Boride, Carbide, Nitride, Phosphide, Silicide, Or Sulfide-containing Coating Patents (Class 427/419.7)
  • Publication number: 20070141383
    Abstract: An exemplary core insert includes a main body having a central protruding portion and a peripheral flange portion surrounding the central protruding portion, and a multilayer film formed on the central protruding portion. The multilayer film comprising a nickel-phosphorus layer formed on the central protruding portion, a chromium layer formed on the nickel-phosphorus layer, a chromium nitride layer formed on the chromium layer, and a diamond-like carbon layer formed on the chromium nitride layer. The core insert has excellent hardness, good corrosion resistance, good wear resistance, high adhesion and long operational lifetime.
    Type: Application
    Filed: September 8, 2006
    Publication date: June 21, 2007
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: GA-LANE CHEN
  • Patent number: 7232603
    Abstract: The present invention relates to a cutting tool insert for side and face milling of rolled low alloyed steel at low and at moderate cutting speeds comprising a cemented carbide body and a coating and a method for making same. The cemented carbide body comprises WC, from about 7.3 to about 7.9 wt-% Co and from about 1.0 to about 1.8 wt-% cubic carbides of Ta and Nb and a highly W-alloyed binder phase with a CW-ratio of from about 0.86 to about 0.94. The coating comprises: a first (innermost) layer of TiCxNyOz with a thickness of from about 0.1 to about 2 ?m, and with equiaxed grains with size less than about 0.5 ?m a layer of TiCxNyOz with a thickness of from about 2 to about 10 ?m with columnar grains with a diameter of about less than about 5 ?m a layer of TiCxNyOz with a thickness of 0.1-2 ?m and with equiaxed or needlelike grains with size less than about 0.5 ?m an outer layer of a smooth, textured, finegrained ?-Al2O3 layer with a thickness of from about 2 to about 10 ?m.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: June 19, 2007
    Assignee: Sandvik Intellectual Property AB
    Inventor: Ingemar Hessman
  • Patent number: 7211177
    Abstract: Electrode at least comprising an electroconductive support of a titanium-palladium alloy, titanium, tantalum or compounds or alloys of titanium or of tantalum, an electrochemically active coating and an interlayer between the support and the electrochemically active coating, wherein the interlayer consists of titanium carbide and/or titanium boride and is applied to the support by flame or plasma spraying. Process for producing these electrodes and their use in an electrochemical cell for producing chlorine or chromic acid.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: May 1, 2007
    Assignees: Bayer Aktiengesellschaft, DeNora Elettrodi S.p.A.
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Gerd Speer, Peter Fabian, Robert Scannel
  • Patent number: 7189433
    Abstract: The present invention provides a process for preparing a thin film having alternating monolayers of a metal-metal bonded complex monolayer and an organic monolayer by layer-by-layer growth. The process comprises the steps of: (1) applying onto a surface of a substrate a first linker compound to produce a primer layer; (2) applying onto said primer layer a layer of a metal-metal bonded complex to produce a metal-metal bonded complex monolayer on said primer layer; (3) applying onto said metal-metal bonded complex monolayer a second linker compound; and optionally (4) sequentially repeating steps (2) and (3) at least once to produce said layer-by-layer grown thin film having alternating monolayers of a metal-metal bonded complex monolayer and an organic monolayer.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cherie R Kagan, Chun Lin
  • Patent number: 7166371
    Abstract: There is disclosed a cutting tool having a blade coated on one side with a hard coating living a laminar or layered microstructure. The coating tends to wear evenly and smoothly, thereby keeping a cutting edge of the cutting tool smooth. Furthermore, by coating the cutting edge on one side only, the cutting edge becomes self-sharpening. The coating preferably includes at least one layer made of tungsten carbides substantially or entirely free of metallic tungsten.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 23, 2007
    Assignee: Hardide Limited
    Inventors: Yury Viktorovich Lakhotkin, Sergey Aleksandrov, Yuri Zhuk
  • Patent number: 7160584
    Abstract: A method for manufacturing a ceramic glow pin which is formed of more than two layers arranged especially coaxially to the axis of the glow pin and symmetrically. The layers of the layer structure are manufactured by co-extrusion.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: January 9, 2007
    Assignee: Beru AG
    Inventors: Oliver Goeb, Hans Houben, Lutz Frassek, Henning Von Watzdorf, Martin Allgaier, Johann Weissenbacher
  • Patent number: 7097923
    Abstract: A tri-layer anti-reflective coating for use in photolithographic applications, and specifically, for use in ultraviolet photolithographic processes. The tri-layered anti-reflective coating is used to minimize pattern distortion due to reflections from neighboring features in the construction of microcircuits. The tri-layer anti-reflection coating features a first layer, a first dielectric layer, an absorption layer disposed on the first dielectric layer, and a second dielectric layer, which is then disposed between the absorption layer and a photoresist layer. At least the absorption layer and dielectric layers can be formed using vacuum deposition. A unique character of the tri-layer anti-reflective coatings is that it dampens reflections structures having severe topologies and also allows a thinner anti-reflection layer that has a wider process latitude.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 29, 2006
    Assignee: Hitachi Global Storage Technologies
    Inventors: Patrick R. Webb, Howard G. Zolla
  • Patent number: 7094447
    Abstract: The present invention introduces a new and refined method to produce ?-Al2O3 layers with substantially better wear resistance and toughness than the prior art. The ?-Al2O3 layer of the present invention is formed on a bonding layer of (Ti,Al)(C,O,N) with increasing aluminium content towards the outer surface. Nucleation of ?-Al2O3 is obtained through a nucleation step being composed of both aluminizing and oxidization steps. The ?-Al2O3 layer according to this invention has a thickness ranging from 1 to 20 ?m and is composed of columnar grains. The length/width ratio of the alumina grains is from 2 to 12, preferably 5 to 9. The layer is characterized by a strong (012) growth texture, measured using XRD, and by the almost total absence (104), (110), (113) and (116) diffraction peaks.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: August 22, 2006
    Assignee: Seco Tools AB
    Inventor: Sakari Ruppi
  • Patent number: 7077918
    Abstract: A coating is stripped off a work piece by applying a chromous and aluminiforous coat directly on the work piece and stripping the work piece with an alkaline solution containing a strong oxidant. A single-compartment system can be used, which includes a spray chamber including a circulatory spray-cycle system; a support for holding the work piece; and a media container connected to the spray chamber via a media circulation system.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: July 18, 2006
    Assignee: Unaxis Balzers Ltd.
    Inventors: Udo Michael Rauch, Wolfgang Kalss, Christian Wohlrab, Caroline Siebert, Norbert Froemel
  • Patent number: 7014881
    Abstract: An inert anode 50, for use in an electrolytic cell 12 for producing metals such as aluminum, is made by providing chemical source materials 100 such as at least two of metal salts, metal particles, or metal oxides and dissolving them to form a solution or a slurry 110, followed by adding a base 120 and adjusting the pH so that a gel 130 is formed which is dried and calcined 150, 160, 190 to provide a blend of metal oxide powder 200 which can be pressed and sintered 220 to form an inert anode 50.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 21, 2006
    Assignee: Alcoa Inc.
    Inventors: Xinghua Liu, Siba P. Ray, Alfred F. LaCamera, Douglas A. Weirauch, Mark L. Weaver, Robert A. DiMilia, Kirk J. Malmquist, Frankie E. Phelps, Joseph M. Dynys
  • Patent number: 7011864
    Abstract: An apparatus for forming a film on a wafer comprising, a first coating apparatus coating a foaming insulation film material on the wafer, a second coating apparatus coating a non-porous insulation film material on the wafer, a low oxygen heating temperature regulating process apparatus performing a heating process on the wafer on which the foaming insulation film material is coated, a low oxygen high temperature heating process apparatus performing the heating process on the water on which the non-foaming insulation film material is coated, a transfer mechanism transferring the wafer to these apparatuses, and a selecting means selecting a path to which the wafer is transferred corresponding to the film formed on the wafer.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: March 14, 2006
    Assignee: Tokyo Electron Limited
    Inventor: Hiroshi Ishida
  • Patent number: 6962753
    Abstract: In a composite magnetic body comprising soft magnetic powder dispersed in an organic binding agent and having an electromagnetic interference suppressing effect, powder excellent in thermal conductivity is further dispersed into the organic binding agent so as to provide a composite magnetic body excellent in thermal conductivity. This composite magnetic body may also be used as a heat dissipation sheet for an electronic device. Further, it may also constitute a heat sink having an electromagnetic interference suppressing effect. As the organic binding agent, thermoplastic polyimide or liquid crystal polymer can be cited. As the powder excellent in thermal conductivity, Al2O3, AlN, cubic BN, insulating SiC or a heat conductive reinforcement (capton) can be cited.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: November 8, 2005
    Assignee: NEC Tokin Corporation
    Inventors: Shigeyoshi Yoshida, Mitsuharu Sato, Norihiko Ono
  • Patent number: 6919106
    Abstract: A porous SOG film is formed by preparing an organic silane solution containing an organic silane, water and an alcohol, subjecting the organic silane to acid hydrolysis or alkali hydrolysis and then heat-treating the resulting reaction system in the presence of a surfactant to thus form a porous SiO2 film to use for an interlayer insulating film. Alternatively, a porous SOG film is formed by repeating the foregoing step at least one time; or by forming a hydrophobic film on the porous SiO2 film prepared by the foregoing step by the CVD or sputtering technique to thus cap the surface of the porous film; or repeating the porous film-forming and capping steps at least one time. Moreover, after the preparation of the foregoing porous SiO2 film, it is subjected to either of the oxygen plasma-treatment, electron beam-irradiation treatment and UV light-irradiation treatment to remove the unreacted OH groups remaining on the porous film and to thus form a porous SOG film.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: July 19, 2005
    Assignee: Ulvac Inc.
    Inventors: Hirohiko Murakami, Chiaki Tanaka, Masaaki Hirakawa
  • Patent number: 6905737
    Abstract: A method for providing activated species for a cyclical deposition process is provided. In one aspect, the method includes delivering a gas to be activated into a plasma generator, activating the gas to create a volume of reactive species, delivering a fraction of the reactive species into a processing region to react within a substrate therein, and maintaining at least a portion of the the gas remaining in the plasma generator in an activated state after delivering the fraction of the gas into the process region. The plasma generator may include a high density plasma (HDP) generator, a microwave generator, a radio-frequency (RF) generator, an inductive-coupled plasma (ICP) generator, a capacitively coupled generator, or combinations thereof.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 14, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Donald J. Verplancken, Ashok K. Sinha
  • Patent number: 6890632
    Abstract: Coated cemented carbide inserts (cutting tool), particularly useful for milling at high cutting speeds in steels and milling in hardened steels are characterised by a WC—Co cemented carbide containing NbC and TaC and a W-alloyed binder phase and a coating including a first, innermost layer of TiCxNyOz with equiaxed grains, a second layer of TiCxNyOz with columnar grains and at least one layer of Al2O3 composed primarily of the ?-phase.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: May 10, 2005
    Assignee: Seco Tools AB
    Inventors: Andreas Larsson, Anette Sulin, Lena Pettersson
  • Patent number: 6884467
    Abstract: Coated articles (19) that comprise components, made of carbon fiber or carbon-carbon composites which may be configured, for example, as aircraft landing system brake discs. The components (10) are coated with a system that includes a phosphorus-containing undercoating (11) having a specified formulation and a boron-containing overcoating (12) having specified formulation. The coated articles of the invention, e.g., aircraft brake discs, are protected against catalytic oxidation when the article is subjected to temperatures of 800° C. (1472° F.) or greater. Also, a method of protecting a component made of a carbon fiber or carbon-carbon composite simultaneously against catalytic oxidation (e.g., catalyzed by de-icer compositions) and high temperature non-catalytic oxidation.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 26, 2005
    Assignee: Honeywell International Inc.
    Inventors: Terence B. Walker, Ilan Golecki, Laurie A. Booker
  • Patent number: 6875467
    Abstract: A method of preparing a multi-layer, crack resistant sol-gel glass derived coating on a substrate by removing the outer periphery of each layer before curing the layer and depositing any succeeding layer.
    Type: Grant
    Filed: December 15, 2002
    Date of Patent: April 5, 2005
    Assignee: Optinetrics, Inc.
    Inventors: Fernando A. Sigoli, Lothar U. Kempen, Edgar A. Mendoza
  • Patent number: 6863963
    Abstract: A silicon nitride member, a method for manufacturing the silicon nitride member and a cutting tool are disclosed. A cutting tool 1 includes a substrate 3 formed through sintering of a silicon nitride material, and a hard film 5 composed of a plurality of hard-component layers. The cutting tool 1 is characterized in that: when the amount of a grain boundary phase as measured at a central portion (for example, the barycenter) of the substrate 3 is taken as 100% by volume, the amount of the grain boundary phase at a depth of 300 ?m from the surface of the substrate 3 is 50% to 70% by volume; when the strength of the substrate 3 as measured before coating with the hard film 5 is taken as 100%, the hardness as measured after coating with the hard film 5 is 70% to 95%; and a change in weight of the substrate 3 associated with sintering is 1.5% to 3.5% by weight.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: March 8, 2005
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Kohei Abukawa
  • Patent number: 6827977
    Abstract: A method of making a coated article (e.g., window unit), and corresponding coated article are provided. A layer of or including diamond-like carbon (DLC) is formed on a glass substrate. Then, a protective layer is formed on the substrate over the DLC inclusive layer. During heat treatment (HT), the protective layer prevents the DLC inclusive layer from significantly burning off. Thereafter, the resulting coated glass substrate may be used as desired, it having been HT and including the protective DLC inclusive layer.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 6825512
    Abstract: An active part of a sensor is formed, for example, by micro-machined silicon wafers bearing electronic elements, electrical conductors, connection pads, and pins. The pads are electrically connected to the pin ends by conductive elements. Then the wafer and the pin ends are plunged into an electrolytic bath to make an electrolytic deposit of conductive metal on the pin ends, the pads, and the conductive elements that connect them. Finally, this metal is oxidized or nitrized to form an insulating coat on the pin ends, the pads, and the conductive elements that connect them. Such a sensor may find particular application as a sensor designed to work in harsh environments.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 30, 2004
    Assignee: Thales
    Inventors: Bertrand Leverrier, Marie-Dominique Bruni-Marchionni
  • Patent number: 6824814
    Abstract: A method of forming a perovskite thin film includes preparing a perovskite precursor solution; preparing a silicon substrate for deposition of a perovskite thin film, including forming a bottom electrode on the substrate; securing the substrate in a spin-coating apparatus and spinning the substrate at a predetermined spin rate; injecting a perovskite precursor solution into the spin-coating apparatus thereby coating the substrate with the perovskite precursor solution to form a coated substrate; baking the coated substrate at temperatures which increase incrementally from about 90° C. to 300° C.; and annealing the coated substrate at a temperature of between about 500° C. to 800° C. for between five minutes to fifteen minutes.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: November 30, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Sheng Teng Hsu, Wei Pan, Masayuki Tajiri
  • Patent number: 6824816
    Abstract: The invention relates generally to processes for producing electrically conductive noble metal thin films on a substrate by atomic layer deposition. According to one embodiment of the invention a substrate with a surface is provided in a reaction chamber and a vaporised precursor of a noble metal is pulsed into the reaction chamber. By contacting the vaporised precursor with the surface of the substrate, no more than about a molecular layer of the metal precursor is formed on the substrate. In a next step, a pulse of molecular oxygen-containing gas is provided in the reaction chamber, where the oxygen reacts with the precursor on the substrate. Thus, high-quality metal thin films can be deposited by utilising reactions between the metal precursor and oxygen. In one embodiment, electrically conductive layers are deposited in structures that have high aspect ratio vias and trenches, local high elevation areas or other similar surface structures that make the surface rough.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: November 30, 2004
    Assignee: ASM International N.V.
    Inventors: Titta Aaltonen, Petra Alén, Mikko Ritala, Markku Leskelä
  • Patent number: 6821578
    Abstract: A method of placing a ceramic coating on an article of manufacture comprising a substrate formed of a nickel or cobalt-based superalloy, which includes the steps of placing a bonding layer on the substrate and placing an anchoring layer, which is chemically different from the bonding layer and comprises a nitride compound, on the bonding layer. The method further includes the step of placing the ceramic coating on the anchoring layer.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: November 23, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wolfram Beele
  • Publication number: 20040213921
    Abstract: A HDP CVD process for depositing a USG liner followed by a FSG dielectric layer on a metal line pattern is described. The substrate is heated in a chamber with a plasma comprised of Ar and O2. A USG liner is deposited in two steps wherein the first step is without an RF bias and the second step is with a moderate RF bias that does not damage the metal lines or an anti-reflective coating on the metal. The moderate RF bias is critical in forming a sputtering component that redeposits USG to form more uniform sidewalls and better coverage at top corners of metal lines. The USG deposition process has a good gap filling capability and significantly reduces device failure rate by preventing corrosion of metal lines during subsequent thermal process cycles. The method also includes a PECVD deposited FSG layer that is planarized to complete an IMD layer.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co.
    Inventors: Pong-Hsiung Leu, Yu-Min Chang, Fang-Wen Tsai, Jo-Wei Chen, Wan-Cheng Yang, Chyi-Tsong Ni
  • Publication number: 20040209110
    Abstract: A beta-phase NiAl overlay coating containing a dispersion of ceramic particles and a process for depositing the overlay coating. If the coating is used to adhere a thermal barrier coating (TBC), the TBC exhibits improved spallation resistance as a result of the dispersion of ceramic particles having a dispersion-strengthening effect on the overlay coating. The overlay coating contains at least one reactive element and is deposited so that the some of the reactive element deposits as the ceramic particles dispersed in the overlay coating.
    Type: Application
    Filed: April 18, 2003
    Publication date: October 21, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jeffrey Allan Pfaendtner, Ramgopal Darolia, William Scott Walston, Brett Allen Rohrer Boutwell, Irene Spitsberg, James Anthony Ruud, Joseph David Rigney
  • Patent number: 6805944
    Abstract: A coated cemented carbide cutting tool member having excellent ability to prevent breakage and chipping around its cutting edge, exhibits high wear resistance in severe cutting operations comprises a hard sintered substrate and a hard coating layer deposited on the surface of said substrate, the hard coating layer comprises an alternated multi-layer structure having a total thickness of between 0.5 to 20 &mgr;m and comprising the first thin layer of titanium compounds and the second thin layer of hard oxide materials whose individual thickness is between 0.01 to 0.3 &mgr;m.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: October 19, 2004
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takatoshi Oshika, Toshiaki Ueda
  • Patent number: 6797340
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a boride. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), derivatives thereof, and combinations thereof. A tungsten bulk fill may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hongbin Fang, Hyung-Suk A. Yoon, Ken Kaung Lai, Chi Chung Young, James Horng, Ming XI, Michael X. Yang, Hua Chung
  • Patent number: 6797331
    Abstract: A fiber-reinforced plastic base body is first of all provided with a coating of hard rubber or thermoplastic having a dispersed metal or ceramic content of 5% by volume to 80% by volume, and the coating is ground down to provide a smooth surface In a further step a layer of metal and/or ceramic, which has a printing function, is applied to the smooth surface, preferably by thermal spraying.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: September 28, 2004
    Assignee: MAN Roland Druckmaschinen AG
    Inventors: Josef Singler, Martin Endisch, Gerhard Johner, Markus Kirst
  • Patent number: 6793779
    Abstract: A method of filling trenches or vias on a semiconductor workpiece surface with copper using sputtering techniques. A copper wetting layer and a copper fill layer may both be applied by sputtering techniques. The thin wetting layer of copper is applied at a substrate surface temperature ranging between about 20° C. to about 250° C., and subsequently the temperature of the substrate is increased, with the application of the sputtered copper fill layer beginning at above at least about 200° C. and continuing while the substrate temperature is increased to a temperature as high as about 600° C. Preferably the substrate temperature during application of the sputtered fill layer ranges between about 300° C. and about 500° C.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: September 21, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Tony Chiang, Barry L. Chin
  • Patent number: 6787195
    Abstract: A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800° C. or less, preferably 500° C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: September 7, 2004
    Assignee: General Electric Company
    Inventors: Hongyu Wang, Yuk-Chiu Lau, Irene Spitsberg, Arnold T. Henry
  • Patent number: 6770176
    Abstract: Methods of manufacturing an electrochemical device, are taught. The methods may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The methods may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: August 3, 2004
    Assignee: ITN Energy Systems. Inc.
    Inventors: Martin H. Benson, Bernd J. Neudecker
  • Patent number: 6756082
    Abstract: A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: June 29, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Ramesh Subramanian, Brij B. Seth
  • Patent number: 6740408
    Abstract: An oxidation-sensitive composite has applied thereto a composition comprising a mixture of boride powder constituted for the most part of TiB2, at least one vitreous refractory oxide powder constituted for the most part by a mixture of borosilicate glass, and a binder containing a ceramic-precursor resin. The resin is cured and is subsequently transformed into a ceramic by heat treatment or during first exposure of the coated part to high temperatures.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: May 25, 2004
    Assignee: SNECMA Propulsion Solide
    Inventors: Jacques Thebault, Pascal Diss, Michel Laxague, Eric Lavasserie
  • Patent number: 6740364
    Abstract: A process for depositing a ceramic coating system for Si-containing materials, particularly those for articles exposed to high temperatures. The process is particularly applicable to depositing a compositionally-graded coating system comprising multiple ceramic layers with differing compositions, including a dense, strain-tolerant, vertically-cracked YSZ-containing ceramic layer deposited on a ceramic layer having a composition that is a mixture of YSZ and either mullite or BSAS. The process entails depositing the YSZ-containing ceramic layer using a plasma spraying technique while maintaining the substrate at a temperature so as not to form horizontal cracks in the coating system, but still maintain the dense vertically-cracked structure of the YSZ-containing ceramic layer for strain tolerance.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: May 25, 2004
    Assignee: General Electric Company
    Inventors: Yuk-Chiu Lau, Hongyu Wang, David Joseph Mitchell
  • Patent number: 6730178
    Abstract: A metallic base material is covered with a coating layer of intermetallic compound, or a plurality of metallic base materials are welded to each other with an intermetallic compound, with reduced energy consumption within a short period of time. First metallic substance 31 in powdery form is piled up on metallic base material 2. Second metallic substance 3 in molten form is delivered onto piling layer 80 of the first substance. Thus, under the control of reaction initiation temperature, coating layer (or building up coating layer) 84 of intermetallic compound having a thickness of hundreds of microns (&mgr;m) to millimeters (mm) is formed on the base material 2 by the self-exothermic reaction between the first substance and the second substance. This method is also useful in the welding of a plurality of metallic base materials to each other with an intermetallic compound. The first substance can be constituted of, for example, Ni, Co or Fe. The second substance can be constituted of, for example, Al or Ti.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: May 4, 2004
    Assignees: JSR Corporation
    Inventors: Yoshinari Miyamoto, Kiyotaka Matsuura, Toshio Teramoto
  • Patent number: 6730362
    Abstract: A multi-layer vapor deposited protective and decorative coating a polymeric basecoat layer wherein the polymer of the basecoat layer is cured at subatmospheric pressure.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: May 4, 2004
    Assignee: Masco Corporation
    Inventors: John G. Finch, Joseph A. Elmer, Daniel E. Ford, Patrick A. Sullivan, Robert C. Bishop
  • Patent number: 6723376
    Abstract: A process for inhibiting the fouling of a substrate in a fouling environment, which comprises forming on the substrate, before exposure to the environment, a coating comprising a film-forming polymer (A) carrying unreacted curable silicon-containing functional groups providing latent reactivity, and thereafter applying a layer comprising a curable polymeric fouling-inhibiting material (B), more especially a curable polysiloxane or a curable flourine-containing polymer, and bonding the applied layer to the coating by a condensation curing reaction involving the unreacted functional groups thereon. The initial coating can be applied over a range of worn or damaged anti-fouling coatings. The sequential application of layers is a simpler, more flexible and more controllable procedure than is offered by complex systems designed to produce outer siloxane-rich regions. Relatively long periods are achievable.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: April 20, 2004
    Assignee: International Coatings Limited
    Inventors: Trevor Hamilton, Gergina Elizabth Green, David Neil Williams
  • Publication number: 20040062867
    Abstract: A silicon rich anti-reflective coating (30) is formed on a layer (10) in which narrow linewidth features are to be formed. Prior to the formation of a photoresist layer (50), the anti-reflecting coating (30) is exposed to excited oxygen species to reduce photoresist poisoning.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: James B. Friedmann, Shangting Detweiler, Brian M. Trentman
  • Patent number: 6689283
    Abstract: A dry etching is performed using a mask made of a titanium nitride under a reaction gas of a carbon monoxide with an additive of a nitrogen containing compound gas.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: February 10, 2004
    Assignee: TDK Corporation
    Inventors: Kazuhiro Hattori, Kenji Uchiyama
  • Patent number: 6682773
    Abstract: A method and coating are provided for temporarily protecting a substrate or article during shipping, handling or storage by applying a removable protective coating over at least a portion of the substrate. The substrate may be flat or curved and may have zero, one or more functional coatings. A plurality of substrates with the protective coating of the invention may be arranged in a shipping container so that the protective coating reduces the possibility of damage to the substrate or optional functional coating. In one embodiment, the protective coating is the evaporation or reaction product of an aqueous coating composition containing a polyvinyl alcohol polymer which may be subsequently removed by aqueous washing, thermal decomposition or combustion. In another embodiment, the protective coating is formed by sputtering a substantially carbon coating onto the substrate. The carbon coating is subsequently removed by combustion.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 27, 2004
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Paul A. Medwick, Erin Goodreau, Ernest L. Lawton, James J. Finley, George M. Martin, James P. Thiel, Gary J. Marietti, Roger L. Scriven
  • Patent number: 6656520
    Abstract: A non-carbon, metal-based, high temperature resistant, electrically conductive and electrochemically active anode of a cell for the production of aluminum has a metal-based substrate to which an adherent coating is applied prior to its immersion into the electrolyte and start up of the electrolysis by connection to the positive current supply. The coating is obtainable from one or more layers applied from: a liquid solution, a dispersion in a liquid or a paste, a suspension in a liquid or a paste, and a pasty or non-pasty slurry, and combinations thereof with or without one or more further applied layers, with or without heat treatment between two consecutively applied layers when at least two layers are applied.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: December 2, 2003
    Assignee: Moltech Invent-SA
    Inventor: Vittorio de Nora
  • Patent number: 6645566
    Abstract: A method for nitriding a metallic base material at low temperatures in a salt bath containing electrolyzed titanium metal. A nitride coating of exceptional depth and hardness is obtained in a very short operating time due to the rapid nitriding process. The method is applicable to steel, titanium, aluminum and alloys thereof.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: November 11, 2003
    Inventor: Jong Ho Ko
  • Publication number: 20030207132
    Abstract: The present invention relates to oxides on suitable substrates, as converted from nitride precursors.
    Type: Application
    Filed: August 16, 2001
    Publication date: November 6, 2003
    Applicant: Applied Thin Films, Inc.
    Inventors: Sankar Sambasivan, Scott A. Barnett, Ilwon Kim, John W. Rechner
  • Patent number: 6641867
    Abstract: In situ nitridation of a thin layer of either silicon or tungsten provides an adhesive layer for bulk deposition of tungsten. Alternatively, a thin layer of silicon can be deposited directly on a dielectric, then reacted with WF6 to replace the silicon with tungsten, which provides a nucleation layer for bulk tungsten deposition.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: November 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Wei-Yung Hsu, Jiong-Ping Lu, August J. Fischer, Ming-Jang Hwang
  • Publication number: 20030186087
    Abstract: The present invention is directed to a structure of a gradient barrier layer. The gradient barrier with a composite structure of metal/metal salt of different composition/metal such as Ta/TaxN1−x/TaN/TaxN1−x/Ta (tantalum/tantalumx nitride1−x/tantalum nitride/tantalumx nitride1−x/tantalum) is proposed to replace the conventional barrier for copper metallization. The gradient barrier can be formed in a chemical vapor deposition (CVD) process or a multi-target physical vapor deposition (PVD) process. For CVD process, using the characteristics of well-controlled reaction gas injection, the ratio of tantalum (Ta) and nitrogen (N) can be modulated gradually to form the gradient barrier. For the multi-target PVD process, the gradient barrier is formed by depositing multi-layers of different composition TaxN1−x films.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 2, 2003
    Inventors: Fu-Tai Liou, Cheng-Yu Hung, Tri-Rung Yew
  • Patent number: 6620462
    Abstract: A new method is provided for the creation of a protective layer over a glass substrate, the glass substrate has a first and a second surface. Under a first embodiment of the invention, a second surface of the glass panel is first coated with a layer of TiN. A first layer of amorphous silicon (A—Si) is deposited over the second surface of the glass panel. A second layer of amorphous silicon (A—Si) is deposited over the layer of TiN. A layer of photoresist is next deposited over the surface of the second layer of A—Si. The first layer of A—Si is removed from the second surface of the glass panel after which the layer of photoresist is removed. Under a second embodiment of the invention, the first and the second surface of the glass panel are coated with a first and a second layer of TiN. A layer of amorphous silicon (A—Si) is deposited over the second layer of TiN. A layer of photoresist is deposited over the layer of A—Si.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: September 16, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ya-Chien Huang, Bao-Ru Young, Shin-Shiung Chen
  • Patent number: 6607789
    Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. The &bgr;-NiAl powder having a size in the range of 20-50 microns is applied using air plasma spray techniques to produce a surface having a roughness of 400 microinches or rougher. The ceramic top coat can be applied using inexpensive thermal spray techniques to greater thicknesses than achievable otherwise because of the rough surface finish of the underlying &bgr;-NiAl bond coat.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau
  • Publication number: 20030148061
    Abstract: There is disclosed a carpet product. The carpet product comprises a polymer-coated carpet backing, a layer of silicate on the polymer-coated carpet backing, and a layer of polyurethane on the layer of silicate. A method of producing the carpet product is also disclosed.
    Type: Application
    Filed: January 30, 2002
    Publication date: August 7, 2003
    Inventors: Van I. Doesburg, James E. Wilson
  • Patent number: RE38752
    Abstract: A method of contacting s substrate having a surface containing hydroxyl groups with a non-aqueous solution containing a material having a chrolosilyl group; washing if desired; coating the substrate with a non-aqueous solvent containing a compound having a fluorocarbon group and a chlorosilane group or a solvent containing a compound containing a fluorocarbon group and an alkoxysilane; and baking the substrate if necessary in order to form a fluorocarbon-based polymer coating film chemically bonded to the substrate surface. The hydroxyl groups on the substrate surface and chlorosilyl groups are reacted to form a thin film having a large number of silanol groups (—SiOH) capable of connecting the polymer coating film to the substrate to form a heat-, weather-, and wear-resistant film on various surfaces.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: July 5, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd
    Inventors: Kazufumi Ogawa, Mamoru Soga
  • Patent number: RE39045
    Abstract: A method of contacting a substrate having a surface containing hydroxyl groups with a non-aqueous solution containing a material having a chrolosilyl group; washing if desired; coating the substrate with a non-aqueous solvent containing a compound having a fluorocarbon group and a chlorosilane group or a solvent containing a compound containing a fluorocarbon group and an alkoxysilane; and baking the substrate if necessary in order to form a fluorocarbon-based polymer coating film chemically bonded to the substrate surface. The hydroxyl groups on the substrate surface and chlorosilyl groups are reacted to form a thin film having a large number of silanol groups (—SiOH) capable of connecting the polymer coating film to the substrate to form a heat-, weather-, and wear-resistant film on various surfaces.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: March 28, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazufumi Ogawa, Mamoru Soga