Metallic Compound-containing Coating Patents (Class 427/419.1)
-
Patent number: 12246385Abstract: A coated tool in the present disclosure includes a base and a coating layer located on a surface of the base. The coating layer includes an intermediate layer including Ti, and an Al2O3 layer. The Al2O3 layer is located in contact with the intermediate layer at a position further away from the base than the intermediate layer. The intermediate layer includes a plurality of first protrusions protruding toward the Al2O3 layer. At least one of the plurality of first protrusions is a composite protrusion including second protrusions protruding in a direction intersecting with a protruding direction of the first protrusions. A percentage of the composite protrusions in the plurality of first protrusions is 30% or less. A cutting tool in the present disclosure includes a holder which is extended from a first end toward a second end and includes a pocket on a side of the first end, and the coated tool located in the pocket.Type: GrantFiled: July 28, 2020Date of Patent: March 11, 2025Assignee: KYOCERA CorporationInventors: Yuusaku Sugawa, Hirotoshi Ito, Kenji Kumai, Takanori Sugiyama, Tadashi Katsuma
-
Patent number: 12227827Abstract: Metal substrates comprising a colored coating and/or a protective coating disposed on at least a surface of the substrate. The colored coating can include a metal oxide coating integrally bonded to the terminal and produced by heat tinting or a titanium nitride containing material. The protective coating is derived from a material comprising one or more of aluminum oxide, silicon oxide, a superhydrophobic material, wherein the protective coating has a Scratch Resistance of at least about F, as determined by ASTM D336. Methods of making and using the coated metal substrates are also disclosed.Type: GrantFiled: November 29, 2018Date of Patent: February 18, 2025Assignee: Georgia Tech Research CorporationInventors: William Judson Ready, Jason Hayes Nadler, Stephan Turano, Brent Karl Wagner
-
Patent number: 12194543Abstract: A coated tool in the present disclosure includes a base and a coating layer located on a surface of the base. The coating layer includes a TiCN layer, an intermediate layer including Ti, and an Al2O3 layer in this order from a side of the base. The Al2O3 layer is located in contact with the intermediate layer at a position further away from the base than the intermediate layer. The intermediate layer includes a plurality of first protrusions protruding toward the Al2O3 layer. An average area of the plurality of first protrusions is 1700 nm2 or less. A cutting tool in the present disclosure includes a holder which is extended from a first end toward a second end and includes a pocket on a side of the first end, and the coated tool located in the pocket.Type: GrantFiled: July 28, 2020Date of Patent: January 14, 2025Assignee: KYOCERA CorporationInventors: Yuusaku Sugawa, Hirotoshi Ito, Kenji Kumai, Takanori Sugiyama, Tadashi Katsuma
-
Patent number: 11952510Abstract: The present invention relates to an aqueous coating composition for textiles, in particular for the cabin air filter of a motor vehicle, comprising at least one allergen denaturing agent and at least one compatibilizing agent for the at least one allergen denaturing agent.Type: GrantFiled: September 22, 2017Date of Patent: April 9, 2024Assignees: Devan Chemicals, Valeo Systemes ThermiquesInventors: Hugo Soens, Maxime Girault, Samuel Gobillard, Younick Portal
-
Patent number: 11807539Abstract: The present application provides a heat exchanger and a manufacturing method of a heat exchanger. The heat exchange includes a metal substrate having a fluid channel for circulating a heat exchange medium. The heat exchanger includes a coating having a rare earth conversion coating and a hydrophilic coating. The rare earth conversion coating is arranged to cover at least part of a surface of the metal substrate, and the rare earth conversion coating includes a rare earth element-containing compound. At least part of the hydrophilic coating is further away from the metal substrate than the rare earth conversion coating. A surface of the heat exchanger is hydrophilic, which is conducive to the discharge of condensate water, and can improve corrosion resistance and prolong a service life of the heat exchanger.Type: GrantFiled: April 27, 2022Date of Patent: November 7, 2023Assignee: Hangzhou Sanhua Research Institute Co., Ltd.Inventors: Hai Huang, Jianhua Tang, Ming Xue, Shurui Yu, Linjie Huang
-
Patent number: 11680023Abstract: A composition including at least about 50 wt % basalt and no more than about 20 wt % binding agent, wherein the composition is in the form of a plurality of particles. The composition can find applications in agriculture, horticulture, and gardening, and can be used, e.g., as soil amendment.Type: GrantFiled: August 28, 2020Date of Patent: June 20, 2023Assignee: Specialty Granules Investments LLCInventors: John Horton, Justin P. Dunlap
-
Patent number: 11239058Abstract: Embodiments of the present disclosure provide protective coatings, i.e., diffusion and thermal barrier coatings, for aluminum alloy substrates. In particular, embodiments described herein provide a protective layer stack comprising a tantalum nitride layer disposed on an aluminum alloy substrate and a ceramic layer disposed on the tantalum nitride layer. In some embodiments, the aluminum alloy substrates comprise processing chambers and processing chamber components used in the field of electronic device manufacturing, e.g., semiconductor device manufacturing. In one embodiment, an article includes a substrate, a tantalum nitride layer disposed on the substrate, and a ceramic layer disposed on the tantalum nitride layer.Type: GrantFiled: May 14, 2019Date of Patent: February 1, 2022Assignee: Applied Materials, Inc.Inventors: Karthikeyan Balaraman, Balamurugan Ramasamy, Kartik Shah, Mats Larsson, Kevin A. Papke, Rajasekhar Patibandla, Sathyanarayana Bindiganavale, Umesh M. Kelkar
-
Patent number: 10968756Abstract: A process for coating a gas turbine engine component is disclosed herein. The process comprises applying a bond coat on a substrate of a gas turbine engine. A thermal barrier material is applied to the bond coat. A coating containing polynuclear aluminum oxide/hydroxide clusters is then applied to the thermal barrier material. The polynuclear aluminum oxide/hydroxide clusters are Al13 Keggin clusters having the formula [AlO4Al12(OH)24(H2O)12]7+, or are salts of the Al13 Keggin clusters called Al13 Keggin complexes. A gas turbine engine component comprising a superalloy substrate; a bond coat disposed on the substrate; a thermal barrier material on the bond coat; and a coating containing the polynuclear aluminum oxide/hydroxide clusters on the thermal barrier material is disclosed herein.Type: GrantFiled: March 3, 2017Date of Patent: April 6, 2021Assignee: RAYTHEON TECHNOLOGIES CORPORATIONInventors: Susanne M. Opalka, Weina Li
-
Patent number: 10480886Abstract: An improved design for a suppressor which suppresses sound from a gun report as well as reduces heat transference therefrom.Type: GrantFiled: January 22, 2018Date of Patent: November 19, 2019Assignee: Gladius Suppressor Company, LLCInventors: John McCartney Hibbitts, Robert Randall Mace, Jr.
-
Patent number: 10145992Abstract: A dielectric mirror includes a coating having alternating high and low index layers. The mirror coating has no metallic reflective layer of Al or Ag in certain example embodiments, and may have film side and/or glass side visible reflection of from about 50-90% (more preferably from about 60-80% and most preferably from about 65-75%) and visible transmission of from about 10-50% (more preferably from about 10-40% or 20-40%) in certain example embodiments.Type: GrantFiled: February 1, 2017Date of Patent: December 4, 2018Assignee: Guardian Europe S.A.R.L.Inventor: Gyorgy Vikor
-
Patent number: 9539612Abstract: A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution comprises cationic materials. The cationic materials comprise a polymer, a colloidal particle, a nanoparticle, a nitrogen-rich molecule, or any combinations thereof. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a layer comprising the anionic layer and the cationic layer. The anionic solution comprises a layerable material.Type: GrantFiled: July 30, 2013Date of Patent: January 10, 2017Assignee: The Texas A&M University SystemInventor: Jaime C. Grunlan
-
Patent number: 9540763Abstract: A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution includes cationic materials. The cationic materials include polymers, nanoparticles, or any combinations thereof. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a bilayer. The bilayer is the anionic layer and the cationic layer. The anionic solution includes layerable materials.Type: GrantFiled: March 3, 2010Date of Patent: January 10, 2017Assignee: The Texas A&M University SystemInventor: Jaime C. Grunlan
-
Patent number: 9347126Abstract: A process of fabricating a thermal barrier coating is disclosed. The process includes cold spraying a substrate with a feedstock to form a thermal barrier coating and concurrently oxidizing one or more of the substrate, the feedstock, and the thermal barrier coating. The cold spraying is in a region having an oxygen concentration of at least 10%. In another embodiment, the process includes heating a feedstock with a laser and cold spraying a substrate with the feedstock to form a thermal barrier coating. At least a portion of the feedstock is retained in the thermal barrier coating. In another embodiment, the process of fabricating a thermal barrier coating includes heating a substrate with a laser and cold spraying the substrate with a feedstock to form a thermal barrier coating.Type: GrantFiled: March 13, 2013Date of Patent: May 24, 2016Assignee: General Electric CompanyInventors: Surinder Singh Pabla, Joshua Lee Margolies, Eklavya Calla, Padmaja Parakala
-
Patent number: 9116125Abstract: The present invention relates to a method, apparatus and a system of fast diagnosis of stresses and diseases in higher plants. The proposed methodology is based on the hypothesis of that when a plant is in imbalance; there are changes in its metabolism that render an alteration of the chemical composition of its organs. This chemical alteration leads to a change in the physical properties, such as the fluorescence of the leaves. Due to the complexity of the material of the leaves, the present method proposes that the signal be treated with statistical methods and that the classification is made through softwares based on machine learning. As an example of the application of the invention, the results are shown for the Greening disease in citrus.Type: GrantFiled: October 14, 2009Date of Patent: August 25, 2015Assignee: EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA—EMBRAPAInventors: Debora Marcondes Bastos Pereira Milori, Ladislau Martin Neto, Ednaldo Jose Ferreira, Ana Flavia Zaghi, Andre Leonardo Venancio
-
Patent number: 9034489Abstract: A coating composition which imparts antifog, antireflective, easy-cleaning, and/or antistatic properties to substrates coated therewith. The coating compositions utilize nanoparticles funtionalized with amine groups and/or protected amine groups, and amine-reactive groups.Type: GrantFiled: June 30, 2010Date of Patent: May 19, 2015Assignee: 3M Innovative Properties CompanyInventors: Naiyong Jing, Zhigang Yu, Xue-hua Chen, Bangwei Xi, Appuswamy Devasenapathi, Wei De Liu, George Van Dyke Tiers, Justin A. Riddle, Deivaraj Theivanayagam Chairman, Michelle L. Legatt, Cecil V. Francis
-
Patent number: 9012044Abstract: A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys.Type: GrantFiled: July 26, 2010Date of Patent: April 21, 2015Assignee: 3M Innovative Properties CompanyInventor: Clark I. Bright
-
Patent number: 9012043Abstract: A medical implant device or component thereof comprising a metal substrate and a coating layer structure provided on the substrate. The coating layer structure comprises an outermost layer of a ceramic material. A bonding structure is deposited between the metal substrate and the coating layer structure. The bonding structure comprises a chromium rich layer, which is deposited onto the metal substrate surface and has a higher concentration of chromium than the metal substrate, as well as a gradient layer having a composition gradient from the chromium rich layer towards the surface of the device providing increasing proportions of a gradient material which has structural correspondence with the layer of the coating layer structure that is most adjacent to the bonding structure.Type: GrantFiled: December 21, 2009Date of Patent: April 21, 2015Assignee: Sandvik Intellectual Property ABInventors: Ola Wilhelmsson, Tom Eriksson, Per Mårtensson
-
Patent number: 8986841Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66% MgO 3-8% Na2O ?7-15% K2O 0-3% Li2O ?0-12% CaO ?0-10% BaO ?0-15% Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.Type: GrantFiled: January 10, 2014Date of Patent: March 24, 2015Assignee: Eurokera S.N.C.Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
-
Patent number: 8974864Abstract: A method of coating a substrate is disclosed. The method includes providing a substrate; depositing an infrared reflecting layer over at least a portion of a substrate; depositing a primer layer over at least a portion of the infrared reflective layer; depositing a dielectric layer over at least a portion of the primer layer; and forming an absorbing layer. The absorbing layer includes an alloy and/or mixture of (a) a metal having an index of refraction at 500 nm less than or equal to 1.0 and (b) a material having a ?G°f of greater than or equal to ?100 at 1000° K. The metal can be silver and the material can be tin.Type: GrantFiled: April 22, 2010Date of Patent: March 10, 2015Assignee: PPG Industries Ohio, Inc.Inventors: James J. Finley, James P. Thiel, Harry Buhay
-
Patent number: 8956510Abstract: The present invention relates generally to methods for producing metallic products comprising a substrate and a metallic, external coating. In preferred embodiments, the metallic products are jewelry articles.Type: GrantFiled: June 1, 2012Date of Patent: February 17, 2015Assignee: Frederick Goldman, Inc.Inventor: Andrew Derrig
-
Patent number: 8956689Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal faces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 35 nm to 150 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer in the (100) plane.Type: GrantFiled: May 15, 2012Date of Patent: February 17, 2015Assignee: Mitsubishi Materials CorporationInventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
-
Patent number: 8951640Abstract: Disclosed is a covered member including a base material, a first intermediate layer that has a roughened surface and covers the base material, and a DLC film that covers the surface of the first intermediate layer. The first intermediate layer and the DLC film are formed in a state where the temperature of the base material is kept at 300° C. or lower. The surface of the first intermediate layer is roughened by collision of ions.Type: GrantFiled: April 8, 2011Date of Patent: February 10, 2015Assignee: JTEKT CorporationInventors: Masahiro Suzuki, Toshiyuki Saito, Kazuyoshi Yamakawa
-
Patent number: 8951603Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal daces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 5 nm to 30 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer to be in the (110) plane.Type: GrantFiled: May 15, 2012Date of Patent: February 10, 2015Assignee: Mitsubishi Materials CorporationInventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
-
Patent number: 8920866Abstract: A metal implant, in particular a dental implant, with a hydrophilic surface for at least partial insertion into a bone, and a method for the production of said implant are described. A particularly advantageous hydrophilic surface for improved osteointegration properties is made available if it is briefly treated, at least in some areas, in a weakly alkaline solution. These excellent osteointegration properties can be achieved in a method in which, optionally after a preceding mechanical surface modification by material removal and/or chemical surface modification, at least the areas exposed of this surface exposed to bone and/or soft tissue are chemically modified in an alkaline solution.Type: GrantFiled: January 13, 2011Date of Patent: December 30, 2014Assignee: Thommen Medical AGInventors: Falko Schlottig, Daniel Snetivy
-
Patent number: 8906509Abstract: A process for the production of a dark-color multi-layer coating, comprising the successive steps: (1) applying an NIR-opaque coating layer A? from a pigmented, solvent- or waterborne coating composition A to a substrate, (2) applying a coating layer B? from a pigmented coating composition B onto the substrate provided with coating layer A?, wherein the pigment content of coating composition A consists 90 to 100 wt. % of at least one aluminum flake pigment and 0 to 10 wt. % of at least one further pigment, which is selected in such a way that NIR-opaque coating layer A? exhibits low NIR absorption, wherein the pigment content of coating composition A comprises <90 wt. % of 10 to 80 nm thick aluminum flake pigments, wherein the pigment content of coating composition B consists 50 to 100 wt. % of at least one black pigment with low NIR absorption and 0 to 50 wt.Type: GrantFiled: May 27, 2009Date of Patent: December 9, 2014Assignee: Axalta Coating Systems IP Co., LLCInventors: Gunter Richter, Karl-Friedrich Dossel
-
Patent number: 8871363Abstract: Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer. Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.Type: GrantFiled: September 1, 2010Date of Patent: October 28, 2014Assignee: National Institute of Advanced Industrial Science and TechnologyInventors: Tetsuo Tsuchiya, Masami Nishikawa, Tomohiko Nakajima, Toshiya Kumagai, Takaaki Manabe
-
Patent number: 8871306Abstract: A method to improve corrosion, abrasion, and fire resistant properties of structural components for use in oil, gas, exploration, refining and petrochemical applications is provided. The structural component is suitable for as refinery and/or petrochemical process equipment and piping, include but are not limited to process vessels, transfer lines and process pipes, heat exchangers, cyclones, and distillation columns. The method comprises providing the structural component with a plurality of layers, a corrosion resistant layer in contact with the corrosive petroleum products comprising a material selected from amorphous metals, ceramic materials, or combinations thereof; a structural layer; and an outer layer comprising a fire resistive material. In one embodiment, the structural component is further provided with at least another layer selected from a metal sheeting layer, an adhesive layer, and a containment layer.Type: GrantFiled: April 16, 2010Date of Patent: October 28, 2014Assignee: Chevron U.S.A. Inc.Inventors: Edwin H. Niccolls, Grzegorz Jan Jusinski
-
Patent number: 8865262Abstract: A process for producing multi-layer coatings in light metallic color shades and reducing UV transmission there-through comprising the successive steps of: (1) applying a 10 to 30 ?m thick base coat layer to a pre-coated substrate, (2) applying a clear coat layer onto the base coat layer, and (3) jointly curing the base coat and clear coat layers, wherein the base coat layer is applied from an unmodified water-borne metallic base coat having a ratio by weight of pigment to resin solids of 0.3:1 to 0.45:1, wherein the pigment content consists of 90% to 100% by weight of at least one non-leafing aluminum pigment with a platelet thickness over 100 to 500 nm and 0 to 10% by weight of at least one pigment different from aluminum pigments, wherein the pigment(s) different from aluminum pigments are selected in such a way that the multi-layer coating obtained exhibits a brightness L* (according to CIEL*a*b*, DIN 6174), of at least 80 units.Type: GrantFiled: September 16, 2009Date of Patent: October 21, 2014Assignee: Axalta Coating Systems IP Co., LLCInventors: Marc Chilla, Michael Georgiadis, Volker Kegel, Gunter Richter
-
Patent number: 8858666Abstract: A coating for a cutting tool, which includes a plurality of mutually superposed layers, characterized in that the coating has an outer cover layer with a first layer portion of metallic aluminium or an aluminium alloy and a second layer portion arranged thereover of aluminium oxide or a mixed oxide which contains aluminium and at least one further metal.Type: GrantFiled: August 26, 2010Date of Patent: October 14, 2014Assignee: Walter AGInventor: Veit Schier
-
Publication number: 20140302337Abstract: The present invention relates to a process for manufacturing coated substrates by providing a substrate, providing at least one mineral material, providing a polysaccharide material comprising one or more polysaccharides, coating the substrate with the at least one mineral material, and coating the resulting pre-coat layer of mineral material with the gel comprising one or more polysaccharides, as well as the coated substrate obtained by this process and its use.Type: ApplicationFiled: May 21, 2012Publication date: October 9, 2014Inventors: Patrick A.C. Gane, Catherine Jean Ridgway, Michel Schenker
-
Patent number: 8840954Abstract: Provided is a transparent carbon nanotube (CNT) electrode comprising a net-like (i.e., net-shaped) CNT thin film and a method for preparing the same. More specifically, a transparent CNT electrode comprises a transparent substrate and a net-shaped CNT thin film formed on the transparent substrate, and a method for preparing a transparent CNT electrode, comprising forming a thin film using particulate materials and CNTs, and then removing the particulate materials to form a net-shaped CNT thin film. The transparent CNT electrode exhibits excellent electrical conductivity while maintaining high light transmittance. Therefore, the transparent CNT electrode can be widely used to fabricate a variety of electronic devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays, and touch screen panels, that have need of electrodes possessing both light transmission properties and conductive properties.Type: GrantFiled: August 15, 2011Date of Patent: September 23, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Dong Kee Yi, Seon Mi Yoon, Jae Young Choi, O Ok Park, Mun Ho Kim, Hong Kyoon Choi
-
Publication number: 20140261084Abstract: A pigment is disclosed wherein the pigment includes a platy substrate or uniform platy substrate coated with an odd number of layers of alternating layers of high or low refractive index material, wherein each layer has a refractive index that differs from adjacent layers by at least 0.2; and the pigment has from about 40 to about 100% reflectance of light having a wavelength of 280 nm to 400 nm. Processes for making and using the pigments are also disclosed. These pigments can find application in paints, plastics, cosmetics, glass, printing inks, and glazes.Type: ApplicationFiled: March 12, 2014Publication date: September 18, 2014Inventors: Steven Jones, Markus Rueckel, Thomas Servay, Stefan Dahmen, Geoffrey Johnson
-
Publication number: 20140272451Abstract: A metal matrix composite article that includes at least first and second regions, first and second reinforcement materials, a metal matrix composite material occupying the second region of the body and comprising a metal matrix material and the second reinforcement component, a preform positioned in the first region of the body and infiltrated by at least the metal matrix material of the metal matrix composite material. The article further includes a transition region located proximate an outer surface of the preform that includes a distribution of the second reinforcement component comprising a density increasing according to a second gradient in a direction toward the outer surface of the preform.Type: ApplicationFiled: March 18, 2014Publication date: September 18, 2014Inventors: Adam R. Loukus, Josh E. Loukus
-
Patent number: 8835008Abstract: A process for the production of a dark-color multi-layer coating, comprising the successive steps: (1) applying an NIR-opaque coating layer A? from a pigmented, solvent- or waterborne coating composition A to a substrate, (2) applying a coating layer B? from a pigmented coating composition B onto the substrate provided with coating layer A?, wherein the pigment content of coating composition A consists 90 to 100 wt. % of at least one 10 to 80 nm thick aluminum flake pigment and 0 to 10 wt. % of at least one further pigment, which is selected in such a way that NIR-opaque coating layer A? exhibits low NIR absorption, wherein the pigment content of coating composition B consists 50 to 100 wt. % of at least one black pigment with low NIR absorption and 0 to 50 wt.Type: GrantFiled: May 27, 2009Date of Patent: September 16, 2014Assignee: Axalta Coating Systems IP Co., LLCInventors: Gunter Richter, Karl-Friedrich Dossel
-
Patent number: 8808808Abstract: The invention provides a method of applying an adhesion primer layer for an imprint lithography process that includes contacting a fluid with a surface of a substrate in a coating process and initiating a chemical reaction that forms a covalent bond between a component in the fluid and the surface of the substrate such that an adhesion primer layer is adhered to the surface of the substrate. A polymeric layer may be adhered to the surface of the substrate coated with the adhesion primer layer. The method allows adhesion primer coating for double-sided imprinting applications including patterned magnetic media.Type: GrantFiled: April 12, 2007Date of Patent: August 19, 2014Assignee: Molecular Imprints, Inc.Inventors: Frank Y. Xu, Sidlgata V. Sreenivasan, Edward Brian Fletcher
-
Patent number: 8801817Abstract: A surface-coated cutting tool according to the present invention includes a base material and a coating film formed on the base material. The coating film includes at least one TiCN layer. The TiCN layer has a columnar crystal region. The columnar crystal region is characterized by having a composition of TiCxNy (in which 0.65?x/(x+y)?0.90) and having a (422) plane having a plane spacing of 0.8765 ? to 0.8790 ?.Type: GrantFiled: July 4, 2011Date of Patent: August 12, 2014Assignee: Sumitomo Electric Hardmetal Corp.Inventors: Anongsack Paseuth, Yoshio Okada, Hideaki Kanaoka, Chikako Kojima, Erika Iwai
-
Patent number: 8802183Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.Type: GrantFiled: July 11, 2011Date of Patent: August 12, 2014Assignee: Proteus Digital Health, Inc.Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
-
Patent number: 8795767Abstract: Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group 1, and X is selected from at least one of elements of Group 17; (2) providing a source of B, wherein B is selected from at least one of elements of Group 14; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.Type: GrantFiled: November 2, 2009Date of Patent: August 5, 2014Assignee: OMNIPV, Inc.Inventors: William M. Pfenninger, Nemanja Vockic, John Kenney
-
Patent number: 8784931Abstract: A method of manufacturing ULSI wiring in which wiring layers are separately formed via a diffusion prevention layer and an insulating interlayer portion made of SiO2. The method comprises the steps of treating, with a silane compound, a SiO2 surface of the insulating interlayer portion on which the diffusion layer is to be formed, performing catalyzation with an aqueous solution containing a palladium compound, forming the diffusion prevention layer by electroless plating, and then forming the wiring layer on this diffusion prevention layer. A capping layer may be formed on the wiring layer by electroless plating. Consequently, a diffusion prevention layer having good adhesive properties can be formed through a simple wet process, and, the wiring layer can directly be formed on this diffusion prevention layer by a wet process. The capping layer can also be directly formed on the wiring layer by electroless plating.Type: GrantFiled: September 23, 2009Date of Patent: July 22, 2014Assignees: Waseda University, Renesas Electronics CorporationInventors: Kazuyoshi Ueno, Tetsuya Osaka, Nao Takano
-
Patent number: 8771790Abstract: A method of reducing magnetite formation in the bore of a pipe including the steps of selecting a pipe with a pre-existing oxide layer on its inner bore surface and coating the pre-existing oxide layer with an oxidation resistant metal to thereby reduce magnetite formation in the bore of the pipe.Type: GrantFiled: January 12, 2010Date of Patent: July 8, 2014Inventor: Michael John de Vink
-
Publication number: 20140186638Abstract: Disclosed herein is a method of coating a brake hose fitting. The method includes plating a brake hose fitting with a zinc-nickel (Zn—Ni) alloy including about 6˜12 wt % of nickel (Ni). The method further includes post-treating the plated brake hose fitting with a silicon (Si) solution.Type: ApplicationFiled: July 23, 2013Publication date: July 3, 2014Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANYInventors: Gyu Man Sim, Min Su Choi
-
Publication number: 20140170323Abstract: A method of carrying out post-treatment to a sprayed coating includes spraying aluminum-containing material onto a surface of a steel for forming a sprayed coating on the steel, and coating electrolytic aqueous solution or water base paint containing electrolytic aqueous solution therein onto the sprayed coating.Type: ApplicationFiled: December 17, 2012Publication date: June 19, 2014Applicants: FUJIGIKEN CO., LTD., WEST NIPPON EXPRESSWAY COMPANY LIMITED, FUJI ENGINEERING CO., LTD.Inventors: Kenichi YAMADA, Keisuke FUJIKAWA, Masanobu SUGIMOTO
-
Patent number: 8741428Abstract: A surface-coated cutting tool according to the present invention includes a base material and a coating film formed on the base material. The coating film includes at least one TiCN layer. The TiCN layer has a columnar crystal region. The columnar crystal region is characterized by having a composition of TiCxNy(in which 0.65?x/(x+y)?0.90), having a (422) plane having a plane spacing of 0.8765 ? to 0.8790 ? and having TC (220) showing a maximum value in an orientation index TC (hkl).Type: GrantFiled: July 4, 2011Date of Patent: June 3, 2014Assignee: Sumitomo Electric Hardmetal Corp.Inventors: Anongsack Paseuth, Yoshio Okada, Chikako Kojima, Hideaki Kanaoka, Erika Iwai, Hiroyuki Morimoto
-
Publication number: 20140141191Abstract: An encapsulation material is described that prevents moisture or oily substances from penetrating into a protected region or device. The encapsulation material includes alternating layers of a hydrophobic and oleophobic first layer and a hydrophilic second layer. The second hydrophilic layer traps water molecules, preventing them from migrating. By alternating hydrophobic/oleophobic layers with hydrophilic layers (including hydrophobic layers having a thickness of approximately that of a water molecule or a hydroxyl ion), the encapsulation material forms multiple, finite energetic wells at the hydrophilic layers. These potential wells confine water molecules, oxygen molecules, and hydroxyl ions preventing migration of through the encapsulation material.Type: ApplicationFiled: October 11, 2013Publication date: May 22, 2014Applicant: Veeco ALD Inc.Inventor: Sang In Lee
-
Publication number: 20140120315Abstract: A multi-layer thin film laminate comprises a dyad layer including a barrier layer and a decoupling layer formed over a substrate. The barrier layer comprises a hermetic glass material selected from the group consisting of tin fluorophosphate glasses, tungsten-doped tin fluorophosphate glasses, chalcogenide glasses, tellurite glasses, borate glasses and phosphate glasses and the decoupling layer comprises a polymer material.Type: ApplicationFiled: October 25, 2012Publication date: May 1, 2014Inventors: Bruce Gardiner Aitken, Chong Pyung An, Shari Elizabeth Koval, Mark Alejandro Quesada
-
Publication number: 20140113077Abstract: A manufacturing method of a composite cloth has steps of: preparing a work-in-process composite cloth, surface treating the work-in-process composite cloth, and coating the work-in-process composite cloth with a non-shielding metallized layer. In the step of preparing a work-in-process composite cloth, a work-in-process composite cloth allowing electromagnetic waves to pass through is prepared. In the step of surface treating the work-in-process composite cloth, a surface of the work-in-process composite cloth is coupling-processed, and then is dried. In the step of coating the work-in-process composite cloth with a non-shielding metallized layer, the surface of the work-in-process composite cloth is coated with a non-shielding metallized layer whose thickness ranges from 10 ? (angstrom) to 100 ? (angstrom). Accordingly, a boring step and a patching step are spared.Type: ApplicationFiled: October 23, 2012Publication date: April 24, 2014Inventor: KAI-HSI TSENG
-
Patent number: 8703245Abstract: A coated metal substrate has at least one layer of titanium based hard material alloyed with at least one alloying element selected from the list of chromium, vanadium and silicon. The total quantity of alloying elements is between 1% and 50% of the metal content, the layer having a general formula of: (Ti100-a-b-cCraVbSic)CxNyOz.Type: GrantFiled: December 26, 2012Date of Patent: April 22, 2014Assignees: Iscar, Ltd., Ionbond AGInventors: Albir Layyous, Yehezkeal Landau, Hristo Strakov, Renato Bonetti
-
Patent number: 8697280Abstract: An electrode active material, a method of preparing the electrode active material, an electrode including the electrode active material, and a lithium secondary battery including the electrode; the electrode active material comprising a core active material; and a coating layer formed on a surface of the core active material, wherein the coating layer comprises a composition including a compound represented by Formula 1 below and a carbonaceous material, or a first coating layer including a carbonaceous material and a second coating layer including the compound represented by Formula 1 below: LixMy(PO4)z,??Formula 1 where M is selected from the group consisting of alkali metal, alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element, and combinations thereof; 1?x?3, 0?y?3, and 1?z?3.Type: GrantFiled: September 23, 2011Date of Patent: April 15, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-kook Mah, Gue-sung Kim
-
Patent number: 8668953Abstract: A method of manufacturing a disk for a magnetic storage device is provided. The method comprises electroless plating a coating layer over a substrate to produce the disk, the coating layer forming an exterior surface of coating over the substrate, and annealing the coating layer using a heating source, wherein heat radiating from the heating source is directionally focused onto the exterior surface before the exterior surface is polished.Type: GrantFiled: December 28, 2010Date of Patent: March 11, 2014Assignee: WD Media, LLCInventor: Dorothea Buechel-Rimmel
-
Patent number: RE45154Abstract: A tool for machining is made from a hard-metal, cermet or ceramic base material and a single-layer or multi-layer hard material coating on the base material. An additional coating of one or more metals from the group of aluminum, copper, zinc, titanium, nickel, tin or base alloys of these metals is applied to the hard material coating.Type: GrantFiled: February 28, 2012Date of Patent: September 23, 2014Assignee: Ceratizit Austria Gesellschaft mbHInventors: Wolfgang Wallgram, Uwe Schleinkofer, Karl Gigl, Josef Thurner, Wilfried Schintlmeister