Boride, Carbide, Nitride, Phosphide, Silicide, Or Sulfide-containing Coating Patents (Class 427/419.7)
  • Patent number: 11958934
    Abstract: The present disclosure provides a waterborne polyurethane (WPU) emulsion and a preparation method therefor, and relates to the technical field of glove processing. The WPU emulsion of the present disclosure is prepared from polyol, isocyanate, a hydrophilic chain extender, a diluent, a neutralizer, a post chain extender, water, a catalyst, a cellulose thickener, a wetting agent, and a dispersant. The WPU emulsion of the present disclosure is used to dip knitted gloves, which can improve abrasion resistance and flexibility of the gloves, prolong service life of the gloves, and improve wearing comfort of the gloves.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: April 16, 2024
    Assignee: Shimu Special Protective Equipment Technology (Jiangsu) Co., Ltd.
    Inventors: Guoda Dai, Wei Wen
  • Patent number: 11875924
    Abstract: A method of fabricating resistors in igniter is provided. The method includes punching an alloy material to obtain a plurality of alloy components. The alloy components are disposed on a substrate, and electrodes are disposed on the substrate. Resistors in igniter are obtained by disposing electrodes on the substrate such that two electrically connecting regions of each alloy component are physically contacting and electrically connecting to the electrodes, respectively. The resulting resistors in igniter have uniform size and stable shape hence showing great ignition performance.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 16, 2024
    Assignee: YAGEO CORPORATION
    Inventors: Shen-Li Hsiao, Pinhao Hsu
  • Patent number: 11781223
    Abstract: A method for repairing a damaged portion of a steel member that includes at least one of a coating and a plating. The method includes applying to the damaged portion of the steel member a coating composition to produce a repair coating. The coating composition includes nickel, chromium, and carbon.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: October 10, 2023
    Assignee: The Boeing Company
    Inventors: Waynie M. Schuette, Marc J. Froning, Stephen P. Gaydos
  • Patent number: 11739027
    Abstract: A ceramic article includes a ceramic matrix composite that has a porous reinforcement structure and a ceramic matrix within pores of the porous reinforcement structure. The ceramic matrix composite includes a surface zone comprised of an exterior surface of the ceramic matrix composite and pores that extend from the exterior surface into the ceramic matrix composite. A glaze material seals the surface zone within the pores of the surface zone and on the exterior surface of the surface zone as an exterior glaze layer on the ceramic matrix composite. The glaze material is a glass or glass-ceramic material. The ceramic matrix composite includes an interior zone under the surface zone, and the interior zone is free of any of the glaze material and has a greater porosity than the surface zone.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Raytheon Technologies Corporation
    Inventors: Paul Sheedy, Wayde R. Schmidt, Tania Bhatia Kashyap
  • Patent number: 11697622
    Abstract: A gas turbine engine article includes a substrate and a silicate-resistant barrier coating disposed on the substrate. The silicate-resistant barrier coating is composed of a refractory matrix and a calcium aluminosilicate additive (CAS additive) dispersed in the refractory matrix.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 11, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Richard Wesley Jackson, Xia Tang, Paul Sheedy
  • Patent number: 11655194
    Abstract: Coated components, along with methods of their formation, are provided. The coated component includes a ceramic substrate having a surface; an intermediate layer on the surface of the ceramic substrate; and an environmental barrier coating on the intermediate layer. The intermediate layer includes a carbon-sink material that inhibits accumulation of free carbon from a carbon-containing species within the intermediate layer, the ceramic substrate, or both.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: May 23, 2023
    Assignee: General Electric Company
    Inventors: Krishan Lal Luthra, Glen Harold Kirby, Julin Wan, Larry Steven Rosenzweig
  • Patent number: 11634213
    Abstract: An oxidation protection system disposed on a substrate is provided, which may comprise a boron layer comprising a boron compound disposed on the substrate; a silicon layer comprising a silicon compound disposed on the boron layer; and at least one sealing layer comprising monoaluminum phosphate and phosphoric acid disposed on the silicon layer.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: April 25, 2023
    Assignee: GOODRICH CORPORATION
    Inventors: Steven A. Poteet, Gavin Charles Richards, Zachary Cohen
  • Patent number: 11581417
    Abstract: A capacitor is provided which comprises: a first structure comprising metal; a second structure comprising metal; and a third structure between the first and second structures, wherein the third structure comprises an improper ferroelectric material. In some embodiments, a field effect transistor (FET) is provided which comprises: a substrate; a source and drain adjacent to the substrate; and a gate stack between the source and drain, wherein the gate stack includes: a dielectric; a first structure comprising improper ferroelectric material, wherein the first structure is adjacent to the dielectric; and a second structure comprising metal, wherein the second structure is adjacent to the first structure.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Uygar Avci, Sou-Chi Chang, Ian Young
  • Patent number: 11541509
    Abstract: Embodiments of the invention relate generally to overmolded protective leaching masks, and methods of manufacturing and using the same for leaching superabrasive elements such as polycrystalline diamond elements. In an embodiment, a protective leaching mask assembly includes a superabrasive element including a central axis and a superabrasive table, and a protective mask overmolded onto at least a portion of the superabrasive element. The protective mask includes a base portion and at least one sidewall extending from the base portion and defining an opening generally opposite the base portion. The at least one sidewall includes an inner surface configured to abut with a selected portion of the superabrasive element being chemically resistant to a leaching agent and an outer surface sloping at an oblique angle relative to the central axis.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: January 3, 2023
    Assignee: US Synthetic Corporation
    Inventor: Michael James Gleason
  • Patent number: 11519066
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component and depositing a boron nitride layer on or over the aluminum oxide layer during a vapor deposition process. In some examples, the method includes depositing a metal-containing catalytic layer on the aluminum oxide layer before depositing the boron nitride layer. The boron nitride layer can include hexagonal boron nitride (hBN).
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 6, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Alexander Britz, Lance A. Scudder, Yuriy Melnik, Sukti Chatterjee
  • Patent number: 10570521
    Abstract: Cutting tools are described having coatings which can demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool described herein has a substrate and a coating with a plurality of alternating layers of a first layer of Al2O3 and a second layer of at least one of MeAl2O3 and MeAl2O3/MeO2 composite, wherein Me is Zr, Hf, Ti or a combination thereof. The coating has a superlattice-like structure.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 25, 2020
    Assignee: KENNAMETAL INC.
    Inventors: Zhenyu Liu, Peter Rudolf Leicht, Yixiong Liu
  • Publication number: 20150139581
    Abstract: A bearing cage, including: a body fabricated of phenolic material and having an outer circumferential surface and an inner circumferential surface; and a coating of molybdenum disulfide or polytetrafluoroethylene adhered to the outer circumferential surface or the inner circumferential surface. A method of manufacturing a bearing cage, including: fabricating a body from phenolic material, the body including an outer circumferential surface and an inner circumferential surface connecting first and second sides; and adhering a coating of molybdenum disulfide or polytetrafluoroethylene to the inner or outer circumferential surface.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 21, 2015
    Inventor: William Moratz
  • Publication number: 20150111063
    Abstract: This invention relates generally to an article that includes a base substrate, an intermediate layer including at least one element or compound selected from titanium, chromium, indium, zirconium, tungsten, and titanium nitride on the base substrate, and a hydrophobic coating on the base substrate, wherein the hydrophobic coating includes a rare earth element material (e.g., a rare earth oxide, a rare earth carbide, a rare earth nitride, a rare earth fluoride, and/or a rare earth boride). An exposed surface of the hydrophobic coating has a dynamic contact angle with water of at least about 90 degrees. A method of manufacturing the article includes providing the base substrate and forming an intermediate layer coating on the base substrate (e.g., through sintering or sputtering) and then forming a hydrophobic coating on the intermediate layer (e.g., through sintering or sputtering).
    Type: Application
    Filed: October 30, 2014
    Publication date: April 23, 2015
    Inventors: Sami Khan, Gisele Azimi, Adam T. Paxson, Kripa K. Varanasi
  • Publication number: 20150064406
    Abstract: [Problem] To provide a fluoride spray coating covered member in which a fluoride spray coating firmly adheres by coating carbide cermet to a surface of a substrate and interposing it, and to propose a method therefor. [Solution] A fluoride spray coating is formed in such a manner that an undercoat layer of carbide cermet, which covers a substrate in a film-shaped manner while a tip portion of carbide cermet particles is embedded in the substrate, or a primer part of carbide cermet, is formed by blowing a carbide cermet material at a high velocity by using a spray gun to a surface of the substrate, and after that, a fluoride particle is sprayed thereon.
    Type: Application
    Filed: November 28, 2012
    Publication date: March 5, 2015
    Inventors: Yoshio Harada, Kenichiro Togoe
  • Publication number: 20140376349
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Publication number: 20140355184
    Abstract: Disclosed herein is a method of forming a multilayer thin film by depositing target particles, detached from a target by plasma discharge of inert gas, on a metal object using a multilayer thin film deposition apparatus and a multilayer thin film formed by the method. More specifically, a sputtering deposition apparatus is used as the multilayer thin film deposition apparatus. The method includes coating a metal object with a coating layer, depositing at least one hardness-enhancing layer on the coating layer, and depositing a color layer on the at least one hardness-enhancing layer.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Sub KIM, Hyong Jun YOO, Min Chul JUNG, Hyun Jun JUNG, Jin Hyun CHO
  • Patent number: 8871306
    Abstract: A method to improve corrosion, abrasion, and fire resistant properties of structural components for use in oil, gas, exploration, refining and petrochemical applications is provided. The structural component is suitable for as refinery and/or petrochemical process equipment and piping, include but are not limited to process vessels, transfer lines and process pipes, heat exchangers, cyclones, and distillation columns. The method comprises providing the structural component with a plurality of layers, a corrosion resistant layer in contact with the corrosive petroleum products comprising a material selected from amorphous metals, ceramic materials, or combinations thereof; a structural layer; and an outer layer comprising a fire resistive material. In one embodiment, the structural component is further provided with at least another layer selected from a metal sheeting layer, an adhesive layer, and a containment layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: October 28, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Edwin H. Niccolls, Grzegorz Jan Jusinski
  • Patent number: 8859052
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability include providing a component, applying an environmental barrier coating to the component, where the environmental barrier coating includes a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Publication number: 20140272344
    Abstract: An article includes a substrate and a coating provided on a surface of the substrate. The coating includes at least one metal silicide layer consisting essentially of MoSi2 or WSi2 or (Mo, W)Si2 or a platinum group metal silicide and at least one layer consisting essentially of Si3N4.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Julin Wan, Milivoj Konstantin Brun, Peter Joel Meschter, Reza Sarrafi-Nour, Don Mark Lipkin
  • Publication number: 20140272393
    Abstract: A method, system and apparatus are disclosed for providing an anti-fret coating system to a component having a wear surface. The method includes applying a dry film lubrication system to a basecoat having a copper based material positioned on a substrate, wherein the dry film lubrication system includes: applying at least one intermediate coating layer having a calcium fluoride and barium fluoride material in a silicone binder over the basecoat; and applying a top coat layer having a molybdenum disulfide material over the at least one intermediate coating layer. The method can further include removing an existing intermediate coating layer and an existing top coat layer before said applying the dry film lubrication system; removing an existing top coat layer before said applying the dry film lubrication system; and removing an existing basecoat and applying another basecoat having a copper based material before said applying the dry film lubrication system.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Inventor: Subhash K. Naik
  • Publication number: 20140251976
    Abstract: Disclosed are a hot plate and a method of manufacturing the same. The method includes the steps of preparing a first barrier layer, laminating a first heat transfer layer on the first barrier layer, and laminating a second barrier layer on the first heat transfer layer. The first barrier layer or the second barrier layer includes a plurality of first sub-nano-barrier layers and a plurality of second sub-nano-barrier layers. The hot plate includes a first barrier layer, a first heat transfer layer on the first barrier layer, and a second barrier layer on the first heat transfer layer. The first barrier layer or the second barrier layer includes a plurality of first sub-nano-barrier layers and a plurality of second sub-nano-barrier layers.
    Type: Application
    Filed: October 19, 2012
    Publication date: September 11, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Ick Chan KIM, Moo Seong KIM
  • Publication number: 20140217677
    Abstract: Exemplary piston rings are disclosed, comprising a base portion formed of a metallic material, and an outer contact surface extending between opposing side faces of the piston ring. The piston ring may include a coating layer applied to the outer contact surface, with the coating layer including an inner layer and an outer layer. Exemplary methods of making a piston ring are also disclosed, comprising providing a base portion formed of a metallic material, applying an inner layer to an outer surface of the base portion, and applying an outer layer on top of the inner layer.
    Type: Application
    Filed: December 30, 2013
    Publication date: August 7, 2014
    Applicant: Mahle International GmbH
    Inventors: Thomas Smith, Jason Bieneman
  • Patent number: 8795767
    Abstract: Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group 1, and X is selected from at least one of elements of Group 17; (2) providing a source of B, wherein B is selected from at least one of elements of Group 14; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 5, 2014
    Assignee: OMNIPV, Inc.
    Inventors: William M. Pfenninger, Nemanja Vockic, John Kenney
  • Patent number: 8790754
    Abstract: A method of preparing a metal nitride and/or metal oxynitride particulate material includes heating a stoichiometric mixture of a metal compound and urea at a temperature of about 400-1000° C. for a predetermined time period in the presence of argon, nitrogen, or both. The particulate material produced includes nanoparticles, nanotubes, microparticles, powder, or a combination thereof.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: July 29, 2014
    Assignee: Materials Modification, Inc.
    Inventors: Krishnaswamy Kasthuri Rangan, Cheryl Renee Verdecchio, Ramachandran Radhakrishnan, Tirumalai Srinivas Sudarshan
  • Publication number: 20140178637
    Abstract: Provided are low friction coatings with improved abrasion, wear resistance and methods of making such coatings. In one form, the coating includes: i) an under layer selected from the group consisting of CrN, TiN, TiAlN, TiAlVN, TiAlVCN, TiSiN, TiSiCN, TiAlSiN and combinations thereof, wherein the under layer ranges in thickness from 0.1 to 100 ?m, ii) an adhesion promoting layer selected from the group consisting of Cr, Ti, Si, W, CrC, TiC, SiC, WC, and combinations thereof, wherein the adhesion promoting layer ranges in thickness from 0.1 to 50 ?m and is contiguous with a surface of the under layer, and iii) a functional layer selected from the group consisting of a fullerene based composite, a diamond based material, diamond-like-carbon and combinations thereof, wherein the functional layer ranges from 0.1 to 50 ?m and is contiguous with a surface of the adhesion promoting layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Srinivasan Rajagopalan, Tabassumul Haque, Mehmet Deniz Ertas, Adnan Ozekcin, HyunWoo Jin, Bo Zhao
  • Patent number: 8741111
    Abstract: A coated article includes a substrate, and a plurality of aluminum nitride layers and a plurality of titanium boride layers formed on the substrate. Each aluminum nitride layer interleaves with one titanium boride layer. One of the aluminum nitride layers is directly formed on the substrate. A method for making the coated article is also described.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: June 3, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8722180
    Abstract: A coated article includes a substrate, and a plurality of molybdenum layers and a plurality of titanium-aluminum-nitrogen layers formed on the substrate. Each molybdenum layer interleaves with one titanium-aluminum-nitrogen layer. One of the molybdenum layers is directly formed on the substrate. A method for making the coated article is also described.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 13, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8709547
    Abstract: The invention relates to the use of a super-slippery thin-layer film or coating for enhancing the lubrication capacity of a part to be subjected to great friction and wear. The film of the invention for improving the lubrication capacity of parts to be subjected to important friction and wear includes at least: a layer (3) of a hard material selected from titanium nitride (TiN), chromium nitride (CrN), titanium carbide (TiC), chromium carbide (CrC), tungsten carbide (W2C) and tungsten carbide-carbon composites (WC/C), alumina (AI2O3), molybdenum sulphide (MoS2), and materials of the hydrogenated amorphous carbon type (a: CH), the layer including on one surface thereof a series of dips and protrusions; and a layer (4) of an oleophilic material. The invention can particularly be used in the field of mechanics.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 29, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Cedric Ducros, Jerome Gavillet
  • Patent number: 8703245
    Abstract: A coated metal substrate has at least one layer of titanium based hard material alloyed with at least one alloying element selected from the list of chromium, vanadium and silicon. The total quantity of alloying elements is between 1% and 50% of the metal content, the layer having a general formula of: (Ti100-a-b-cCraVbSic)CxNyOz.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 22, 2014
    Assignees: Iscar, Ltd., Ionbond AG
    Inventors: Albir Layyous, Yehezkeal Landau, Hristo Strakov, Renato Bonetti
  • Publication number: 20140057099
    Abstract: A capping layer is formed over a hardmask layer to increase the etch resistance and overall performance of the hardmask layer. Embodiments include forming a hardmask layer over a substrate and forming a capping layer on the hardmask layer, the capping layer including a stack of at least two nanolayers.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventor: Robin Abraham KOSHY
  • Publication number: 20140057089
    Abstract: A hardmask layer is formed with an increased etch resistance based on alternating nanolayers of TiN with alternating residual stresses. Embodiments include depositing a first nanolayer of TiN, and depositing a second nanolayer of TiN on the first nanolayer, wherein the first and second nanolayers have different residual stresses.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 27, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventor: Robin Abraham KOSHY
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8652625
    Abstract: A transparent gas barrier film comprising a substrate having thereon a gas barrier layer comprising at least a low density layer and a high density layer, wherein one or more intermediate density layers are sandwiched between the low density layer and the high density layer.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 18, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kazuhiro Fukuda, Toshio Tsuji, Chikao Mamiya, Hiroaki Arita
  • Patent number: 8647750
    Abstract: Wood products, specifically wood commonly used in construction including dimension lumber, pressure treated pine, composite wood materials such as plywood, particle board, and wafer board, and samples of paper and fabric were variously treated with concentrations of sodium silicate (Na2O.SiO2) also known as water glass. Cellulosic materials including dimension lumber, plywood, particle board, wafer board, paper, and fabric were treated with sodium silicate (Na2O.SiO2) in concentrations ranging from 400-0.04 g Na2O.SiO2/kg water. To overcome the disadvantages of sodium silicate, sodium silicate treated samples were further treated to convert the water soluble sodium silicate to a water insoluble form, thereby overcoming the disadvantages of water solubility, and rendering the material effective for internal and external uses.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: February 11, 2014
    Inventors: K. M. Slimak, Robert A. Slimak
  • Patent number: 8568832
    Abstract: Disclosed are methods of treating a metal to improve the metal's corrosion resistance. The method includes applying, to the surface of the metal, a coating which comprises magnesium powder and a binder. The present invention also relates to a coating composition that includes magnesium powder and a silane modified epoxy isocyanate hybrid polymer or prepolymer. The inventors have found that corrosion resistance (as determined by Prohesionâ„¢ exposure in accordance with ASTM D5894-96, which is hereby incorporated by reference) in excess of 3,000 hours on 2024 T-3 aluminum alloy can be achieved with the methods and coating compositions of the present invention.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: October 29, 2013
    Assignee: NDSU Research Foundation
    Inventors: Michael E. Nanna, Gordon P. Bierwagen, Dante Battocchi
  • Patent number: 8541053
    Abstract: Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Marlon Menezes, Frank Y. Xu, Fen Wan
  • Patent number: 8507085
    Abstract: An aluminum or aluminum alloy article is described. The aluminum or aluminum alloy article includes an aluminum or aluminum alloy substrate, a barrier layer formed on the substrate, a color layer formed on the barrier layer, and an insulation layer formed on the color layer. The barrier layer and the color layer are formed by vacuum sputtering. The barrier layer is a layer of silver-aluminum-oxygen-nitrogen. The insulation layer is an external layer of the aluminum or aluminum alloy article.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 13, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20130171435
    Abstract: A plastic glazing includes a base layer; and a coating layer formed on one surface of the base layer, wherein the base layer includes polycarbonate including a biphenyl group. The biphenyl group is present in an amount of about 10 mol % to about 50 mol % based on the total amount of polycarbonate.
    Type: Application
    Filed: December 10, 2012
    Publication date: July 4, 2013
    Applicant: CHEIL INDUSTRIES INC.
    Inventor: Cheil Industries Inc.
  • Publication number: 20130136915
    Abstract: An article includes a substrate and an environmental barrier coating overlying the substrate. The environmental barrier coating includes a first dense layer, an intermediate layer overlying the first dense layer, and a second dense layer overlying the intermediate layer. The first dense layer includes at least one of a first rare earth silicate or barium strontium aluminosilicate and the second dense layer includes at least one of a second rare earth silicate or barium strontium aluminosilicate. Additionally, the intermediate layer includes at least one of a porous microstructure, a lamellar microstructure, or an absorptive material.
    Type: Application
    Filed: April 28, 2011
    Publication date: May 30, 2013
    Applicant: ROLLS-ROYCE CORPORATION
    Inventor: Subhash K. Naik
  • Publication number: 20130125876
    Abstract: A method for providing a thermal absorber, which can be used in solar thermal collectors. The method includes a step of depositing on a substrate a first layer having a composition that comprises titanium, aluminium, nitrogen, and one of following elements: silicon, yttrium, cerium, and chromium. The method further optionally includes a step of depositing a second layer deposited on the first layer, the second layer having a composition including titanium, aluminium, nitrogen, oxygen and one of the elements of silicon, yttrium, cerium, and chromium, and a step of depositing a third layer having a composition including titanium, aluminium, silicon, nitrogen, and oxygen, the third layer being a top layer of the thermal absorber.
    Type: Application
    Filed: April 28, 2010
    Publication date: May 23, 2013
    Applicant: SAVO-SOLAR OY
    Inventors: Martin Andritschky, Luis Manuel Fernandes Rebouta, Kaj A. Pischow
  • Publication number: 20130101818
    Abstract: Disclosed is a surface coating film for a forming machine, including: a substrate; a nitride layer on the substrate; a multilayered film layer deposited on the nitride layer by reaction of nitrogen (N) with a TiAl target and a Cr target; and a carbonitride layer deposited on the multilayered film layer by reaction of nitrogen (N) and carbon (C) with a TiAl target and a Cr target.
    Type: Application
    Filed: July 31, 2012
    Publication date: April 25, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Sung Chul Cha, Byung Kyu Cho, Ho Young Kong, Soo Jin Chung, Jun Seok Lee
  • Publication number: 20130085057
    Abstract: A method of fabricating a ceramic component includes initially partially filling pores of a porous structure using one of a first processing technique or a second, different processing technique to form a preform body with residual porosity. The first processing technique produces a first ceramic material in the pores of the porous structure and a second processing technique produces a second ceramic material in the pores of the porous structure. When the first processing technique is used to initially partially fill the pores of the porous structure, the second processing technique is used thereafter to at least partially fill the residual porosity with the second ceramic material. When the second processing technique is used to initially partially fill the pores, the first processing technique is used thereafter to at least partially fill the residual porosity.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 4, 2013
    Inventors: Wayde R. Schmidt, David C. Jarmon, William K. Tredway
  • Patent number: 8404366
    Abstract: In a cutting tool, if the outermost ceramic coating layer is a ?-Al2O3 coating layer, then certain microns of the ?-Al2O3 layer will be transformed into an ?-Al2O3 by instantaneous melting, vaporization and solidification. Further, if the outermost coating layer of the ceramic coating layers is an ?-Al2O3 coating layer, then the surface roughness will be enhanced since at least a portion of it will be melted, wherein the melted surface will be solidified with its surface flattened by the surface tension provided in a melted state.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: March 26, 2013
    Assignee: TaeguTec, Ltd.
    Inventors: Dong Gil Ahn, Joo Wan Lee
  • Publication number: 20130059071
    Abstract: Components of semiconductor processing apparatus are formed at least partially of erosion, corrosion and/or corrosion-erosion resistant ceramic materials. Exemplary ceramic materials can include at least one oxide, nitride, boride, carbide and/or fluoride of hafnium, strontium, lanthanum oxide and/or dysprosium. The ceramic materials can be applied as coatings over substrates to form composite components, or formed into monolithic bodies. The coatings can protect substrates from physical and/or chemical attack. The ceramic materials can be used to form plasma exposed components of semiconductor processing apparatus to provide extended service lives.
    Type: Application
    Filed: November 2, 2012
    Publication date: March 7, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventor: LAM RESEARCH CORPORATION
  • Publication number: 20130040119
    Abstract: A coated article includes a substrate, and a plurality of aluminum nitride layers and a plurality of titanium boride layers formed on the substrate. Each aluminum nitride layer interleaves with one titanium boride layer. One of the aluminum nitride layers is directly formed on the substrate. A method for making the coated article is also described.
    Type: Application
    Filed: September 28, 2011
    Publication date: February 14, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, CONG LI
  • Patent number: 8367250
    Abstract: The invention concerns a device for storing electric power and method for assembling the device. The device includes an electrode layer and a collector layer associated with the electrode layer, a barrier layer made of metal nitride, the barrier layer being interposed between the electrode layer and the collector layer. The barrier layer is adapted to prevent diffusion of ions contained in an electrolyte up to the collector layer.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: February 5, 2013
    Assignee: Batscap
    Inventor: Jean-Michel Depond
  • Patent number: 8367225
    Abstract: A coating includes a deposited layer. The deposited layer is a nickel-titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Publication number: 20130029119
    Abstract: A coated article includes a substrate, and a plurality of molybdenum layers and a plurality of titanium-aluminum-nitrogen layers formed on the substrate. Each molybdenum layer interleaves with one titanium-aluminum-nitrogen layer. One of the molybdenum layers is directly formed on the substrate. A method for making the coated article is also described.
    Type: Application
    Filed: September 28, 2011
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, CONG LI
  • Patent number: 8361639
    Abstract: A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: RE45154
    Abstract: A tool for machining is made from a hard-metal, cermet or ceramic base material and a single-layer or multi-layer hard material coating on the base material. An additional coating of one or more metals from the group of aluminum, copper, zinc, titanium, nickel, tin or base alloys of these metals is applied to the hard material coating.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Ceratizit Austria Gesellschaft mbH
    Inventors: Wolfgang Wallgram, Uwe Schleinkofer, Karl Gigl, Josef Thurner, Wilfried Schintlmeister