film forming step of supplying a film forming gas containing a manganese-containing material into the processing chamber so that a manganese-containing film is formed on the surface of the insulating film on which the Si—OH groups have been formed through a CVD method.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hidenori Miyoshi, Hitoshi Itoh, Hiroshi Sato
  • Patent number: 8740007
    Abstract: A cooking utensil and a manufacturing method thereof are provided. The cooking utensil includes a cooking body, a first metal-ceramic composite layer having an electromagnetic property and a second metal-ceramic composite layer having a heat conductive property. The cooking body has an external bottom surface. The first metal-ceramic composite layer is disposed on the external bottom surface of the cooking body. The second metal-ceramic composite layer is disposed on the first metal-ceramic composite layer. The cooking utensil is suitable for both an induction cooker and a gas burner.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 3, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Sheng Leu, Wu-Han Liu, Wei-Tien Hsiao, Chang-Chih Hsu, Mao-Shin Liu, Zhong-Ren Wu
  • Patent number: 8728502
    Abstract: This disclosure is directed to a black effect pigment and a method of forming said pigment. The pigment comprises a platy substrate coated with SnO2 and/or SnO2 hydrates and Fe3O4 with an optional coating of metal oxides such as SiO2, TiO2, ZrO2 and ZnO2. The deposition of the SnO2 and/or SnO2 hydrates onto the substrate improves the adhesion and prepares the substrate surface for deposition of the iron oxides onto the platy surface, especially mica surfaces. While the pigment may be used in such applications as coating, powder coating, printing ink, plastic, ceramic material, glass, cosmetic formulation, laser marking pigment, pigment composition or dry preparation, the pigment is especially suitable for cosmetic applications.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: May 20, 2014
    Assignee: BASF Corporation
    Inventors: James Sioss, Thomas Chirayil, Betty Aucar
  • Publication number: 20140118903
    Abstract: A case frame used in various devices and a method of manufacturing the case frame are provided. The method includes forming the case frame in a shape corresponding to a product to which the case frame is applied, forming a first painting layer with a color of a material applied to a surface of the formed case frame, depositing a transparent oxide deposition layer having a refractive index on an upper portion of the first painting layer, and forming a second painting layer on an upper portion of the transparent oxide deposition layer. Accordingly, the case frame can have an excellent texture by reproducing a brightness and a color anisotropy on the basis of a viewing angle by adding only a simple manufacturing process, thereby being able to improve quality of an electronic device in general and to promote a user's desire for purchasing the device.
    Type: Application
    Filed: August 6, 2013
    Publication date: May 1, 2014
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventors: Chang-Youn HWANG, Hak-Ju KIM, Yong-Geon LEE
  • Patent number: 8709582
    Abstract: An optical article comprising a substrate and on at least one face of the substrate a multilayered antireflecting coating functioning in an interferential manner having antifog properties, said antireflecting coating including a last layer with a refractive index n?1.55 and a physical thickness of 120 nm or less directly deposited on a high refractive index layer (HI layer) having a refractive index n>1.55, and a thickness of less than 500 nm.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 29, 2014
    Assignee: Essilor International
    Inventors: Haipeng Zheng, Michael Rubner, Nuerxiati Nueraji, Robert E. Cohen
  • Patent number: 8691346
    Abstract: The present invention relates to methods and compositions for coating aluminum substrates. In an embodiment, the invention includes a method of applying a coating on an aluminum substrate including contacting the aluminum substrate with a first solution. The first solution can include a zinc metal salt, a sugar acid or alkali metal salt thereof, and an alkali metal hydroxide. The method can also include contacting the aluminum substrate with a second solution. The second solution can include a molybdate salt, an alkanolamine, and a fluorine acid. Other embodiments are also included herein.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: April 8, 2014
    Assignee: Birchwood Laboratories, Inc.
    Inventors: William V. Block, David J. Halverson, John Thanh Ngoc Nguyen
  • Publication number: 20140065438
    Abstract: A coating including a CMAS-resistant layer with a rare earth oxide. The CMAS-resistant layer is essentially free of zirconia and hafnia, and may further include at least one of alumina, silica, and combinations thereof.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 6, 2014
    Inventor: Kang N. Lee
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8652625
    Abstract: A transparent gas barrier film comprising a substrate having thereon a gas barrier layer comprising at least a low density layer and a high density layer, wherein one or more intermediate density layers are sandwiched between the low density layer and the high density layer.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 18, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kazuhiro Fukuda, Toshio Tsuji, Chikao Mamiya, Hiroaki Arita
  • Patent number: 8652588
    Abstract: The invention relates to a method and apparatus for the application of a thin film coating of material onto a surface of an article which is to be exposed to aqueous conditions such as when in the sea or rivers. The invention allows for the formation of a coating which is resistant to fouling and which coating can be formed of materials which have significantly less adverse effect on the quality of the water in which the article is placed in comparison to conventional coating types.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: February 18, 2014
    Assignee: Teer Coatings Limited
    Inventors: Dennis Teer, Laurent Akesso, Parnia Navabpour
  • Patent number: 8617665
    Abstract: A methods, apparatus and compositions for producing colored, self-cleaning substrates by roll coating are provided. The roll coated, colored, self-cleaning substrates retain the predetermined color and a predetermined gloss of the colored coating, thereby facilitating their use in architectural applications. The roll coated, colored, self-cleaning substrates may be iridescent-free.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 31, 2013
    Assignee: Alcoa, Inc.
    Inventors: Jay A. Kahn, Grant Nintzel, Yves Biehlmann, Craig Belnap, Clinton Zediak, John Keener, James Bell, Albert L. Askin, Paula L. Kolek, Jean Ann Skiles
  • Publication number: 20130239682
    Abstract: Disclosed are devices, materials, systems, and methods, including a device that includes one or more structural components, at least one of the one or more structural components comprising substantially HfO2—TiO2 material. Also disclosed is a hemispherical resonator that includes a hemisphere including one or more structural components with at least one of the one or more structural components comprising substantially HfO2—TiO2 material, a forcer electrode configured to apply an electrical force on the hemisphere to cause the hemisphere to oscillate, and one or more sensor electrodes disposed in proximity to the hemisphere and configured to sense an orientation of a vibration pattern of the hemispherical resonator gyroscope.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Inventor: Chris PAINTER
  • Patent number: 8486495
    Abstract: A method of forming a photocatalyst device includes depositing a layer of UV photocatalyst and depositing islands of a sequestering agent on a surface of the layer of the UV photocatalyst.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 16, 2013
    Assignee: Carrier Corporation
    Inventors: Wayde R. Schmidt, Treese Hugener-Campbell, Tania Bhatia
  • Patent number: 8480863
    Abstract: The invention relates to an electrode for electrolytic applications, optionally an oxygen-evolving anode, obtained on a titanium substrate and having a highly compact dual barrier layer comprising titanium and tantalum oxides and a catalytic layer. A method for forming the dual barrier layer comprises the thermal decomposition of a precursor solution applied to the substrate optionally followed by a quenching step and a lengthy thermal treatment at elevated temperature.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 9, 2013
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea Francesco Gullá, Sobha Abraham
  • Patent number: 8481115
    Abstract: A method for producing coated, fine metal particles each having a Ti oxide coating and a silicon oxide coating formed in this order on a metal core particle by mixing powder comprising TiC and TiN with oxide powder of a metal M meeting the relation of ?GM-O>?GTiO2, wherein ?GM-O represents the standard free energy of forming an oxide of the metal M; heat-treating the resultant mixed powder in a non-oxidizing atmosphere to reduce the oxide of the metal M with the powder comprising TiC and TiN, while coating the resultant metal M particles with Ti oxide; coating the Ti-oxide-coated surface with silicon oxide; and classifying the resultant particles such that they have a median diameter d50 of 0.4-0.7 ?m, and a variation coefficient (=standard deviation/average particle size) of 35% or less, which indicates a particle size distribution range.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: July 9, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hisato Tokoro, Takashi Nakabayashi, Shigeo Fujii
  • Patent number: 8409663
    Abstract: A method for making a heat treatable coated article including a composite oxide coating with ultraviolet (UV) radiation blocking properties is provided. The composite oxide coating may be formed by applying, then optionally curing, a wet coating solution including a mixture of titanium, ceria, and silica to the substrate over an optional infrared (IR) blocking multi-layer coating (e.g., low-E coating). The ceria, titania, and silica may act as UV blocker(s). An organic polymer top coating may be provided over the composite oxide, where the organic polymer may be formed by exposing a photomonomer and/or photopolymer to radiation (e.g., UV radiation). The coated glass substrate may then be subjected to a high temperature heat treatment step. The coating may be heat and/or crack resistant. The coated article may be effective at blocking IR and/or UV radiation in applications such as window applications.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 2, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Desaraju V. Varaprasad, John P. Hogan
  • Patent number: 8372488
    Abstract: Methods and apparatus for thermal barrier coatings are provided. The thermal barrier coating system includes a bond coat, a first thermal barrier coating comprising a thermal conductivity, kA having a first value, and a second thermal barrier coating including a thermal conductivity, kB having a second value wherein the second value is different than the first value.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: February 12, 2013
    Assignee: General Electric Company
    Inventors: Ravindra Annigeri, David Vincent Bucci
  • Patent number: 8366889
    Abstract: Subject The present invention aims to provide an anode for electrolysis by an ion exchange membrane process and the manufacturing method thereof which can show a lower concentration of by-product oxygen gas in chlorine gas and a lower overvoltage stably for a long time, compared with conventional anodes.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 5, 2013
    Assignee: Permelec Electrode Ltd.
    Inventor: Toshikazu Hayashida
  • Publication number: 20130004712
    Abstract: A high surface finish, thermally stable, multilayer slurry-based overlay system suitable for use in a severe thermal environment is disclosed.
    Type: Application
    Filed: June 11, 2012
    Publication date: January 3, 2013
    Inventor: Irina Belov
  • Patent number: 8343587
    Abstract: A method for providing a component with protection against sand related distress comprises the steps of: providing a substrate; and forming a thermal barrier coating system by depositing at least one layer of a first material selected from the group consisting of a zirconate, a hafnate, a titanate, and mixtures thereof, which first material has been mixed with at least one oxide so that each layer contains from about 25 to 99 wt% of at least one oxide.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 1, 2013
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Kevin W. Schlichting, Melvin Freling, John G. Smeggil, David B. Snow, Michael J. Maloney
  • Patent number: 8343589
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Patent number: 8327664
    Abstract: A method for producing transparent conductive glass by a) depositing two barrier layers on the surface of hot glass by chemical vapor deposition; and b) depositing two conductive film layers on the surface of the glass ribbon having the two barrier layers. The method is easy to control and suitable for mass production. The resultant transparent conductive glass has low surface resistance and moderate haze.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: December 11, 2012
    Assignee: Hangzhou Bluestar New Materials Technology Co., Ltd.
    Inventors: Qiying Liu, Jianxun Wang, Ming Zhao, Nianwei Zhao, Yayan Cao, Junbo Liu, Fanhua Kong, Defa Wei, Yankai Ge, Chunjia Peng, Yongxiu Cai, Zhihui Ye, Molong Xiao
  • Patent number: 8309182
    Abstract: A method for producing a multilayer structure including a first layer and a second layer adjacent to the first layer, wherein the first layer comprises a first inorganic laminar compound and the second layer comprises a second inorganic laminar compound, comprising applying a first coating slip comprising a first liquid medium and a first material onto a substrate and removing the first liquid medium, and a step of applying a second coating slip comprising a second liquid medium and a second material onto the first layer and removing the second liquid medium, wherein the first coating slip and the second coating slip satisfy a requirement that the ratio of the dry volume of the second inorganic laminar compound to the dry volume of the second material is higher than the ratio of the dry volume of the first inorganic laminar compound to the dry volume of the first material.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: November 13, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuhiro Oosaki, Taiichi Sakaya
  • Patent number: 8304026
    Abstract: Disclosed is a method for producing a pigmented composite comprising contacting a microporous material with a tin compound to form a composite then contacting the composite with a pigment comprising an elemental metal, a metal oxide, a metal alloy, a metal salt, or a combination thereof to produce the pigmented composite. The pigmented composites described herein are useful for separating one or more analytes present in a fluid sample.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: November 6, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Roger E. Smith, Karl V. Voelkerding, Marc G. Elgort, Jacob Durtschi
  • Patent number: 8293344
    Abstract: Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: October 23, 2012
    Assignee: Guardian Industries Corp.
    Inventors: Jean-Marc Lemmer, Nestor P. Murphy
  • Patent number: 8288022
    Abstract: A perovskite phosphor film emitting red light from among the three primary colors (i.e., red, green and blue) underlying the construction of displays which is fabricated by adsorbing a nanosheet as a seed layer on a solid substrate and forming an oriented film of an oxide phosphor thereon, characterized in that the perovskite phosphor film comprises a film of an oxide phosphor (3) having a high transparency that is formed on a seed layer comprising a nanosheet (2) that is adsorbed on a solid substrate (1) such as a glass substrate or the like, and the oxide phosphor (3) is (SrxCa1-x)1-yPryTiO3: 0?x?0.8, 0.001?y?0.01.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 16, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Keiichi Ikegami, Hiroshi Takashima, Takeo Ebina, Hiroyuki Tetsuka
  • Publication number: 20120237577
    Abstract: This disclosure is directed to a black effect pigment and a method of forming said pigment. The pigment comprises a platy substrate coated with SnO2 and/or SnO2 hydrates and Fe3O4 with an optional coating of metal oxides such as SiO2, TiO2, ZrO2 and ZnO2. The deposition of the SnO2 and/or SnO2 hydrates onto the substrate improves the adhesion and prepares the substrate surface for deposition of the iron oxides onto the platy surface, especially mica surfaces. While the pigment may be used in such applications as coating, powder coating, printing ink, plastic, ceramic material, glass, cosmetic formulation, laser marking pigment, pigment composition or dry preparation, the pigment is especially suitable for cosmetic applications.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Inventors: James Sioss, Thomas Chirayil, Betty Aucar
  • Patent number: 8268394
    Abstract: A method of fabricating a metamaterial is provided, comprising providing a sample of engineered microstructured material that is transparent to electromagnetic radiation and comprises one or more voids, passing through the voids a high pressure fluid comprising a functional material carried in a carrier fluid, and causing the functional material to deposit or otherwise integrate into the engineered microstructured material to form the metamaterial. Many microstructured materials and functional materials can be used, together with various techniques for controlling the location of the integration of the functional material within the microstructured material, so that a wide range of different metamaterials can be produced.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: September 18, 2012
    Assignee: University of Southampton
    Inventors: Pier John Anthony Sazio, John Victor Badding, Dan William Hewak, Steven Melvyn Howdle
  • Patent number: 8236433
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 7, 2012
    Assignee: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20120195744
    Abstract: One embodiment of the present invention is a unique engine hot section component having a coating system operative to reduce heat transfer to the hot section component. Another embodiment is a unique method for making a gas turbine engine hot section component with a coating system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines, hot section components and coating systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
    Type: Application
    Filed: December 23, 2011
    Publication date: August 2, 2012
    Inventors: Subhash K. Naik, Charles J. Teague
  • Patent number: 8227020
    Abstract: Techniques to form dislocation cores along an interface of a multilayer thin film structure are described. The loading and/or deloading of isotopes of hydrogen are also described in association with core formation. The described techniques can provide be applied to superconductive structure formation, x-ray and charged particle generation, nuclear reaction processes, and/or inertial confinement fusion targets.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 24, 2012
    Assignee: NPL Associates, Inc.
    Inventor: George H. Miley