Low Energy Electromagnetic Radiation Utilized (e.g., Uv, Visible, Ir, Microwave, Radio Wave, Actinic, Laser, Etc.) Patents (Class 427/508)
  • Patent number: 10353123
    Abstract: An electronic device may have a display and a rear housing. A coating may be formed on an inner surface of a display cover layer for the display or on an inner surface of the rear housing. The coating may include one or more inorganic layers such as inorganic layers in a thin-film interference filter or other layer of material. A buffer layer having a polymer with adhesion promotion additive and embedded silicon oxide particles may be interposed between the coating and a glass layer forming the rear housing or between a patterned indium tin oxide coating on a display cover layer and an adhesive layer that attaches a pixel array to the display cover layer.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: July 16, 2019
    Assignee: Apple Inc.
    Inventors: Marta M. Giachino, Manish Mittal, Matthew S. Rogers, Que Anh S. Nguyen
  • Patent number: 10239255
    Abstract: The disclosure describes a polymerizable liquid that includes a reactive oligomer and a reactive monomer. The polymerizable liquid is an energy polymerizable liquid hardenable by a single reaction mechanism forming a photoplastic material. The disclosure further describes a method of producing the photoplastic material and articles that can be made from the photoplastic material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 26, 2019
    Assignee: Molecule CORP
    Inventors: Nick Talken, Austin Wyatt Levy, Zack Kisner, Ken Kisner
  • Patent number: 10167359
    Abstract: Disclosed is a UV-curing coating composition comprising (a) 40-70% by weight of at least one urethane (meth)acrylate being a product of a reaction between at least one polycaprolactone polyol (a1) and at least one adduct (a2), said adduct (a2) being a product of a reaction between at least one polyisocyanate (a3) and at least one hydroxyalkyl (meth)acrylate (a4), said polycaprolactone polyol (a1) being a product of a reaction between at least one polyalkoxylated polyol (a5) and at least one caprolactone monomer (a6), (b) 20-50% by weight of at least one reactive diluent having at least one olefinic carbon-carbon double bond, and (c) 0.5-10% by weight of at least one photoinitiator, and optionally (d) 1-15% by weight of at least one matting agent.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: January 1, 2019
    Assignee: PERSTORP AB
    Inventors: Vanessa Maurin, Paul Kelly
  • Patent number: 10126051
    Abstract: A method for drying a coating applied to a substrate, wherein the coating comprises at least one volatile organic solvent (VOS), is provided. The method comprises a step of irradiating the coating by an electromagnetic radiation at a power P and within a defined spectrum, wherein the defined spectrum corresponds to an absorption peak of the volatile organic solvent.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: November 13, 2018
    Inventor: Michael D. Goldstein
  • Patent number: 10120276
    Abstract: The present invention provides an imprint apparatus which forms a pattern on a substrate by molding an imprint material on the substrate using a mold, comprising a supply unit configured to supply droplets of the imprint material onto the substrate; and a processing unit configured to acquire arrangement patterns of the droplets on the substrate, wherein based on the arrangement pattern corresponding to a first portion of the mold and the arrangement pattern corresponding to a second portion of the mold, the processing unit acquires the arrangement pattern corresponding to a boundary portion between the first portion and the second portion.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 6, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Philip D. Schumaker, Yeshwanth Srinivasan, Masahiro Tamura, Takuro Yamazaki
  • Patent number: 10109600
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to continuous crackstop structures and methods of manufacture. The structure includes a continuous crackstop having a wall which switches back (switchbacks) on itself multiple times to form an enclosure about an active area of a chip.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: October 23, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vincent J. McGahay, Nicholas A. Polomoff
  • Patent number: 10093829
    Abstract: The present invention is directed to curable film-forming compositions comprising: (a) a polymeric binder comprising: (i) a polysiloxane having reactive functional groups and in which is dispersed protonated silica particles having an average particle size of 2 to 20 microns; and (ii) optionally, at least one additional polymeric resin different from the polysiloxane (i), having reactive functional groups; and (b) a curing agent containing functional groups that are reactive with the reactive functional groups of (i) and/or (ii). After application to a substrate as a coating and after curing, the curable film-forming composition demonstrates an initial 85° gloss of less than 30 and an increase in 85° gloss of no more than 10 gloss units when subjected to various ABRASION TEST METHODS as defined herein. Also provided is a method of improving burnish resistance of a substrate using the curable film-forming compositions of the present invention.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 9, 2018
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Scott J. Moravek, Lawrence G. Anderson
  • Patent number: 10003177
    Abstract: A curing material, having a solubility parameter of 9.4 or more, contains at least a chain transfer agent that contains a compound containing a polyether structure and two or more urethane bonds or two or more urea bonds in a molecule, and a metal-containing compound. A wire harness is manufactured by supplying the curing material to a conductor exposed portion of a wire bundle including a plurality of bundled insulated wires each having a conductor covered with a covering material made of an insulating body, the conductor exposed portion being formed by removing a part of the covering material of the wire bundle to expose the conductor inside; and curing the curing material by irradiating light in a state in which a surface of the curing material is covered with a protective member formed from a resin containing a plasticizer and having light transmissivity, thereby forming a waterproof portion.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: June 19, 2018
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., KYUSHU UNIVERSITY
    Inventors: Kazuo Nakashima, Tatsuya Hase, Yoshihito Kato, Makoto Mizoguchi
  • Patent number: 9982164
    Abstract: A polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object of polyurethane, polyurea, or a copolymer thereof, is described. The resin includes at least one of (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyanate, or (iii) a blocked or reactive blocked diisocyanate chain extender.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 29, 2018
    Assignee: Carbon, Inc.
    Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Patent number: 9974887
    Abstract: Apparatus and methods are provided for creating tubular devices, e.g., as components for catheters, sheaths, and or other devices sized for introduction into a patient. In one embodiment, a method is provided for making a tubular device using a sheet of material including a coated first surface. The sheet is rolled around a mandrel until longitudinal edges of the sheet are disposed near or adjacent one another, e.g., without attaching the longitudinal edges together. A tubular braid is positioned over the sheet-wrapped mandrel, one or more tubular segments are positioned over the tubular braid, and heat shrink tubing is positioned over the tubular segments. The resulting assembly is heated to cause the tubular segments to at least partially reflow and/or otherwise laminate the tubular segments to the tubular braid and sheet. The heat shrink tubing and mandrel are then removed to create the tubular device.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: May 22, 2018
    Assignee: CLPH, LLC
    Inventors: Christian S. Eversull, Stephen A. Leeflang
  • Patent number: 9905332
    Abstract: The present invention relates to a multilayer conductive transparent electrode comprising: a substrate layer (1), a conductive layer (2) comprising at least one optionally substituted polythiophene conductive polymer, and the conductive layer (2) being in direct contact with the substrate layer (1) and the conductive layer (2) also comprising at least one hydrophobic adhesive polymer which has chemical compatibility with the optionally substituted polythiophene conductive polymer, such that said multilayer conductive transparent electrode has a coefficient of haze of less than or equal to 3%. The invention also relates to the process for manufacturing such a multilayer conductive transparent electrode.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: February 27, 2018
    Assignee: Hutchinson
    Inventors: Jérémie Jacquemond, Stéphane Roger, Bruno Dufour, Philippe Sonntag
  • Patent number: 9884977
    Abstract: The present invention relates to a hard coating composition, and, more particularly, to a hard coating composition used in forming a hard coating film exhibiting high hardness and excellent properties. The hard coating composition can be used to form a high-hardness hard coating film that is not easily curled.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 6, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Joon Koo Kang, Yeong Rae Chang, Jae Hoon Shim, Sung Don Hong, Seung Jung Lee
  • Patent number: 9820380
    Abstract: A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 ?m and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 ?m or more.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: November 14, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Kensuke Katagiri, Shin Tajiri, Akihiko Hase
  • Patent number: 9655917
    Abstract: The invention provides methods of immobilizing an active agent to a substrate surface, including the steps of, providing a substrate, contacting the substrate with a solution of a compound including a trihydroxyphenyl group, thereby forming a trihydroxyphenyl-treated substrate, and contacting the trihydroxyphenyl-treated substrate with an active agent, thereby immobilizing the active agent on the substrate. Further provided are methods of immobilizing an active agent on a substrate, including the steps of providing a substrate, combining a solution of a compound including a trihydroxyphenyl group with a solution of an active agent, thereby forming a solution of an active agent-trihydroxyphenyl conjugate, and contacting the substrate with the solution of the active agent-trihydroxyphenyl conjugate, thereby immobilizing the active agent on the substrate. The invention further provides substrates and medical device or device components with active agents immobilized on the surface thereof.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 23, 2017
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA, NORTHWESTERN UNIVERSITY
    Inventors: Ton That Hai, John-Bruce Devault Green, Timothy Michael Fulghum, Phillip Byron Messersmith, Tadas Stanislovas Sileika
  • Patent number: 9642949
    Abstract: The invention provides methods of immobilizing an active agent to a substrate surface, including the steps of, depositing a primer compound on a substrate, thereby forming a primed substrate, contacting the primed substrate with a solution of a compound including a trihydroxyphenyl group, thereby forming a trihydroxyphenyl-treated primed substrate, and contacting the trihydroxyphenyl-treated primed substrate with a solution of an active agent, thereby immobilizing the active agent on the substrate. Further provided are methods of immobilizing an active agent on a substrate, including the steps of providing a substrate, combining a solution of a compound including a trihydroxyphenyl group with a solution of an active agent, thereby forming a solution of an active agent-trihydroxyphenyl conjugate, and contacting the primed substrate with the solution of the active agent-trihydroxyphenyl conjugate, thereby immobilizing the active agent on the substrate.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 9, 2017
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA, NORTHWESTERN UNIVERSITY
    Inventors: Ton That Hai, John-Bruce Devault Green, Timothy Michael Fulghum, Phillip Byron Messersmith, Tadas Stanislovas Sileika
  • Patent number: 9598588
    Abstract: Disclosed herein are cationic electrodepositable coating compositions that are capable of providing cured coatings of low gloss.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: March 21, 2017
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Lorraine Hsu, Kelly Moore, Michael Sandala
  • Patent number: 9570287
    Abstract: Methods for depositing and curing a flowable dielectric layer are disclosed herein. Methods can include forming a flowable dielectric layer, immersing the flowable dielectric layer in an oxygen-containing gas, purging the chamber and curing the layer with UV radiation. By curing the layer after an oxygen-containing gas pre-soak, the layer can be more completely cured during the UV irradiation.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: February 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jingmei Liang, Jung Chan Lee, Yong Sun
  • Patent number: 9556355
    Abstract: Disclosed herein is a paint composition comprising a carboxyl group containing resin comprising two or more carboxyl groups per molecule, having an acid number of from 100 to 300 mgKOH/g and a weight average molecular weight of from 2,000 to 30,000, obtained by the copolymerization of a carboxyl group containing radically polymerizable monomer and another radically polymerizable monomer, wherein the carboxyl group containing resin comprises 5 to 50 weight percent of structural units based on a lactone compound, based on resin solids; an epoxy group containing resin, comprising two or more epoxy groups per molecule; an ultraviolet absorber; and a light stabilizer having a pKb value of at least 9; wherein the molar ratio of the carboxyl groups of the carboxyl group containing resin to the epoxy groups of the epoxy group containing resin is 3:1 to 1:3.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: January 31, 2017
    Assignee: BASF COATING GmbH
    Inventors: Tetsu Konishi, Machiko Okada, Rui Nimi
  • Patent number: 9550011
    Abstract: A functionalized polymer system is described herein for preparing and/or modifying biological implants and prostheses. In one aspect, the polymer system once applied to the surface of a biological implant or prosthesis, or once used in preparing a biological implant or prosthesis comprises a surface that is more hydrophilic, more wettable, more comfortable, resists cell adhesion, resists protein deposition, or a combination thereof. In one embodiment, a coated biological implant or prosthetic is described herein. The coated biological implant or prosthetic comprises a substrate forming the basic structure of the implant or prosthetic, and a coating comprising a polymer, where the coating is capable of resisting cell adhesion, protein deposition, or a combination thereof.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: January 24, 2017
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Dong Xie
  • Patent number: 9550898
    Abstract: An inkjet printing method includes the steps of jetting ink dots on a substrate of a plurality- of radiation curable inkjet inks having a viscosity of no more than 50 mPa·s at 25° C. and a shear rate of 90 s?1, the plurality of radiation curable inkjet inks including a) at least one non-polymerizable, non-polymeric bisacylphosphine oxide present in a concentration of no more than 4.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: January 24, 2017
    Assignee: AGFA GRAPHICS NV
    Inventors: Johan Loccufier, Roel De Mondt
  • Patent number: 9511392
    Abstract: A method for coating metal surfaces, in particular surfaces of wheels made of an aluminum alloy, in a multi-step method, wherein the metallic surfaces are first contacted with an aqueous composition predominantly containing silane/silanol/siloxane/polysiloxane and thereafter contacted with an aqueous composition predominantly containing at least one phosphonic compound.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: December 6, 2016
    Assignee: Chemetall GmbH
    Inventors: Lars Sebralla, Manfred Walter
  • Patent number: 9493706
    Abstract: Disclosed is an aqueous effect basecoat material comprising at least one liquid-crystalline aqueous preparation (WZ) in fractions of 1% to 99% by weight, based on the aqueous basecoat material, at least one film-forming polymer (FP), and at least one effect pigment (EP).
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 15, 2016
    Assignees: BASF Coatings GmbH, UNIVERSITÉ BLAISE PASCAL
    Inventors: Horst Hintze-Brüning, Hans-Peter Steiner, Fabrice Leroux, Anne-Lise Troutier-Thuilliez, Thomas Stimpfling
  • Patent number: 9477203
    Abstract: A multi-layer body includes a carrier film, a release layer, an embossed hologram layer, and a vapor-plated reflection layer. An adhesive layer is UV activated and includes a partially activated zone. Cured adhesive regions connect a transparent polycarbonate film and parts of the embossed hologram layer to one another inseparably. The cured adhesive regions are arranged about the periphery of an uncured adhesive region of the adhesive layer to form a frame around the uncured adhesive region. A forgery-proof document is produced using the multi-layer body. Uncured adhesive regions of the multi-layer body are partially cured with UV light through an information-carrying optical mask. The carrier film is removed together with the release layer and non-bonded embossed hologram layer regions. An upper protective film is applied to individualized embossed hologram layers and is hot pressed together with additional films.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 25, 2016
    Assignee: HOLOGRAM INDUSTRIES RESEARCH GMBH
    Inventor: Irina Menz
  • Patent number: 9459525
    Abstract: Disclosed is a curable composition for nanoimprinting, which includes one or more polymerizable monomers, in which one or more monofunctional radically polymerizable monomers occupy 90 percent by weight or more of the one or more polymerizable monomers, and the one or more monofunctional radically polymerizable monomers give a polymer having a glass transition temperature of 25° C. or higher. The one or more monofunctional radically polymerizable monomers are preferably at least one compound selected from (meth)acrylic ester compounds, styrenic compounds, and vinyl ether compounds.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 4, 2016
    Assignee: DAICEL CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroto Miyake, Takao Yukawa, Shuso Iyoshi
  • Patent number: 9453142
    Abstract: A polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object of polyurethane, polyurea, or a copolymer thereof, is described. The resin includes at least one of (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyanate, or (iii) a blocked or reactive blocked diisocyanate chain extender.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 27, 2016
    Assignee: Carbon3D, Inc.
    Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
  • Patent number: 9404029
    Abstract: A non-aqueous wellbore servicing fluid comprising a rheology modifier wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine. A method of conducting an oilfield operation comprising placing an oil-based mud comprising a rheology modifier into a wellbore wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 2, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery R. Harris, Jim D. Byers
  • Patent number: 9249321
    Abstract: A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; and a polymerizable composition of the liquid consists essentially of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 selected from the group consisting of a vinlyether group, an allylether group, and a allylester group; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 2, 2016
    Assignee: AGFA GRAPHICS NV
    Inventors: Johan Loccufier, Roland Claes
  • Patent number: 9242504
    Abstract: After applying an ultraviolet ray hardening resin composite 30 on a print pattern 22 of dry state and also permeating the resin composite through the print pattern to thereby reproduce the adhesion of the print pattern 22, the print pattern 22 is transferred under water pressure onto the surface of article 10 to form the decoration layer 22D on the surface of the article 10. Then, the preliminary irradiation of ultraviolet ray permeating only near the surface of this decoration layer 22D is performed to form a fine surface height variation portion 23 by shrinkage of ink in the surface of the ink printing portion of the decoration layer 22D. Thereafter, the complete irradiation of ultraviolet ray permeating through the total thickness of the decoration layer 22D is performed to completely harden the total thickness of the decoration layer 22D while maintaining the surface height variation portion 23. This enables the matting of the decoration layer in a controlled state without applying a topcoat.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 26, 2016
    Assignee: TAICA CORPORATION
    Inventors: Wataru Ikeda, Yosuke Ono
  • Patent number: 9231272
    Abstract: The electrode of the present invention includes a current collector and an active material-containing layer formed on one side or both sides of the current collector. The active material-containing layer has a thickness of 20 to 200 ?m per one side of the current collector, and diethyl carbonate permeates the active material-containing layer at a rate of 0.1 g/(cm2·min) or higher. Further, the method for producing an electrode of the present invention includes the steps of: forming an electrode precursor by forming an active material-containing layer on one side or both sides of a current collector; and compressing the electrode precursor. In the electrode precursor forming step, the active material-containing layer is formed such that the active material-containing layer has a higher porosity in a portion close to the current collector then in other portions.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 5, 2016
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Hiroyuki Mitsuhashi, Tsugihiro Doi
  • Patent number: 9132593
    Abstract: A disclosed method for producing a hollow cell array structure includes a first step of layering a deformable material capable of being plastically deformed under a predetermined condition on a first substrate, the first substrate having plural, mutually separated depressions in a surface thereof, such that the deformable material forms mutually isolated spaces in the corresponding depressions; a second step of expanding the spaces in the plural depressions by inducing a gas pressure of the spaces while extending the deformable material on the first substrate, such that plural hollow cells are simultaneously formed in correspondence to the plural depressions in predetermined directions; and a third step of selectively solidifying portions of the plural hollow cells by selectively applying ultraviolet rays thereto.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 15, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Toshihiro Kanematsu, Masaru Ohgaki, Shinji Aoki, Shinya Seno, Masahiro Masuzawa, Hisayoshi Ohshima, Yukie Inoue
  • Patent number: 9091006
    Abstract: The present invention describes a novel process for the conformal coating of polymer fibers of nonwoven substrates. This process is based on modification of polymer fiber surfaces by controlling the degree of etching and oxidation to improve adhesion of initiators to the surface and to facilitate subsequent conformal polymer grafting. The modified fiber surfaces render new functionalities to the surface, such as increased hydrophilicity, attached ligands or changed surface energy. The invention includes the modified polymer fibers produced by the process described herein.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 28, 2015
    Assignees: Pathogen Removal and Diagnostic Technologies, Inc., North Carolina State University
    Inventors: Yong Zheng, Samana Roy Chowdhury, Patrick Vasconcelos Gurgel, Haiyan Liu, Ruben G. Carbonell
  • Publication number: 20150137504
    Abstract: A method and an apparatus for forming a surface relief microstructure, especially an optically variable image on a paper substrate are provided, the method comprising the steps of: A) applying a curable composition to at least a portion of the frontside of the paper substrate; B) contacting at least a portion of the curable composition with surface relief microstructure, especially optically variable image forming means; C) curing the composition by using at least one UV lamp (1, 2, 3) which is arranged on the backside of the paper substrate; D) optionally depositing a layer of a transparent high refractive index material and/or a metallic layer on at least a portion of the cured composition, wherein the lamp (1, 2, 3) having emission peak(s) in the UV-A and near VIS range and the curable composition comprises at least a photoinitiator which absorbs in the UV-A region and preferably in the near VIS range.
    Type: Application
    Filed: December 22, 2014
    Publication date: May 21, 2015
    Applicant: BASF SE
    Inventors: Michelle RICHERT, Thomas BOLLE, Roland FLEURY
  • Publication number: 20150140279
    Abstract: The present invention relates to a hard coating film and a preparation method thereof, and, more particularly, to a hard coating film having high hardness and excellent properties and a method of preparing the same. The method is advantageous in that a high-hardness hard coating film, which is not easily curled, can be easily prepared. The hard coating film prepared by this method can be usefully used in various fields because it has high hardness, scratch resistance, transparency, durability, light resistance, light transmittance and the like.
    Type: Application
    Filed: May 31, 2013
    Publication date: May 21, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Joon Koo Kang, Eun Kyu Her, Yeong Rae Chang, Soon Hwa Jung, Jin Young Park, Hyeok Jeong
  • Patent number: 9034433
    Abstract: A method for creating a wood like appearance on a synthetic shutter using a sales client device, a network, computer instructions for creating a work order, a tray with scannable tray identifier to hold a shutter, a production client device connected to the network with computer instructions for applying a base coat, a glaze, and a top coat with spray treatment devices to the shutter as it automatically moves on a conveyer system. Scanning a scannable tray identifier with a plurality of sensors to link the tray identifier to the work order and to authenticate and validate the location of the tray on the conveyor system, or to initiate an alerting device. The method uses temperature control environments to control humidity and heating of the shutter while spraying, drying and UV curing.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: May 19, 2015
    Assignee: GLASSCRAFT DOOR COMPANY
    Inventors: John B. Plummer, Matthew James O'Shea, Joseph Gene Denley
  • Patent number: 9034932
    Abstract: The invention provides a zwitterionic-bias material for blood cell selection, being a copolymer formed by zwitterionic structural units and charged structural units wherein the zwitterionic structural unit comprises at least one positively charged moiety and one negatively charged moiety, a distance between the positively charged moiety and the negatively charged moiety is a length of 1˜5 carbon-carbon bonds, and the zwitterionic structural units and charged structural units are randomly arranged to have zwitterionic-bias.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: May 19, 2015
    Assignee: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Yung Chang, Jheng-Fong Jhong, Sheng-Han Chan, Wen-Lin Lin
  • Publication number: 20150132681
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the molar ratio of (i):(ii) is 0.1 to 1.5. The compositions are useful for preparing ion exchange membranes.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Bastiaan VAN BERCHUM, Jacko HESSING, Harro ANTHEUNIS
  • Patent number: 9023256
    Abstract: A method of forming a single-mode polymer waveguide array connector that provides precise alignment of a plurality of cores of polymer waveguide arrays with respect to an absolute reference position, such as a guide pin hole in a ferrule, when the polymer waveguide array connector is connected to another polymer waveguide array connector or provides precise alignment of a plurality of cores of a polymer waveguide array and a fiber array with respect to the absolute reference position when the polymer waveguide array connector is connected to a single-mode fiber array connector. A plurality of cores of single-mode polymer waveguide arrays or single-mode fiber arrays is precisely aligned with each other. In addition, there is provided a combination of a plurality of molds, e.g., a first mold (A) and a second mold (B), used in a plurality of processes in a specific method.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hidetoshi Numata, Masao Tokunari
  • Patent number: 9017815
    Abstract: Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 28, 2015
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Mark P. Bowman, Shelley D. Verdun, Gordon L. Post
  • Patent number: 9017772
    Abstract: Various embodiments provide methods and apparatus for forming intermediate transfer belts (ITBs) by combining a dip-coating process with a UV-curing process. In an embodiment, an ITB substrate can be immersed into a liquid coating composition contained in a dip tank and then withdrawn from the liquid coating composition. When exiting the dip tank, the coated substrate can enter a UV-curing chamber for a UV-curing process. Multiple cycles of dip-coating and UV-curing can be performed such that a desired ITB substrate coating layer thickness can be obtained. After coating the ITB substrate, the UV-cured coating composition can be released from the ITB substrate, wherein the UV-cured coating composition released from the ITB substrate forms the intermediate transfer belt.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 28, 2015
    Assignee: Xerox Corporation
    Inventors: Geoffrey M. T. Foley, Jin Wu, Satchidanand Mishra, Kent J. Evans
  • Publication number: 20150110967
    Abstract: The invention provides a broadband cholesteric liquid crystal film, a method for fabricating the same, a polarization device employing the same, and high light efficiency liquid crystal display employing the same. The cholesteric liquid crystal film is a single-layer liquid crystal material structure, and has a top surface and a bottom surface. Further, the cholesteric liquid crystal film includes a first region, a second region, and a third region, and the first region is adjacent to the top surface of the cholesteric liquid crystal film, the third region is adjacent to the bottom surface of the cholesteric liquid crystal film, and the second region is located between the first and third regions, and the average helical pitch P1 of the first region and the average helical pitch P3 of the third region are both larger than the average helical pitch P2 of the second region.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Hui-Lung KUO, Mei-Chih PENG, Yi-Ping HSIEH, Chin-Kai CHANG
  • Publication number: 20150110990
    Abstract: Methods and apparatus are provide for: a glass substrate having first and second opposing surfaces, and a plurality of edge surfaces extending transversely between the first and second opposing surfaces; a layer disposed on, and adhered to, at least one of the first, second, and edge surfaces of the substrate, where the layer includes: (i) one of an oligomer and resin; (ii) a monomer; and (iii) nanometer-sized silica particles of at least about 2-50 weight percent.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventors: Hsin-Chieh Chou, Donald Arthur Clark, Sinue Gomez, Kimberly Michelle Keegan, Arthur Winston Martin, James Robert Matthews, Prakash Chandra Panda, Paul John Shustack, Lu Zhang
  • Patent number: 9011982
    Abstract: A method for a layer-wise manufacturing of a three-dimensional object has a first step of providing a layer of a material in powder form or a liquid material on a support or a layer that has already been solidified at selected positions previously and a second step of directing a focussed photon or particle beam (8?) selectively at selected positions of the layer. In the second step, the photon or particle beam is selected such that it brings about a change of the absorption of the material when hitting the layer. After the termination of the second step, a third step is carried out, in which the layer is irradiated by means of electromagnetic radiation (18?) such that the material is homogenously solidified at those positions of the layer that correspond to the cross-section of the object to be formed.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 21, 2015
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Frank Muller, Andreas Pfister, Martin Leuterer, Peter Keller
  • Patent number: 9011983
    Abstract: A process for producing polymeric films by applying a liquid composition onto a surface of a substrate under vacuum conditions in a vacuum chamber. The composition has a first component which is polymerizable or crosslinkable in the presence of a sufficient amount of an acid; and a cationic photoinitiator which generates an acid upon exposure to ultraviolet radiation, electron beam radiation or both to cause polymerizing or crosslinking of the first component. A gas which emits ultraviolet radiation upon exposure to electron beam radiation is introduced into the vacuum chamber. The composition and the gas are exposed to electron beam radiation to cause the cationic photoinitiator to generate an amount of an acid to cause polymerizing or crosslinking of the first component. The composition is exposed to both electron beam radiation and gas-generated ultraviolet radiation and cured.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 21, 2015
    Assignees: IdeOn LLC, Metallized Surface Technologies, LLC
    Inventors: Mikhail Laksin, Wolfgang Decker, Siddharth Fernandes
  • Patent number: 9011710
    Abstract: Methods are disclosed for synthesizing nanocomposite materials including ferromagnetic nanoparticles with polymer shells formed by controlled surface polymerization. The polymer shells prevent the nanoparticles from forming agglomerates and preserve the size dispersion of the nanoparticles. The nanocomposite particles can be further networked in suitable polymer hosts to tune mechanical, optical, and thermal properties of the final composite polymer system. An exemplary method includes forming a polymer shell on a nanoparticle surface by adding molecules of at least one monomer and optionally of at least one tethering agent to the nanoparticles, and then exposing to electromagnetic radiation at a wavelength selected to induce bonding between the nanoparticle and the molecules, to form a polymer shell bonded to the particle and optionally to a polymer host matrix. The nanocomposite materials can be used in various magneto-optic applications.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 21, 2015
    Assignee: Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Palash Gangopadhyay, Alejandra Lopez-Santiago, Robert A. Norwood
  • Patent number: 9012131
    Abstract: The invention provides a method for fabricating a liquid crystal display, including: providing a first substrate and a second substrate, wherein the first substrate and the second substrate are disposed oppositely to each other; filling a mixed solution between the first substrate and the second substrate, wherein the mixed solution comprises a plurality of liquid crystal molecules and a plurality of monomers; performing a UV light irradiation process to the mixed solution, wherein the monomers are polymerized to form a first alignment control layer on a surface of the first substrate facing the liquid crystal molecules, and form a second alignment control layer on a surface of the second substrate facing the liquid crystal molecules, and the thickness of the first alignment control layer and that of the second alignment control layer have a ratio of about 1/2-2/1.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: April 21, 2015
    Assignees: Innocom Technology (Shenzhen) Co., Ltd., Innolux Corporation
    Inventors: Hung-Ming Shen, Kai-Neng Yang, Wan-Ling Huang
  • Patent number: 9011984
    Abstract: Processes for coating substrates and the related substrates are disclosed herein. A one-component base coating composition is applied onto a substrate and a one-component top coating composition is applied wet-on-wet onto the applied base coating composition. The coating compositions are based on aqueous acrylate/polyurethane dispersions. The top coating composition is applied after the applied base coating composition develops a pendulum hardness of at least 50% of the pendulum hardness that would be exhibited by the base coating composition after UV cure. The applied coatings exposed to UV radiation to simultaneously cure both the base coating composition and the top coating composition.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 21, 2015
    Assignee: Bayer MaterialScience LLC
    Inventors: Kathy Allen, Terrell Wayt, Jeanette Eastman
  • Patent number: 9012022
    Abstract: The present disclosure relates to polymer coatings covalently attached to the surface of a substrate and the preparation of the polymer coatings, such as poly(N-(5-azidoacetamidylpentyl)acrylamide-co-acrylamide) (PAZAM), in the formation and manipulation of substrates, such as molecular arrays and flow cells. The present disclosure also relates to methods of preparing a substrate surface by using beads coated with a covalently attached polymer, such as PAZAM, and the method of determining a nucleotide sequence of a polynucleotide attached to a substrate surface described herein.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: April 21, 2015
    Assignee: Illumina, Inc.
    Inventors: Wayne N. George, Andrew A. Brown, Daniel Bratton, Hongji Ren, Ryan C. Smith
  • Publication number: 20150104624
    Abstract: Disclosed are a UV hardening composition having improved light resistance, a three dimensional film, and a method for manufacturing the three dimensional film. Particularly, the UV hardening composition having improved light resistance may be used in interior materials and the like for a vehicle which generally are substantially exposed to UV rays. In addition, the UV hardening composition may also be used for indoor electronic products. The UV hardening composition according to the present invention includes a urethane acrylate resin, a polyester acrylate resin, a UV absorber, a hindered amine light stabilizer (HALS), an antioxidant and the like. Further, the three dimensional film including the UV hardening composition may be advantageous due to the improvement in the carbon pattern three dimensional effect formed in the three dimensional film.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 16, 2015
    Inventors: Seon-Ho Jang, Oh-Young Kwon
  • Publication number: 20150105481
    Abstract: A process for preparing a membrane comprising applying a curable composition to a porous support and curing the composition, wherein the composition comprises: a) a curable ionic compound; b) a first crosslinking agent; c) a second crosslinking agent; d) an inert solvent; and e) optionally a free radical initiator; wherein the second crosslinking agent has a melting point below 80° C. Also claimed are the compositions and membranes obtainable by using the process.
    Type: Application
    Filed: March 22, 2013
    Publication date: April 16, 2015
    Inventors: Jacko Hessing, Willem Van Baak
  • Patent number: 9005847
    Abstract: A method for fabricating a fuel cell component includes the steps of providing a mask having a plurality of radiation transparent apertures, a radiation-sensitive material having a sensitivity to the plurality of radiation beams, and a flow field layer. The radiation-sensitive material is disposed on the flow field layer. The radiation-sensitive material is then exposed to the plurality of radiation beams through the radiation transparent apertures in the mask to form a diffusion medium layer with a micro-truss structure.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 14, 2015
    Assignees: GM Global Technology Operations LLC, HRL Laboratories, LLC
    Inventors: Jeffrey A. Rock, Yeh-Hung Lai, Keith E. Newman, Gerald W. Fly, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer