Rotating Or Inverting Patents (Class 427/425)
  • Patent number: 8578877
    Abstract: The present invention provides a spin coater including a rotation table that rotatably holds the disc substrate, a spin-cup that surrounds the outer circumference of a disc substrate held on the rotation table, a dripping unit configured to drip an ultraviolet-curable resin composition onto the surface of the disc substrate, a rotating unit configured to rotate the disc substrate via the rotation table to spread the ultraviolet-curable resin composition over the surface of the disc substrate, a heating unit configured to heat the ultraviolet-curable resin composition on the disc substrate, and a temperature controlling unit configured to control a reaching temperature of the spin cup which is increased by the heating unit each time the ultraviolet-curable resin composition is spread, so as to be constant over multiple spin coating processes.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: November 12, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Yukitoshi Tajima
  • Patent number: 8580340
    Abstract: After a solvent is discharged onto a substrate in a period from a time point t0 to a time point t1, rotation of the substrate is started at a time point t2. A resist liquid is discharged onto a center portion of a target surface of the substrate at a time point t3. A rotation speed of the substrate starts to decrease at a time point t4, and attains a first speed after a certain period of time. The discharge of the resist liquid is stopped at a time point t5. The rotation of the substrate is accelerated in a period from a time point t6 to a time point t7, and the rotation speed of the substrate attains a second speed at the time point t7. The rotation of the substrate is decelerated in a period from the time point t7 to a time point t8, and the rotation speed of the substrate attains a third speed at the time point t8.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 12, 2013
    Assignee: Sokudo Co., Ltd.
    Inventors: Masanori Imamura, Akihiro Hisai, Hidetoshi Sagawa
  • Patent number: 8574674
    Abstract: A substrate is first rotated at a first rotation speed, and a resist solution is applied. Rotation of the substrate is decelerated to a second rotation speed lower than the first rotation speed so that the substrate is rotated at the low speed to smooth the resist solution on the substrate. Rotation of the substrate is then accelerated to a third rotation speed higher than the second rotation speed, and a solvent for the coating solution and/or a dry gas are/is supplied to the resist solution on the substrate. The solvent gas is supplied to a portion of the resist solution on the substrate thicker than a set thickness, and the dry gas is supplied to a portion of the coating solution on the substrate thinner than the set thickness. This thins the thicker portion of the resist solution and thickens the thinner portion to uniform the resist solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Takashi Tanaka
  • Patent number: 8574684
    Abstract: Method is provided for applying a cement mixture to a honeycomb body including the step of aligning a first end of the honeycomb body with respect to a first longitudinal axis of a first support member. The method further includes the step of aligning a second support member with respect to the second end of the honeycomb body. The second support member is allowed to move relative to the first support member such that a second longitudinal axis of second support member is not coincident with the first longitudinal axis. The method further includes the step of fixing the position of the honeycomb body with respect to the first support member and the second support member. The method still further includes the step of applying a cement mixture to the honeycomb body. An apparatus is provided that is configured to apply a cement mixture to a honeycomb body.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 5, 2013
    Assignee: Corning Incorporated
    Inventors: Bruce Patrick Allen, Richard Wayne Bernard, Jeffrey John Domey, Rodney Gene Dunn, William Joseph Zaidel
  • Patent number: 8555520
    Abstract: A covered sample plate with wells holding samples to be dried. The cover has through holes that communicate with only a portion of each well. The covered plate is inserted into a cradle of an assembly of cradles that is rotated. The cradle assembly fits into a tub and when rotated the cradles present a sold wall that functions as a centrifugal fan that drives air out through an opening in the tub. The air is dried of solvent and re-circulated back through the through holes in the cover to the sample wells.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 15, 2013
    Assignee: Harvard Bioscience, Inc.
    Inventor: Herbert J. Hedberg
  • Patent number: 8551563
    Abstract: A coating method includes holding a substrate in a horizontal state on a substrate holding member; supplying a coating liquid onto a front side central portion of the substrate held on the substrate holding member; rotating the substrate holding member about a vertical axis to spread the coating liquid supplied on the front side central portion of the substrate toward a front side peripheral portion of the substrate by a centrifugal force; and damping a wobble of the substrate being rotated, by a wobble damping mechanism including a gas delivery port and a suction port both disposed to face a back side of the substrate, while delivering a gas from the delivery port and sucking the gas into the suction port.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: October 8, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Takahiro Kitano, Koichi Obata, Hiroichi Inada, Nobuhiro Ogata
  • Patent number: 8535758
    Abstract: A composition includes a layer of nanoparticles and a layer of a second material.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: September 17, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Seth Coe-Sullivan, Wing-Keung Woo, Moungi G. Bawendi
  • Patent number: 8518490
    Abstract: In a coating zone, a cylindrical tube is soaked in and taken out from a solution, such that a coating film is formed on a curved surface of the tube. In a wet gas zone, while a first gas feeding nozzle having a gas outlet moves in a state where the gas outlet faces an outer peripheral surface of the tube, wet gas is blown toward the coating film through the gas outlet. Water drops are generated on the coating film and grown up. In a dry gas zone, as in the case of the first gas feeding nozzle, while a second gas feeding nozzle having a gas outlet moves, dry gas is blown toward the coating film through the gas outlet. Solvent and water drops are evaporated from the coating film. Pores form from the water drops as a template for the porous material on the coating film.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 27, 2013
    Assignee: Fujifilm Corporation
    Inventors: Koju Ito, Tsukasa Ishihara, Hidekazu Yamazaki
  • Patent number: 8501274
    Abstract: A substrate is rotated at a first rotation number (first step). The rotation of the substrate is decelerated to 1500 rpm that is a second rotation number and the substrate is rotated at the second rotation number for 0.5 seconds (second step). The rotation of the substrate is further decelerated to a third rotation number and the substrate is rotated at the third rotation number (third step). The rotation of the substrate is accelerated to a fourth rotation number and the substrate is rotated at the fourth rotation number (fourth step). A resist solution is continuously supplied to a center portion of the substrate from a middle of the first step to a middle of the third step.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Katsunori Ichino, Koji Takayanagi, Tomohiro Noda
  • Patent number: 8496991
    Abstract: The present invention supplies a solvent to a front surface of a substrate while rotating the substrate. The substrate is acceleratingly rotated to a first number of rotations, and a resist solution is supplied to a central portion of the substrate during the accelerating rotation and the rotation at a first number of rotations. The substrate is deceleratingly rotated to a second number of rotations, and after the number of rotations of the substrate reaches the second number of rotations, the resist solution is discharged to the substrate. The substrate is then acceleratingly rotated to a third number of rotations higher than the second number of rotations so that the substrate is rotated at the third number of rotations. According to the present invention, consumption of the resist solution can be suppressed and a high in-plane uniformity can be obtained for the film thickness of the resist film.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 30, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki
  • Publication number: 20130186921
    Abstract: A composite body is provided that includes a rigid polyurethane foam shell and an elastomeric polyurethane layer disposed over the rigid polyurethane foam shell. The rigid polyurethane foam shell defines a cavity within the composite body. The rigid polyurethane foam shell has a closed cell content of at least 70% and comprises the reaction product of a first isocyanate component and a first isocyanate-reactive component in the presence of a blowing agent. The elastomeric polyurethane layer is disposed over the polyurethane foam shell. The elastomeric polyurethane layer comprises the reaction product of a second isocyanate component and a second isocyanate-reactive component. A method of forming the composite body includes the step of molding the rigid polyurethane foam shell, demolding the rigid polyurethane foam shell from the mold, and applying an elastomeric polyurethane composition upon the rigid polyurethane foam shell after demolding to form the elastomeric polyurethane layer.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: BASF SE
    Inventor: BASE SE
  • Publication number: 20130189439
    Abstract: A device for lacquering or coating a substrate is disclosed. The device includes a substrate plate configured to accommodate said substrate, and one or more suction points connected to, and extending upwardly from, the substrate plate. The one or more suction points may be configured to provide a vacuum to said substrate.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 25, 2013
    Applicant: solar-semi GmbH
    Inventor: solar-semi GmbH
  • Patent number: 8475870
    Abstract: A resin layer formation method and device for making a resin layer uniform on a substrate before lamination or on a substrate is provided. Adhesive is coated at an inner circumference side while rotating a substrate at low speed. A first adhesive layer is formed on the surface of the substrate by rotating at high speed. A step difference section is formed around a rotation center of the substrate by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer to hardening the area. Adhesive is coated at the rotation center side from the step difference section on the substrate, and a second adhesive layer is formed on the first adhesive layer by rotating the substrate at high speed. The first adhesive layer and the second adhesive layer are integrated to form a uniform adhesive layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 2, 2013
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Patent number: 8465789
    Abstract: Various embodiments of methods and devices for coating stents are described herein.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: June 18, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Jason Van Sciver
  • Patent number: 8460754
    Abstract: A method for coating a work piece with resin including applying a controlled volume of liquid resin to the work piece with an applicator and allowing consecutive streams of resin to meld together to form a self leveling surface. The resin can be actively or passively cured. The work piece can be planar or cylindrical.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: June 11, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: James M. Nelson, Mitchell A. F. Johnson, William B. Kolb, Patrick R. Fleming, Paul E. Humpal, Chieu S. Nguyen, Charles A. Evertz, Jack W. Lai, Mikhail L. Pekurovsky
  • Patent number: 8414972
    Abstract: In a coating step, a substrate is rotated at a high speed, and in that state a resist solution is discharged from a first nozzle to a central portion of the substrate to apply the resist solution over the substrate. Subsequently, in a flattening step, the rotation of the substrate is decelerated and the substrate is rotated at a low speed to flatten the resist solution on the substrate. In this event, the discharge of the resist solution by the first nozzle in the coating step is performed until a middle of the flattening step, and when the discharge of the resist solution is finished in the flattening step, the first nozzle is moved to move a discharge position of the resist solution from the central portion of the substrate. According to the present invention, the resist solution can be applied uniformly within the substrate.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 9, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki, Koji Takayanagi
  • Publication number: 20130078381
    Abstract: A substrate processing apparatus comprising a substrate holding rotating mechanism, a process liquid supply mechanism having a nozzle for dispensing a process liquid toward a principal face of the substrate, a processing liquid reservoir for holding sufficient process liquid to form a liquid film covering the whole principal face of the substrate, a liquid film forming unit for forming the liquid film by supplying the process liquid onto the principal face of the substrate in a single burst, and a control unit for controlling the liquid film forming unit and the process liquid supply mechanism such that the process liquid is dispensed from the process liquid nozzle toward the principal face of the substrate after formation of the liquid film covering the whole area of the principal face of the substrate by the liquid film forming unit.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 28, 2013
    Inventors: Masahiro MIYAGI, Koji HASHIMOTO, Toru ENDO
  • Publication number: 20130078385
    Abstract: A modular tire spraying system includes a downdraft spray booth for receiving a tire, a fluid delivery system disposed in the spray booth, a robot for transporting the tire to the spray booth, and a platform on which each of the spray booth, the fluid delivery system, and the robot is disposed. The fluid delivery system includes at least one spray gun for delivering a coating to the tire.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Inventor: Todd E. Hendricks, SR.
  • Patent number: 8371241
    Abstract: An electric circuit is applied to an object having a curved surface. The curved surface of the object is divided into sections, and the circuit is applied one section at a time. The circuit is formed between layers of dielectric material. The dielectric is applied by a computer-controlled device, which controls the position of a spray head and the rotation of the object, such that the spray head is held substantially perpendicular to the surface of the object at all times, and such that a controlled thickness of dielectric material can be deposited. The fine-featured circuits formed by the invention are rugged, and can be used on objects intended to be exposed to harsh environments.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 12, 2013
    Assignee: Max Levy Autograph, Inc.
    Inventors: Donald C. Sedberry, Derek S. Rollins, David S. Metzger
  • Patent number: 8367147
    Abstract: In order to provide an improved powder coating process using gelatin particles for the production of coatings or shaped bodies based on gelatin, it is proposed that the gelatin particles are produced by drying an aqueous gelatin solution, wherein the gelatin does not pass through a gel state before or during the drying.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 5, 2013
    Assignee: Gelita AG
    Inventor: Ralf Poerschke
  • Patent number: 8367150
    Abstract: Various embodiments of methods and devices for coating stents are described herein.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 5, 2013
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Yung-Ming Chen, Jason Van Sciver, Antonio Garcia
  • Patent number: 8354141
    Abstract: A liquid treatment apparatus treating a surface of a substrate held generally horizontally on a stage in a housing by supplying a treating liquid to said surface from a supply nozzle. The liquid treatment apparatus includes a cup body provided so as to surround the substrate held in the substrate holding part laterally, the cup body being mounted detachably to a base inside the housing from an upward direction thereof; a cup body holding part holding the cup body detachably; and an elevating mechanism moving the cup body holding part up and down between a first position at which the cup body is mounted upon the base body and a second position located above the first position.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 15, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Tsunenaga Nakashima, Gouichi Iwao, Naofumi Kishita, Nobuhiro Ogata
  • Patent number: 8337937
    Abstract: A method is disclosed for spin coating a stent. The method comprises conducting the following acts at the same time: applying a coating substance to the stent; rotating the stent about a first axis of rotation; and rotating the stent about a second axis of rotation.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 25, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 8323409
    Abstract: Systems and methods for forming components with thermal barrier coatings are provided. In this regard, a representative method includes: providing a component having a first side and an opposing second side; and using a preformed mask to obstruct vapors from being deposited on the second side of the component while moving the component relative to the vapors such that the vapors form a thermal barrier coating on the first side of the component.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: December 4, 2012
    Assignee: United Technologies Corporation
    Inventors: Kevin W. Schlichting, Donald G. Broadhurst, John H. Hyde, John F. Blondin
  • Patent number: 8323732
    Abstract: The present invention provides nanocomposite materials comprising carbon nanotubes and oligo(p-phenylenevinylene) (OPV). Dispersion of CNT in the solution of solution of oligo(p-phenylenevinylene) (OPV) in organic solvent results in the formation of nanocomposite material. The ?-? interaction between CNT and OPV molecule were shown by spectroscopic and microscopic techniques. The nanocomposite solution can be drop casted over glass or metallic surface for the preparation of superhydrophobic coating. The resultant composite surface shows superhydrophobic nature even with corrosive liquids and its contact angle is almost constant even after prolonged contact with water.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: December 4, 2012
    Assignee: Council of Scientific & Industrial Research
    Inventors: Ayyappanpillai Ajayaghosh, Sampath Srinivasan, Vakayil Praveen
  • Patent number: 8318236
    Abstract: A stent is coated by ejecting droplets of a coating substance from a reservoir containing a coating substance. A reservoir housing can have a plurality of reservoir compartments. A transducer is used to eject the coating substance from the reservoir. Energy from the transducer is focused at a meniscus or an interface between the coating substance and another coating substance in the reservoir.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: November 27, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Jason Van Sciver, Yung-Ming Chen, Lothar Kleiner
  • Patent number: 8318247
    Abstract: The present invention includes: a first step of discharging a coating solution from a nozzle to a center portion of the substrate to apply the coating solution on a surface of the substrate while rotating the substrate; a second step of decelerating, after the first step, the rotation of the substrate and continuously rotating the substrate; and a third step of accelerating, after the second step, the rotation of the substrate to dry the coating solution on the substrate, wherein: the substrate is rotated at a fixed speed of a first speed immediately before the first step; and in the first step, the rotation of the substrate which is at the first speed before start of the first step is gradually accelerated after the start of the first step so as to make the speed continuously change, and the acceleration of the rotation of the substrate is gradually decreased so as to make the speed of the rotation of the substrate converge in a second speed higher than the first speed at end of the first step.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: November 27, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki, Koji Takayanagi
  • Patent number: 8313803
    Abstract: Spin coating method for a recording medium having a hole in the center, including moving a tip of a feeding nozzle to an initial position at a distance X above a recording surface and a distance A radially apart from a periphery of the hole, feeding a coating liquid onto the recording surface for a predetermined period of time while rotating the recording medium at a predetermined speed, and moving the tip from the initial position along a radial direction towards an outer periphery of the recording medium while keeping the tip above the recording surface at the distance X. X satisfies X?2 [3 r ?/(2 g C)]1/3, where ? and C respectively are surface tension and density of the coating liquid, r is the outer radius of the feeding nozzle, and g is the acceleration of gravity. A satisfies A?r+X/3.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: November 20, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Shinji Uchida
  • Patent number: 8304018
    Abstract: There is provided a coating method which can efficiently apply a coating liquid, such as a liquid resist, to the entire surface of a wafer even when the coating liquid is supplied in a smaller amount than a conventional one, and can therefore reduce the consumption of the coating liquid. The coating method includes: a first step of rotating the substrate at a first rotating speed while supplying the coating liquid onto approximately the center of the rotating substrate; a second step of rotating the substrate at a second rotating speed which is lower than the first rotating speed; a third step of rotating the substrate at a third rotating speed which is higher than the second rotating speed; and a fourth step of rotating the substrate at a fourth rotating speed which is higher than the second rotating speed and lower than the third rotating speed.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Koji Takayanagi, Tomohiro Iseki, Katsunori Ichino, Kousuke Yoshihara
  • Patent number: 8293326
    Abstract: A spin-coating method according to the present invention includes a uniforming step of rotating a substrate at a predetermined main rotation speed for a predetermined main rotation time so as to primarily make a resist film thickness uniform, and a subsequent drying step of rotating the substrate at a predetermined drying rotation speed for a predetermined drying rotation time so as to primarily dry the uniform resist film. In the present invention, a contour map, for example, of film thickness uniformity within an effective region (critical area) shown in FIG. 3A is determined (generated), and resist-coating is performed by selecting a condition within the optimum region in this contour map in which the film thickness uniformity (within an effective region) can be the maximum, or within the region in which the film thickness uniformity (within an effective region) can be high enough for a desirably specified.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: October 23, 2012
    Assignee: Hoya Corporation
    Inventors: Hideo Kobayashi, Takao Higuchi
  • Patent number: 8287953
    Abstract: A method for spin coating a surface of an optical article, includes the steps of: selecting as the optical article an article (10) with a concave face (12) able to adopt a facing up position in which its uppermost portion is an edge (15) and selecting the concave face as the surface to be coated; dispensing a predetermined volume of a coating solution (18) on the concave face (12) along the edge (15), the concave face (12) facing up and the solution being dispensed in a top down manner; waiting with no motion of the article (10) for the solution to flow on the concave face (12) until it collects centrally; and spinning the article (10) to force the solution back to the edge (15) of the concave face (12).
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventors: James Hanson, Herbert Mosse
  • Patent number: 8287954
    Abstract: There is provided an apparatus including: a processing cup having an opening opened upward to allow a substrate to be loaded and unloaded, an exhaust port for exhausting an unnecessary atmosphere produced in forming a film applied on the substrate, and an aspiration port for aspirating external air; and an aspiration device aspirating the unnecessary atmosphere through the exhaust port, wherein when the substrate is accommodated in the opening of the processing cup, the substrate has a perimeter spaced from the opening by a predetermined gap, and below the substrate accommodated in the processing cup there is formed an exhaust flow path extending from the aspiration port to the exhaust port.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Hiroichi Inada
  • Patent number: 8282979
    Abstract: An apparatus for coating medical devices at the point of care with a polymer and/or therapeutic agent comprising an environmentally controlled device coating chamber in which the device may be delivered by the manufacturer as the device packaging, or the device may be placed into the chamber at the point of care. The environmentally controlled chamber can provide a sterile enclosure in which the polymer and/or a therapeutic agent can be applied to an uncoated or previously coated device and converted to another form (such as a liquid to a film or gel) if desired, under controlled and reproducible conditions. The environmentally controlled chamber can accommodate and provide for coating the device by immersion, spray and other methods of covering the device surface with a liquid or powder. The chamber can provide for energy sources, both internally, such as heat produced by film heaters, and externally, such as UV light or microwave passing through the enclosure.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: October 9, 2012
    Inventors: Marian L. Larson, Eugene A. Larson
  • Patent number: 8277884
    Abstract: There is provided a coating and processing apparatus including a spin chuck horizontally holding a quadrangular substrate and rotating the substrate in a horizontal plane, a coating solution nozzle for supplying a coating solution to a front surface of the substrate horizontally held by the spin chuck, and a solvent supply mechanism provided in the spin chuck for supplying a solvent to a back surface of the substrate, in which the solvent supplied to the back surface of the substrate is allowed to reach the back surface and side surface of each of corners of the substrate by centrifugal force, thereby removing the coating solution attached.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: October 2, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Shinji Kobayashi, Tetsushi Miyamoto, Masahito Hamada, Masatoshi Kaneda
  • Publication number: 20120237689
    Abstract: A coating system for golf balls using magnetic levitation is described. Golf balls including magnetic material interact with a magnetic field generated by a magnetic field source with a platform. The interaction between the magnetic field and the golf ball causes the golf ball to levitate above the platform. A conveyor apparatus is used to move the golf balls and platforms through the coating system. The levitating golf balls are sprayed with coating material. Spraying the levitating golf balls allows for even and uniform coating of the golf ball. Additionally, imparting a spin or rotation to the golf balls assists with the even and uniform application of the sprayed coating material.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Inventors: Hsiao-Chin Lin, Chin-Shun Ko
  • Patent number: 8252361
    Abstract: Implantable medical devices adapted to erodibly release delivery media for local and regional treatment are disclosed.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: August 28, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Pamela A. Kramer-Brown, Florian Ludwig
  • Patent number: 8236378
    Abstract: A wet processing system detects a globule of a process solution in a drippy or dripping state from the tip of any one of process solution pouring nozzles being moved to a pouring position for pouring the process solution onto a substrate by obtaining image data on the process solution pouring nozzle, and takes proper measures to prevent the process solution from dripping. A wet processing system 1 pours a process solution, such as a resist solution, through one of process solution pouring nozzles 10 onto a surface of a substrate, such as a wafer W, held substantially horizontally by a substrate holding device 41 surrounded by a cup 5 to process the surface by a wet process. A nozzle carrying mechanism 10a carries the process solution pouring nozzles 10 between a home position on a nozzle bath 14 and a pouring position above the substrate held by the substrate holding device 41. An optical image of the tips of the process solution pouring nozzles 10 is obtained by an image pickup means, such as a camera 17.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: August 7, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Tsunenaga Nakashima, Michio Kinoshita, Kousuke Nakamichi
  • Patent number: 8231939
    Abstract: A method and device for wet treatment of plate-like articles includes, a chuck for holding a single plate-like article having an upwardly facing surface for receiving liquid running off a plate-like article when being treated with liquid, wherein the chuck is outwardly bordered by a circumferential annular lip. The chuck has an outer diameter greater than the greatest diameter of the plate-like article to be treated, and a rotatable part with an upwardly facing ring-shaped surface for receiving liquid running off the circumferential lip of the chuck. The rotatable part is rotatable with respect to the chuck, the ring-shaped surface is coaxially arranged with respect to the circumferential annular lip, the inner diameter of the ring-shaped surface is smaller than the outer diameter of the chuck, and the distance d between the lip and the upwardly facing ring-shaped surface is in a range from 0.1 mm to 5 mm.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 31, 2012
    Assignee: Lam Research AG
    Inventors: Michael Brugger, Alexander Schwarzfurtner
  • Patent number: 8225738
    Abstract: A resist coating method supplies a resist solution to substantially the center of a target substrate to be processed while rotating the target substrate at a first rotational speed, then reduces a rotational speed of the target substrate to a second rotational speed lower than the first rotational speed, reduces the rotational speed of the target substrate to a third rotational speed lower than the second rotational speed or until rotational halt to adjust the film thickness of the resist solution, and accelerates the rotation of the target substrate to a fourth rotational speed higher than the third rotational speed to spin off a residue of the resist solution.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 24, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki
  • Publication number: 20120183688
    Abstract: A method of coating a first porous substrate with a thermoplastic material comprises the steps of: rotating the substrate about an axis of the substrate; and applying the material in a liquefied state onto the substrate, wherein the step of applying is performed from the outside of the substrate. According to another embodiment, a method of coating a porous substrate with a thermoplastic material comprises the steps of: connecting a first porous substrate to a rotator; rotating the substrate about an axis of the substrate; pumping the material in a liquefied state from a receptacle to an application head; and applying the material in a liquefied state onto the substrate, wherein the step of applying is performed from the outside of the substrate. In certain embodiments, the material coated on the substrate is used to help remove at least a portion of a filtercake.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Luke W. HOLDERMAN, Jacob R. SHOEMATE
  • Patent number: 8215260
    Abstract: A rotary electric machine-manufacturing apparatus utilized to implement a process of infiltrating varnish into wire-wound coils of a rotary electric machine, and of curing the varnish, an apparatus includes a rotator 2 supporting a work S attached with the wire-wound coils Sc and rotating the work; and a high-frequency power supply device supplying electric power to the wire-wound coils. It is thus possible to support and heat up the work without having devices that surround the work S, thereby positioning a varnish dropping-infiltrating device 6 appropriately. Further, there is no need to change a stage as conventional heat-up processes with an oven or a hot blast-circulating furnace did, and an entire process from pre-drying to curing can be implemented at a single stage.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 10, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Hideaki Kimura, Yoshiyuki Kawasaki, Tooru Kuroyanagi, Nobuyuki Asaoka
  • Patent number: 8202568
    Abstract: A method for making a conductive film of carbon nanotubes includes the steps of: a) preparing a carbon nanotube solution having a viscosity ranging from 1 to 50 c.p. at room temperature and containing a plurality of multi-walled carbon nanotubes; b) atomizing the carbon nanotube solution to form a plurality of atomized particles including the carbon nanotubes; c) providing a carrier gas to carry the atomized particles to a substrate disposed on a spin coating equipment; and d) spin coating the atomized particles on the substrate to form a conductive film of carbon nanotubes on a surface of the substrate.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: June 19, 2012
    Assignee: Ipcooler Technology Inc.
    Inventors: Kuan-Jiuh Lin, Jun-Wei Su, Ying-Chen Hsu
  • Patent number: 8186298
    Abstract: A coating film forming apparatus that holds a substrate upon a spin chuck and forms a coating film by supplying a chemical liquid upon a top surface of said substrate comprises: an outer cup provided detachably to surround the spin chuck; an inner cup provided detachably to surround a region underneath the substrate held upon the chuck; a cleaning nozzle configured to supply a cleaning liquid for cleaning a peripheral edge part of the substrate, such that the cleaning liquid is supplied to a peripheral part of a bottom surface of the substrate; a cutout part for nozzle mounting, the cutout part being provided to the inner cup to engage with the cleaning nozzle; and a cleaning liquid supply tube connected to the cleaning nozzle, the cleaning nozzle being detachable to the cutout part in a state in which the cleaning liquid supply tube is connected.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: May 29, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Nobuhiro Ogata, Hiroichi Inada, Taro Yamamoto, Akihiro Fujimoto
  • Patent number: 8168255
    Abstract: To manufacture a photochromic lens by uniformly applying a coating liquid having a photochromic function without leaving an uncoated area, with a minimum necessary coating amount. There is provided a manufacturing method of the photochromic lens for dripping and applying a coating liquid 9 having the photochromic function onto a coating surface 2 of a spectacle lens, while rotating a spectacle lens 1, and forming a photochromic film having the photochromic function on the coating surface, comprising dripping (ring-shaped drip part 25) the coating liquid in a ring shape in the vicinity of an outer circumference on the coating surface of the spectacle lens, and thereafter dripping (spiral-shaped drip part 26) the coating liquid in a spiral shape toward a geometrical center or an optical center of the spectacle lens from the vicinity of the outer circumference, wherein the coating surface has a convex curved shape, and a viscosity of the coating liquid is 25 to 500 cps at 25° C.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: May 1, 2012
    Assignee: Hoya Corporation
    Inventors: Masahiko Samukawa, Norihisa Tanaka
  • Patent number: 8158209
    Abstract: Method and apparatus for coating a surface of a work with a thin resin or plastic film suitable for use in imprinting a pattern by impressing a master pattern on a transfer surface of a mold on the coated resin film. A curable resin liquid is coated on a work by the use of an inkjet feed means having a plural number of inkjet nozzle holes in a row or rows on a nozzle assembly, in association with actuators to propel droplets of resin liquid from the respective inkjet nozzle holes in controlled timings while moving the inkjet feed means and the work relative to each other.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 17, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideaki Kataho, Hiroshi Okada, Kenya Wada, Hisayoshi Ichikawa
  • Patent number: 8119196
    Abstract: A semiconductor manufacturing apparatus comprises a discharge portion discharging a coating liquid onto a substrate; a gas supply tube supplying an inert gas into a liquid container that contains the coating liquid, and pressurizing an interior of the liquid container; a coating liquid supply tube airtightly supplying the coating liquid from the liquid container to the discharge portion using pressurization from the gas supply tube; a first connecting portion capable of attaching and detaching the liquid container to and from the coating liquid supply tube; a second connecting portion capable of attaching and detaching the liquid container to and from the gas supply tube; and a solvent supply tube supplying a solvent, which can dissolve the coating liquid, to the first connecting portion.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Osamu Arisumi, Masahiro Kiyotoshi, Katsuhiko Hieda
  • Patent number: 8114466
    Abstract: A method of applying a coating material to a stent includes the steps of providing a generally tubular stent having an inside surface and an outside surface and applying a coating material to the inside surface of the stent without applying that coating material to the outside surface of the stent. The method may comprise providing a mandrel having a diameter less than an interior diameter of the stent, providing the coating material around the mandrel, placing the stent around the mandrel and crimping the stent so that the inside surface of the stent contacts the coating material. Alternatively, the method may comprise providing an expandable device, providing the expandable device with the coating material such that the coating material is deliverable from the expandable device, placing the stent around the expandable device and expanding the expandable device such that the expandable device contacts the inside surface of the stent.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: February 14, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Timothy O'Connor
  • Patent number: 8114477
    Abstract: A method of fabricating a cleaning wafer capable of cleaning process residues from a substrate support surface is disclosed. The method comprises providing a cleaning disc, and applying a liquid polymer precursor to the cleaning disc by spraying or spin coating the liquid polymer precursor onto the disc to form a polymer precursor film on the disc. The polymer precursor film is cured to form a polymer layer having a cleaning surface.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: February 14, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Vijay D Parkhe
  • Publication number: 20120034376
    Abstract: An apparatus which can thinly and uniformly apply a highly viscous lubricant on the threaded portion of a threaded joint for pipes comprises a steel pipe support unit which supports a steel pipe P having a pin while rotating the pipe, a lubricant circulation system in which a lubricant having its viscosity adjusted so as to be sprayable is circulated, a metering unit having a metering pump capable of metering the lubricant, a lubricant spraying unit having spray guns for spraying lubricant through nozzles toward the pin, a spray gun support unit which supports the spray guns so as to be movable in the axial and/or radial directions of the steel pipe P; and a controlling unit which controls the rotational speed of the steel pipe P by the steel pipe support unit and the speeds of movement of the spray guns by the spray gun support unit.
    Type: Application
    Filed: September 26, 2011
    Publication date: February 9, 2012
    Applicants: VALLOUREC MANNESMANN OIL & GAS FRANCE, SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Takumi NAKAMURA, Kenta SAKAI, Jun MASUBUCHI, Yusuke HIRAISHI
  • Publication number: 20120025145
    Abstract: A cylindrical coating nozzle having a flattened end is placed above a coating object being rotated. A coating solution is applied to a surface of the coating object by discharging the coating solution form a nozzle orifice at an end of the coating nozzle while moving the coating nozzle relative to the coating object in a direction intersecting a rotational direction of the coating object. The coating nozzle is formed with an angled notch at a part of the end thereof. A rotation control unit controls the rotation of the coating nozzle in a manner that the notch of the coating nozzle is positioned upstream from a position to feed the coating solution to the coating object being rotated.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 2, 2012
    Applicants: KABUSHIKI KAISHA TOSHIBA, CHUGAI RO CO., LTD.
    Inventors: Takao Tokumoto, Sadao Natsu, Mitsuhiro Hida, Souichirou Iwasaki, Tsuyoshi Sato, Kenichi Ooshiro