Silicon Containing Coating Patents (Class 427/452)
  • Patent number: 10304707
    Abstract: A load lock assembly includes a first load lock connected between an equipment front end module (EFEM) and a wafer transport module, the EFEM being at a lab ambient condition, the wafer transport module being at a vacuum condition, the wafer transport module being part of a wafer transport assembly that is configured to transport wafers to and from one or more process modules that are connected to the wafer transport assembly; a second load lock disposed over the first load lock, the second load lock connected between the EFEM and the wafer transport module; a post-processing module disposed over the second load lock, the post-processing module configured for performing a post-processing operation on a processed wafer that has been processed in at least one of the process modules that are connected to the wafer transport assembly, the post-processing module being configured for connection to the wafer transport module.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 28, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: David Trussell, Richard Gould, John Daugherty
  • Patent number: 10267260
    Abstract: Provided are a heat-resistant member provided with a heat-shielding coating suitable for stable manufacturing and excellent in heat-insulating, thermoresponsive and distortion accommodating properties, and a method for manufacturing the same. The heat-shielding coating includes a metallic portion formed of agglomerates of a plurality of metal particles, and inorganic compound particles dispersed in the metallic portion. The metal particles are diffusion-bonded each other, and the metallic portion and a base material of the heat-resistant member are diffusion-bonded each other. The manufacturing method includes the steps of depositing mixed particles of the metal particles and the inorganic compound particles on a surface of the base material in a film shape; resistance-heating the mixed particles by current-passing while pressurized in a thickness direction; diffusion-bonding the metal particles each other; and the metallic portion and the base material each other.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 23, 2019
    Assignee: HITACHI, LTD.
    Inventors: Hirotsugu Kawanaka, Ittou Sugimoto
  • Patent number: 10145330
    Abstract: Disclosed are a cylinder liner for insert casting and a method for manufacturing the same. In particular, the cylinder liner for insert casting has cooling and warming performances suitable for functions of respective parts by imparting multiple layers having different thermal conductivity on the surface of the cylinder liner for insert casting, such that the cylinder liner can be used for vehicle cylinder blocks.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: December 4, 2018
    Assignee: Hyundai Motor Company
    Inventors: Young-Gi Kim, Hun-Young Park
  • Patent number: 9850767
    Abstract: A fan blade for a gas turbine engine is described. The fan blade may comprise a body portion formed from a metallic material, and it may include a suction side, a pressure side, a leading edge, a trailing edge, and a tip. A coating may be applied to the tip, and the coating may have a thermal conductivity of no more than about 10 watt per meter kelvin. The coating may be a thermal barrier coating comprising yttria-stabilized zirconia.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: December 26, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Changsheng Guo, Yan Chen
  • Patent number: 8986779
    Abstract: Methods for improving surface roughness of an environmental barrier coating. The methods include providing a component having a plasma sprayed environmental barrier coating, applying an outer layer repair slurry to the environmental barrier coating of the component, drying the environmental barrier coating having the applied outer layer repair slurry, and sintering the component to produce a component having an improved surface roughness. The outer layer repair slurry includes water, a primary outer material of BSAS, and a slurry sintering aid selected from rare earth nitrate, rare earth acetate, rare earth chloride, rare earth oxide, ammonium phosphate, phosphoric acid, polyvinyl phosphonic acid, and combinations thereof.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell
  • Publication number: 20150041112
    Abstract: Provided is an aluminum alloy tube with superior corrosion resistance and a joining layer for brazing. In addition, a heat exchanger using a fin which utilizes a bare material of low cost and higher availability, rather than a clad material, is provided. A manufacturing method of an aluminum alloy tube, including the steps of forming a sacrificial anticorrosion layer comprising Zn, by ark spraying Zn with purity of 95% or more, onto a surface of aluminum alloy tube with a spraying amount of 3 to 10 g/m2 and a spraying speed of 150×103 to 350×103 mm/sec; and forming a joining layer for brazing by applying a joining material for brazing comprising a mixture obtained by mixing Si powder with purity of 95% or more and flux, onto a surface of the sacrificial anticorrosion layer, so that the amount of the Si powder is 1.2 to 3.0 g/m2, is provided.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 12, 2015
    Applicant: UACJ CORPORATION
    Inventor: Kensuke Mori
  • Publication number: 20150017339
    Abstract: Substrate structure comprising a substrate (6) and a plasma grown layer (6a). The surface of the resulting substrate structure (7) is characterized by interrelated scaling components. The scaling components comprise a roughness exponent ?, a growth exponent ? and a dynamic exponent z, wherein the growth exponent ? has a value of less than 0.2 and the dynamic exponent z has a value of more than 6. Also disclosed is a method to provide such a substrate structure.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 15, 2015
    Inventors: Hindrik Willem DE VRIES, Mauritius Cornelius Maria VAN DE SANDEN
  • Publication number: 20150010776
    Abstract: Various methods including applying a coating material with an additive to an article are disclosed. The coating material may be in a powder form before a thermal spraying used to apply the coating material. The coating material may comprise a chromium nitride, a chromium carbide, a chromium silicide, or a tungsten carbide. Additional materials may be added, e.g., a molybdenum alloy such as molybdenum-chromium. In one aspect, thermal spraying includes melting the coating material, propelling the molten coating material toward the article to be coated, and coating the article with the molten coating material. In another aspect, the coated article is one or more piston rings.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Thomas Stong, Thomas Smith, Jason Bieneman
  • Publication number: 20140329021
    Abstract: Producing high temperature coatings on ceramics using a high enthalpy air plasma spray torch and supplying in at least 3 passes to deposit the coating is advantageous for spraying high temperature ceramics while avoiding formation of undesirable phases, if the stand off distance is chosen such that a width of a bead produced from a single spray pass on the substrate at ˜800° C. is less than 70% of a diameter of a plume of the torch at the stand off, and neither assisted heating, nor forced cooling, nor subsequent heat treatment is used. The rapid cooling endemic to thermal spray that leads to amorphous, metastable and other undesirable phases of alkaline earth aluminosilicate (e.g., barium-strontium aluminosilicate (BSAS)), rare earth silicates (RESs), mullite, etc. can be mitigated sufficiently by the close stand off and high enthalpy torch to provide highly crystalline and stable phase coatings.
    Type: Application
    Filed: November 25, 2011
    Publication date: November 6, 2014
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Rogerio Soares Lima, Cristian Victor Cojocaru, Christian Moreau
  • Patent number: 8859052
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability include providing a component, applying an environmental barrier coating to the component, where the environmental barrier coating includes a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Patent number: 8859009
    Abstract: An object of the present invention is to provide a method of fixing an antibacterial agent, by which method it is possible to impart articles of a wide range of materials with excellent antibacterial property and good persistence of antibacterial activity. Specifically, the method of fixing an antibacterial agent, comprises the steps of: subjecting a surface of an article to a surface treatment of providing the surface with oxygen-containing functional groups; and then subjecting the article to a treatment using an antibacterial agent composition including a silicon-containing compound (a) represented by general formula (1) below.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 14, 2014
    Assignee: Hiroshima University
    Inventor: Hiroki Nikawa
  • Patent number: 8859035
    Abstract: A method of enhancing the flowability of a powder. The powder is defined by a plurality of particles having an initial level of inter-particle forces between each particle. The method comprises: treating the powder, wherein the level of inter-particle forces between each particle is substantially decreased from the initial level; fluidizing the treated powder; flowing the treated powder into a plasma arc chamber; the plasma arc chamber generating a plasma arc; and the plasma arc chamber operating on the treated powder using the generated plasma arc. Preferably, the inter-particle forces are decreased by coating the particles with an organic surfactant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 14, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: David Leamon
  • Publication number: 20140302299
    Abstract: In a thermally sprayed, gastight protective layer for metal substrates, especially those based on Fe, Ni, Al, Mg and/or Ti, wherein the spray powder for the purpose comprises at least two components, of which the first is a silicate mineral or rock and the second is a metal powder and/or a further silicate mineral or rock, the silicate mineral or rock component in the spray powder has an alkali content of less than 6 per cent by weight.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Inventor: Vadim VERLOTSKI
  • Patent number: 8852682
    Abstract: A high strength composite particle comprised of a series of incrementally applied resin microlayer coatings such that each of the microlayer partial coatings are interleaved with each other is described. Methods of making the composite particles, as well as methods of using such particles as a proppant in oil and gas well hydraulic fracturing are also described.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: October 7, 2014
    Assignee: Fairmount Minerals, Ltd.
    Inventors: A. Richard Sinclair, Syed Akbar, Patrick R. Okell
  • Publication number: 20140295094
    Abstract: Combustion deposition systems and methods of using combustion deposition systems are disclosed. In an embodiment, a combustion deposition system may include a burner that is in fluid communication with at least one supply of at least one precursor such that the at least one precursor can be introduced to a flame output from the burner, at least one electrode positioned at least proximate to the flame, and a voltage source operably coupled to the at least one electrode. The at least one electrode and the at least one voltage source may be configured to generate an electric field for influencing at least one of flame shape, flame temperature, or kinetics of chemical reactions occurring within the flame, thereby providing enhanced selective control of combustion deposition characteristics. For example, the combustion deposition systems disclosed herein may, for example, be configured to control deposition of a combustion-deposited film on a substrate.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 2, 2014
    Applicant: CLEARSIGN COMBUSTION CORPORATION
    Inventor: Vincenzo Casasanta, III
  • Publication number: 20140272167
    Abstract: A solid amorphous silica-rich aluminosilicate composition is stable at temperatures up to 1500° C. or above and is capable of sustained use as a coating under high to extreme temperature conditions.
    Type: Application
    Filed: July 25, 2013
    Publication date: September 18, 2014
    Applicant: Applied Thin Films, Inc.
    Inventors: Sankar SAMBASIVAN, Vikram Sharad KAUL, Francis Richard CHAPMAN, Jeffrey William DONELAN
  • Publication number: 20140186560
    Abstract: A heat exchanger tube precursor that allows manufacturing a heat exchanger having high corrosion resistance after brazing treatment is provided. The heat exchanger tube precursor includes: an Al alloy tube; and a flux layer including a Si powder, a Zn-containing flux, a Zn-free flux, and a binder, the flux layer being formed on an outer surface of the Al alloy tube.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Masaya KATSUMATA, Yasunori Hyogo
  • Publication number: 20140158295
    Abstract: A method of manufacturing or surface treating a wire wrapped screen for use in a wellbore improves the erosion resistance of the wire-wrapped screen. The wire-wrapped screen can be disposed on an axle positioned in a chamber containing a source of erosion resistant surface coating. The coating is then deposited on the exterior of the wire-wrapped screen using a deposition process, such as physical vapor deposition or thermal spraying. Alternatively, a spray system proximate the wire-wrapped screen can have a deposition nozzle to coat the exterior surface of the screen with an elastomer coating by spraying an elastomer. In additional embodiments, the wire for the wire-wrapped screen can first be treated for erosion resistance and then wound about a mandrel to form the wire-wrapped screen.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: WEATHERFORD/LAMB, INC.
    Inventor: Robert P. Badrak
  • Publication number: 20140141175
    Abstract: A method is disclosed for applying a vibration-damping surface to an article. The method includes providing a coating material comprising a ceramic, metallic or cermet material and a viscoelastic glass frit and plasma spraying the coating material onto an article. The coating material forms a plurality of ceramic, metallic or cermet microstructures having voids with the viscoelastic glass frit distributed to interact with the voids to provide vibration damping. Also disclosed are plasma spray coatings for damping vibrations that includes a ceramic-glass frit composite coating capable of reducing resonant vibrations in a substrate at temperatures between 700° F. to 1500° F. and said plasma spray coating as a coating on a substrate.
    Type: Application
    Filed: June 24, 2013
    Publication date: May 22, 2014
    Applicant: APS MATERIALS, INC.
    Inventors: Robert W. Willson, Michael C. Willson, John P. Henderson
  • Publication number: 20140106157
    Abstract: A method for manufacturing enamel layer includes the steps of: a substrate is provided; a spray paint is provided, the spray paint includes liquid fuel and enamel powders; providing a spraying device for spraying the spray paint, the liquid fuel of the spray paint spayed by the spraying device fires to heat and sinter the enamel powder to deposit on the substrate and form the enamel layer. The article manufactured by the method is also provided.
    Type: Application
    Filed: December 20, 2012
    Publication date: April 17, 2014
    Applicants: FIH (Hong Kong) Limited, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: REN-BO WANG
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8650753
    Abstract: A seal (48) between a compressor rotor blade (26) and compressor casing (28) comprises an abradable structure (59) on the compressor casing (28). The abradable structure (59) comprises a metallic foam (60) having pores (66, 68). The metallic foam (60) has a first a region (62) and a second region (64). The first region (62) of the metallic foam (60) is arranged adjacent to the compressor casing (28) and the second region (64) of the metallic foam (60) is spaced from the compressor casing (28) by the first region (62) of the metallic foam (60). The pores (68) of the second region (64) of the metallic foam (60) contain an abradable material (70) and the pores (66) of the first region (62) of the metallic foam (60) do not contain an abradable material.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: February 18, 2014
    Assignee: Rolls-Royce, PLC
    Inventors: Christopher Sellars, Glen Pattinson, John T Gent
  • Patent number: 8629076
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20130337215
    Abstract: A used component, such as an engine block or engine head, has at least one dimension that does not match a dimensional specification for the component. A thermal spray coating of FeAlSiC is applied to build up the dimension. The excess coating is milled off so that the body and coating have a second shape that matches the dimensional specification for the component. The coating has an ordered DO3 crystal structure with a stable aluminum oxide scale that produces oxidation resistance at about 700° C.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: CATERPILLAR, INC.
    Inventors: Robert Eugene Sharp, Kegan Jon Luick, M. Brad Beardsley, Kristin Ann Schipull, Daniel Joseph Sordelet, Jarrod David Moss, Mark David Veliz
  • Patent number: 8603930
    Abstract: The present invention provides a high-purity fused and crushed stabilized zirconia powder. The powder—with or without further processing, such as plasma spheroidization—is used in thermal spray applications of thermal barrier coatings (TBCs) and high-temperature abradables. The resulting coatings have a significantly improved high temperature sintering resistance, which will enhance the durability and thermal insulation effect of the coating.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 10, 2013
    Assignee: Sulzer Metco (US), Inc.
    Inventors: Jacobus C. Doesburg, Mitchell R. Dorfman, Liangde Xie
  • Publication number: 20130302639
    Abstract: A zirconium alloy for use in nuclear fuel assemblies is provided, which provides increased resistance against oxidation and corrosion and also improved bonding with parent material, because pure metallic material such as silicon (Si) or chromium (Cr) is evenly coated on the surface of the parent material by plasma spraying. Because the plasma spray coating used to coat the pure metallic material on the zirconium alloy does not require vacuum equipment and also is not limited due to the shape of the coated product, this is particularly useful when evenly treating the surface of the component such as 4 m-long tube or spacer grip arrangement which is very complicated in shape. Furthermore, because the coated zirconium alloy confers excellent resistance to oxidation and corrosion under emergency such as accident as well as normal service condition, both the economic and safety aspects of nuclear fuel are improved.
    Type: Application
    Filed: November 7, 2012
    Publication date: November 14, 2013
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD., KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
  • Publication number: 20130252373
    Abstract: The present invention is related to a method for depositing a coating on a substrate (2) by a flame-assisted chemical vapour deposition technique, wherein the substrate is exposed to a flame produced by a burner (1), while a flow of precursor elements is added to said flame, and wherein the substrate is subjected to a relative movement with respect to said burner wherein the flame is dragged out along a reaction zone (3) situated behind the burner, and wherein the relative speed of the substrate with respect to the flame is higher than 30 m/min.
    Type: Application
    Filed: August 26, 2011
    Publication date: September 26, 2013
    Applicant: OCAS Onderzoekscentrum Voor Aanwending Van Staal N.V.
    Inventors: Sam Siau, Franz Horzenberger, Kurt De Sloover
  • Publication number: 20130224393
    Abstract: The invention relates to a plasma spray method which can serve as a starting point for a manufacture of metal nanopowder, nitride nanopowder or carbide nanopowder or metal films, nitride films or carbide films. To achieve an inexpensive manufacture of the nanopowder or of the film, in the plasma spray in accordance with the invention a starting material (P) which contains a metal or silicon oxide is introduced into a plasma jet (113) at a process pressure of at most 1000 Pa, in particular at most 400 Pa. The starting material (P) contains a metal or silicon oxide which vaporizes in the plasma jet (113) and is reduced in so doing. After the reduction, the metal or silicon which formed the metal or silicon oxide in the starting material is thus present in pure form or in almost pure form. The metal or silicon can be deposited in the form of nanopowder or of a film (124).
    Type: Application
    Filed: February 15, 2013
    Publication date: August 29, 2013
    Applicants: Sulzer Metco AG, Forschungszentrum Julich GmbH
    Inventors: Forschungszentrum Julich GmbH, Sulzer Metco AG
  • Publication number: 20130224457
    Abstract: An article may include a superalloy substrate and a calcia-magnesia-alumina-silicate (CMAS)-resistant thermal barrier coating (TBC) layer overlying the superalloy substrate. In some embodiments, the CMAS-resistant TBC layer includes between about 50 wt. % and about 90 wt. % of a TBC composition and between about 10 wt. % and about 50 wt. % of a CMAS-resistant composition. In some examples, the TBC composition includes at least one of yttria-stabilized zirconia, yttria-stabilized hafnia, zirconia stabilized with at least three rare earth oxides, or hafnia stabilized with at least three rare earth oxides. In some examples, the CMAS-resistant composition includes alumina, silica, and an oxide of at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, or Lu.
    Type: Application
    Filed: July 19, 2011
    Publication date: August 29, 2013
    Applicant: ROLLS-ROYCE CORPORATION
    Inventor: Kang N. Lee
  • Publication number: 20130192302
    Abstract: Coated crucibles for holding molten material are disclosed. In some embodiments, the crucibles are used to prepare multicrystalline silicon ingots by a directional solidification process. Methods for preparing such crucibles and methods for preparing silicon ingots by use of such crucibles are also disclosed.
    Type: Application
    Filed: January 11, 2013
    Publication date: August 1, 2013
    Inventor: MEMC Singapore Pte. Ltd. (UEN200614794D)
  • Publication number: 20130177441
    Abstract: A gas turbine blade may have a bond coat applied to its surface. The bond coat may include silicon and a reactive material. The reactive material may react with thermally grown oxide generated at the bond layer to prevent and reverse creep. One or more protective layers may be applied to the bond layer.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rupak Das, John McConnell Delvaux, James Zhang
  • Patent number: 8460796
    Abstract: A composite body that is spall resistant and comprises a substantially discontinuous cermet phase in a substantially continuous metal rich matrix phase. The composite body is typically bonded to a substrate to form a hardfacing on the substrate. The composite body exhibits ductile phase toughening with a strain to failure of at least about 2 percent, a modulus of elasticity of less than about 46 million pounds per square inch, and a density of less than about 7 grams per cubic centimeter. The metal rich matrix phase between the ceramic rich regions in the composite body has an average minimum span of about 0.5 to 8 microns to allow ductility in the composite body. The composite body has a Vicker's hardness number of greater than approximately 650. The discontinuous cermet phase is in the form of ceramic rich regions embedded within the composite body, and it includes ceramic particles and a cermet binder. The ceramic particles having a Moh's hardness of at least approximately 7.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: June 11, 2013
    Assignee: Mesocoat, Inc.
    Inventor: Andrew J. Sherman
  • Publication number: 20130139550
    Abstract: A thermal plasma, advantageously inductive, is used to purify silicon from sawing slurries. For this purpose, a thermal plasma is generated; sawing slurries containing silicon are submitted to the thermal plasma, to form the silicon deposit on the substrate.
    Type: Application
    Filed: January 28, 2013
    Publication date: June 6, 2013
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventor: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
  • Patent number: 8455104
    Abstract: The present invention concerns items that contain or consist of a plasma polymer product, consisting of carbon, silicon, oxygen and hydrogen, wherein the ESCA spectrum of the plasma polymer product, with calibration to the aliphatic portion of the C 1s peak at 285.00 eV, in comparison with a trimethylsiloxy-terminated polydimethylsiloxane (PDMS) with a kinematic viscosity of 350 mm2/s at 25° C. and a density of 0.97 g/ml at 25° C., the Si 2p peak has a bond energy that is shifted by 0.44 eV, at most, to higher or lower bond energies, and the O 1s peak has a bond energy that is shifted by 0.50 eV, at most, to higher or lower bond energies.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: June 4, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Klaus-Dieter Vissing, Gabriele Neese, Matthias Ott
  • Publication number: 20130118720
    Abstract: A heat exchanging element for a heat exchanger is provided with a coating that prevents, or at least reduces, the amount of contaminating materials to be abrade from the heat exchanger and into the heat exchange media. A method for producing a heat exchanging element for a heat exchanger, a heat exchanger per se, and a method for retrofitting an existing heat exchanger, provide for the occurrence of impurities caused by abrasion in one or more heat exchanging media and/or corrosion to be prevented or at least reduced by providing the coating.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Applicant: SGL CARBON SE
    Inventor: SGL CARBON SE
  • Patent number: 8440037
    Abstract: A coated article is provided that may be heat treated in certain example embodiments. A coating of the coated article includes a zinc oxide inclusive layer located over and contacting a contact layer that is in contact with an infrared (IR) reflecting layer of a material such as silver. It has been found that the use of such a zinc oxide inclusive layer results in improved thermal stability upon heat treatment, increased visible transmission, and/or lower sheet resistance (Rs).
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: May 14, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Anton Dietrich, Philip J. Lingle, Jens-Peter Muller, Jean-Marc Lemmer
  • Publication number: 20130115418
    Abstract: Embodiments relate to a coated substrate and a method of making and using the same. A plasma-spray coated layer may be formed on a substrate, wherein the plasma-sprayed coated layer comprises a rare-earth oxide (e.g., yttrium oxide), a rare-earth fluoride (e.g. yttrium fluoride), or a rare-earth silicate (e.g. yttrium silicate). An exposed surface of the plasma-spray coated layer may be irradiated to form a treated portion of the layer, wherein the treated portion of the layer has a mean spacing of local peaks (S value) between about 100 and 200 microns. A second layer may be formed on the treated portion of the plasma-spray coated layer, wherein the second layer comprises a dielectric material.
    Type: Application
    Filed: October 19, 2012
    Publication date: May 9, 2013
    Applicant: CoorsTek, Inc.
    Inventor: CoorsTek, Inc.
  • Publication number: 20130115441
    Abstract: Provided herein are nanoparticulate coated structures and methods of making structures. The structures comprise a support element, a nanoparticulate layer, and a binder disposed on the support element, wherein the binder comprises an alkali silicate or borate. In addition, methods of making the structures and uses of the described structures are described herein.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Inventors: Dana Craig Bookbinder, Adam James Ellison, Umamaheswari Janakiraman, Wageesha Senaratne
  • Patent number: 8436257
    Abstract: An electromagnetic shielding article includes a plastic substrate, a silicon dioxide layer deposited on the plastic substrate, an electromagnetic shielding layer deposited on the plastic substrate, and a protection layer deposited on the electromagnetic shielding layer.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 7, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Publication number: 20130089673
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability include providing a component, applying an environmental barrier coating to the component, where the environmental barrier coating includes a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: General Electric Company
  • Patent number: 8414970
    Abstract: Certain example embodiments relate to a method of forming a coating on a glass substrate using combustion deposition. A glass substrate having at least one surface to be coated is provided. An organosiloxane inclusive precursor having a ring- or cage-like structure to be combusted is introduced. Using at least one flame, at least a portion of the precursor is combusted to form a combusted material, the combusted material including non-vaporized material. The glass substrate is provided in an area so that the glass substrate is heated sufficiently to allow the combusted material to form the coating, directly or indirectly, on the glass substrate. In certain example embodiments, the precursor is a cyclic siloxane based and/or polyhedral silsesquioxane (POSS) based precursor, which advantageously may affect the coating's transmission and/or reflection properties compared to conventionally used silicon precursors.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 9, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Michael P. Remington
  • Patent number: 8377831
    Abstract: A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: February 19, 2013
    Assignee: Auburn University
    Inventors: Christopher B. Roberts, Marshall Chandler McLeod, Madhu Anand
  • Patent number: 8366892
    Abstract: The present invention relates to an electrode composed of carbon having at least two different zones, wherein an outer zone (A) forms the base of the electrode and carries one or more inner zones, wherein the innermost zone (B) projects from the zone (A) at the top and has a lower specific thermal conductivity than zone (A).
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Wacker Chemie AG
    Inventors: Heinz Kraus, Mikhail Sofin
  • Patent number: 8359884
    Abstract: A glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves forming a first glass soot layer on a deposition surface of a soot-receiving device, removing the first glass soot layer from the deposition surface, and forming a second glass soot layer on the unsupported first glass soot layer. The resulting composite glass soot sheet is heated to form a sintered glass sheet. The glass sheet can be a substantially homogeneous glass sheet or a composite glass sheet having layer-specific attributes.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 29, 2013
    Assignee: Corning Incorporated
    Inventor: Daniel Warren Hawtof
  • Patent number: 8343589
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Patent number: 8337956
    Abstract: A wafer has a rare earth oxide layer disposed, typically sprayed, on a substrate. It is useful as a dummy wafer in a plasma etching or deposition system.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 25, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Toshihiko Tsukatani, Takao Maeda, Junichi Nakayama, Hirofumi Kawazoe, Masaru Konya, Noriaki Hamaya, Hajime Nakano
  • Publication number: 20120321812
    Abstract: Embodiments of the invention provide a thermal spray method of forming a protective and porous coating over desired surfaces. Further, embodiments provide a thermal arc spray method, such as twin wire arc spray, to coat the surfaces. The invention may refer to using Aluminium and Silicon alloy in a twin wire arc spray method, to create sacrificial and protective coatings on the surfaces, such as substrates and machine parts. Machine parts may be, for example, of sputtering system. The method may utilize a predefined range of Silicon to be alloyed with Aluminium to improve the physical properties of the Aluminium, and further avoid damages to the coated surface, such as de-lamination and flaking of the coatings and coated surfaces. Additionally, generation of defects during a sputtering process may be efficiently reduced.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Inventors: Yitzhak Vanek, Leonardo Mendelovici
  • Publication number: 20120308836
    Abstract: A method of processing a composite article includes controlling a preheat temperature of a workpiece to be less than 700° C./1292° F. The workpiece includes a substrate and a bond coat that is disposed on the substrate. With the workpiece at the preheat temperature, deposition of a barrier layer onto the bond coat is commenced. The barrier layer includes a rare earth silicate material having a rare earth element selected from lanthanide series elements, yttrium, scandium and combinations thereof.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Paul Sheedy, Thomas H. Lawton, William Werkheiser, Tania Bhatia Kashyap
  • Patent number: 8323747
    Abstract: The present invention provides a process for applying a coating on a heat exchanger or a temperature controlled adsorber surface. This coating comprises a zeolite, an organic solvent, an organic siloxane resin that constitutes a binder and a plasticizing agent.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Stephen R. Dunne, Pamela J. Dunne, legal representative, Alexander M. Bershitsky, Mariola J. Proszowski
  • Patent number: 8303672
    Abstract: An electrode for a lithium secondary battery including a sheet-like current collector and an active material layer carried on the current collector. The active material layer is capable of absorbing and desorbing lithium, and the active material layer includes a plurality of columnar particles having at least one bend. An angle ?1 formed by a growth direction of the columnar particles from a bottom to a first bend of the columnar particles, and a direction normal to the current collector is preferably 10° or more and less than 90°. When ?n+1 is an angle formed by a growth direction of the columnar particles from an n-th bend counted from a bottom of the columnar particles to an (n+1)-th bend, and the direction normal to the current collector, and n is an integer of 1 or more, ?n+1 is preferably 0° or more and less than 90°.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Keiichi Takahashi, Masaya Ugaji, Yasutaka Kogetsu, Shinji Mino, Nobuaki Nagao, Masaki Hasegawa