Vapor Deposition Utilized Patents (Class 427/509)
  • Patent number: 6165875
    Abstract: This invention is directed toward methods for fabricating polycrystalline thin films. More particularly, the invention is directed toward optimized solid phase crystallization of plasma enhanced chemical vapor deposited amorphous silicon thin films as a means for obtaining, with a low thermal budget, polycrystalline silicon thin films comprising larger grain sizes and smother surfaces. The process of plasma enhanced chemical vapor deposition is quantified for silane containing various types of dilutants, thereby allowing deposition temperature, type of dilutant, type of plasma and other parameters to be controlled to yield the desired crystallization grain size at the desired thermal budget. Methods of annealing, annealing temperature, and pre-annealment treatments are also quantified such that grain size and thermal budget can be controlled in the fabrication of polycrystalline silicon thin films.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: December 26, 2000
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Reece Kingi, Ali K. Kalkan
  • Patent number: 6114032
    Abstract: The present invention provides thin films for use in microelectronic devices. In one aspect, the present invention provides a copper diffusion barrier. In another aspect, the present invention provides a polymer film for various applications including use as a dielectric insulator and surface modification layers. Methods for the production of the films are also disclosed.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: September 5, 2000
    Assignee: The University of North Texas
    Inventor: Jeffry A. Kelber
  • Patent number: 6093448
    Abstract: An improved process, preferably continuous, for the manufacture of gradient refractive index optical objects, wherein a core polymer, which itself may be prepared by a continuous and incorporated process, is passed through a hollow porous surrounding, generally cylindrical so as to obtain and maintain a rounded fiber, through which is fed a second monomer whose polymer has a lower refractive index than the core polymer, so as to swell the core polymer. The swollen polymer with a gradient of swelling by the second monomer from surface to core, is then led to a polymerization unit to complete the polymerization before equilibration of the second monomer throughout the core polymer occurs. The resulting polymers are useful in the preparation of optical fibers and light pipes.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: July 25, 2000
    Assignee: Rohm and Haas Company
    Inventors: Edward Ewart LaFleur, Angelo Anthony Lamola
  • Patent number: 6057004
    Abstract: The invention concerns a method of treating surfaces and surface-adjacent layers of dental components in particular. A series of several different plasma treatments produces high adhesion between the plasma-treated surface and a layer of plastic applied thereto. The invention also concerns a method of sealing the surface of work by treating it with plasma and covering it with a layer that contains silicate.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: May 2, 2000
    Assignee: Heraeus Kulzer GmbH
    Inventors: Steffen Oppawsky, Dieter Schodel, Hans-Jurgen Tiller
  • Patent number: 6045864
    Abstract: Coating system and method that allows coatings to be formed from a wide variety of coatable compositions that are entirely free of any solvents or, alternatively, have relatively little solvent in minor amounts effective to help dissolve one or more components of such compositions. A fluid composition is atomized and contacted with a carrier gas. The contacting occurs under conditions such that vaporization of substantially all of the atomized fluid composition occurs so as to form a vapor having a condensation temperature. The vapor is caused to flow to the surface of the substrate. The surface is at a temperature below the condensation temperature of the vapor. Consequently, the vapor condenses onto the surface to form the coating.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: April 4, 2000
    Assignee: 3M Innovative Properties Company
    Inventors: Christopher S. Lyons, Constantin I. Ruta, Robert J. Fleming, Russell E. Blette, Robin E. Wright, Jeffrey H. Tokie
  • Patent number: 6040017
    Abstract: The fabrication of linear and non-linear optical materials including photoconductive, photorefractive, and optical limiting polymer composite films from radiation curable homogeneous solutions or heterogeneous slurries via vacuum flash evaporation techniques is disclosed.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: March 21, 2000
    Assignee: Sigma Laboratories, Inc.
    Inventors: Michael G. Mikhael, Ali Boufelfel, Angelo Yializis
  • Patent number: 6025036
    Abstract: A film of a coating material is produced on a substrate by a pulsed laser deposition method in which the material that forms the coating material is first combined with a matrix material to form a target. The target is then exposed to a source of laser energy to desorb the matrix material from the target and lift the coating material from the surface of the target. The target and the substrate are oriented with respect to each other so that the lifted coating material is deposited as a film upon said substrate. The matrix material is selected to have the property of being more volatile than the coating material and less likely than the coating material to adhere to the substrate. The matrix material is further selected as having the property such that when the target is exposed to a source of laser energy, the matrix material desorbs from the target and lifts the coating material from the surface of the target.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: February 15, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert Andrew McGill, Douglas Brian Chrisey
  • Patent number: 6022595
    Abstract: A method of depositing a polymer film onto a semiconductor wafer is provided which includes the steps of connecting the wafer to one terminal of a voltage source, connecting an electrode to an other pole of the voltage source and placing the electrode and substrate in superposed orientation to form a parallel plate capacitor, wherein an electric field is produced between the electrode and substrate. The parallel plate capacitor is placed in a chamber where pressure andc temperature are maintained at predetermined levels and gaseous monomers of the desired film to be polymerized are introduced into the chamber. The gaseous monomers are then permitted to flow between the electrode and wafer while the voltage of the electric field is maintained at a level sufficient to polarize the monomers without breaking their chemical bonds wherein the polarized monomers react to form a polymer film on the wafer at an enhanced rate.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: February 8, 2000
    Assignee: Rensselaer Polytechnic Institute
    Inventors: John F. McDonald, Toh-Ming Lu, Bin Wang, Guang Rong Yang
  • Patent number: 6001414
    Abstract: A dual damascene processing method comprising the steps depositing sequentially a first oxide layer, a SRO layer and a second oxide layer over a substrate. Then, photolithographic and etching operations are conducted to form a via that links up with a desired wire-connecting region above the substrate. Next, another photolithographic and etching operations are conducted to form interconnect trench lines followed by the deposition of metal into the via and trench. Finally, the surface is polished with a chemical-mechanical polishing operation to remove the unwanted metal on the surface. The invention is capable of controlling the depth of trench and obtaining a smoother trench bottom for the metal lines. Furthermore, the separation of via and trench etching steps makes the control of the final etch profile much easier, thereby able to get an optimal result.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: December 14, 1999
    Assignee: United Microelectronics Corp.
    Inventors: Yimin Huang, Hsiao-Pang Chou, Tri-Rung Yew
  • Patent number: 5958523
    Abstract: The invention relates coating and lubricating compositions comprising polyfluorfullerene and method for using same. The surface to be coated can also be the surface of granulated or powdery polymers. To make polyfluorfullerene a fullerene solution is mixed with a polytetrafluoroethylene dispersion, and the reaction mixture is irradiated with fluorescent light during the mixing time to form polyfluorfullerene. Also, the polyfluorfullerene can be sublimated upon the surface to be coated at about 350.degree. C., or, applied to a surface and sintered at about 400.degree. C., preferably more than 400.degree. C.Polyfluorfullerene can also be used as additive for a coating of surfaces.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: September 28, 1999
    Inventor: Marijan Bradic
  • Patent number: 5945174
    Abstract: Sheet materials according to the present invention comprise a sheet material substrate, such as for example a film or paper sheet, with a polymer release coating overlying and adhered to a surface of the sheet material substrate. Single and multilayer release coatings can be formed on the substrate by vapor deposition of silicone acrylates and/or fluorinated acrylates. These coatings can be applied in thickness of 0.05 micron to 1.0 micron to achieve a range of release properties. These coatings can be applied in a very thin single layer on relatively smooth substrates or in a multilayer form on rough substrates such as paper. The new coating process described here has lower process and materials costs, improved adhesion, low slip, and excellent release characteristics.
    Type: Grant
    Filed: July 1, 1998
    Date of Patent: August 31, 1999
    Assignee: Delta V Technologies, Inc.
    Inventors: David G. Shaw, Eric Dawson, Daniel Cline, Marc Langlois
  • Patent number: 5939150
    Abstract: The present invention relates to a method for treating a substrate surface. The substrate surface is coated with a thin film of a treating agent, which is capable of enhancing or reducing its affinity towards a metal precursor by exposure to an arbitrary kind of radiation beam. In a subsequent metal deposition step utilizing the metal precursor, the metal is selectively deposited on the exposed or unexposed areas, depending on the kind of treating agent. (FIG.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 17, 1999
    Assignees: Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V., CNRS-Service De La Valorisation
    Inventors: Martin Stelzle, Pascal Doppelt
  • Patent number: 5925420
    Abstract: Amorphously crosslinked aromatic polymeric low .kappa. materials and methods for their fabrication are provided. The subject materials are prepared by a modified transport polymerization process, in which aromatic precursors are pyrolyzed to produce radical comprising aromatic monomeric precursors which are then allowed to polymerize by deposition onto a substrate surface, where during and/or after deposition the growing polymer chain is exposed to a high energy crosslinking agent, such as high energy photons or plasma. The subject crosslinked materials find use in a variety of applications, particularly as low .kappa. dielectrics in the manufacture of integrated circuits.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: July 20, 1999
    Assignee: WJ Semiconductor Equipment Group, Inc.
    Inventor: Chung Lee
  • Patent number: 5853817
    Abstract: The present invention provides a method for producing a a high-performance black matrix taking the palce of a Cr film black matrix and a high-performance color display thin film, which is comprises steps of vaporizing one or more organic pigments or vaporizing and exciting a metal or an alloy together with said organic pigments, and forming a thin film or a mixed composite thin film onto a substrate by the plasma exciting deposition.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: December 29, 1998
    Assignees: C. Itoh Fine Chemical Co., Ltd., Yoichi Murayama
    Inventor: Yoichi Murayama
  • Patent number: 5830587
    Abstract: A process resulting in enhanced pole performance, relative to permalloy poles, in narrow track magnetic devices. A preferred process includes increasing the anisotropy field of the pole material while maintaining an acceptable coercivity level and near zero magnetostriction. One embodiment utilizes a NiCoFe alloy containing 22% cobalt by weight, heat treated in an easy axis magnetic field in a non-oxidizing atmosphere. This process achieves favorable domain structures at narrow pole tip widths.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: November 3, 1998
    Assignee: MKE-Quantum Components Colorado, LLC
    Inventors: Harold B. Shukovsky, Michelle Martin, Michael Mallary, Alan Lee Sidman
  • Patent number: 5629245
    Abstract: An improved CVD apparatus for depositing a uniform film is shown. The apparatus comprises a reaction chamber, a substrate holder and a plurality of light sources for photo CVD or a pair of electrodes for plasma CVD. The substrate holder is a cylindrical cart which is encircled by the light sources, and which is rotated around its axis by a driving device. With this configuration, the substrates mounted on the cart and the surroundings can be energized by light of plasma evenly throughout the surfaces to be coated.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: May 13, 1997
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takashi Inushima, Shigenori Hayashi, Toru Takayama, Masakazu Odaka, Naoki Hirose
  • Patent number: 5510151
    Abstract: A microwave plasma CVD method for continuously forming a large area and length functional deposited film, the method comprises: continuously moving a substrate web in the longitudinal direction by paying out it by a pay-out mechanism and taking it up by a take-up mechanism; establishing a substantially enclosed film-forming chamber by curving and projecting the moving substrate web to form a columnar portion to be the circumferential wall of the film-forming chamber as the substrate is moving from the pay-out mechanism toward the take-up mechanism; introducing a film-forming raw material gas through a gas feeder into the film-forming chamber; and simultaneously, radiating a microwave energy in the film-forming chamber by using a microwave applicator, which is so designed that it can radiate a microwave energy in the direction parallel to the microwave propagating direction, to generate plasma in the film-forming chamber, thereby continuously forming a deposited film on the inner wall face of the continuously
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: April 23, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jinsho Matsuyama, Toshimitsu Kariya, Yasushi Fujioka, Tetsuya Takei, Katsumi Nakagawa, Masahiro Kanai, Hiroshi Echizen
  • Patent number: 5506008
    Abstract: Lacquer films sensitive to ultraviolet (UV) and/or electron beam radiation re applied to substrates as masking layers by a process known as the "spin on process". This invention is a new method of applying a lacquer film sensitive to UV and/or electron beam radiation. A vinyl-containing substance and a linear or cyclic siloxane are vaporized and then deposited onto the substrate to be masked. In the preferred embodiment of the invention, the substances utilized are octamethylcyclotetrasiloxane and trivinylmethylsilane.
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: April 9, 1996
    Assignee: Fraunhofer-Gesellschaft zur Forderung Der Angewandten Forschung e.V.
    Inventors: Armin Klumpp, Erwin Hacker
  • Patent number: 5483037
    Abstract: A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: January 9, 1996
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Douglas N. Mashburn
  • Patent number: 5468930
    Abstract: A laser sputtering apparatus includes a laser oscillator for emitting laser beams, a target-supporting member supporting a flat target thereon and being rotatable in a vacuum chamber while the target is inclined relative to the target-supporting member, a driving device for rotating the target-supporting member, a substrate-supporting member for supporting the substrate parallel with the target-supporting member, and an optical device for irradiating the target with the beams emitted by the laser oscillator.
    Type: Grant
    Filed: March 10, 1993
    Date of Patent: November 21, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yukio Nishikawa, Kunio Tanaka, Yoshikazu Yoshida
  • Patent number: 5447756
    Abstract: An applicator with a surface having a first wetting angle and a first surface area, which surface area has grafted thereto a layer of ion-producing gas plasma having a second wetting angle and a second surface are, wherein the second wetting angle is less than the first wetting angle and the second surface area is greater than the first surface area.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: September 5, 1995
    Assignee: Revlon Consumer Products Corporation
    Inventor: Melvin E. Kamen
  • Patent number: 5427824
    Abstract: An improved CVD apparatus for depositing a uniform film is shown. The apparatus comprises a reaction chamber, a substrate holder and a plurality of light sources for photo CVD or a pair of electrodes for plasma CVD. The substrate holder is a cylindrical cart which is encircled by the light sources, and which is rotated around its axis by a driving device. With this configuration, the substrates mounted on the cart and the surroundings can be energized by light of plasma evenly throughout the surfaces to be coated.
    Type: Grant
    Filed: September 8, 1992
    Date of Patent: June 27, 1995
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takashi Inushima, Shigenori Hayashi, Toru Takayama, Masakazu Odaka, Naoki Hirose
  • Patent number: 5409738
    Abstract: Disclosed are a recording medium comprising a substrate, a thin film for recording formed on at least one side of the substrate, a protective layer formed on the thin film, and a lubricative film formed on the protective layer, the lubricative film comprising an oxidative polymerization product having main molecular chains chemically bonded to the protective film; and a process for producing the recording medium. This recording medium is excellent in lubricity and durability, and the layers formed thereon can be very thin.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: April 25, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Matsunuma, Yuichi Kokaku, Makoto Kitoh, Shigehiko Fujimaki
  • Patent number: 5340619
    Abstract: Color filter arrays containing one or more colors for liquid crystal displays and other optoelectronic devices are made by using a laser to ablate portions of a coating on either a colored or transparent substrate. Color filter materials are placed into the ablated openings and cured. The number of laser ablated openings in the coated substrate varies, depending on the quantity and types of colors desired.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: August 23, 1994
    Assignee: Brewer Science, Inc.
    Inventors: Yih-Wen Chen, Terry Brewer, Jeffery Hunninghake, Dan Hawley
  • Patent number: 5324549
    Abstract: A method for fabricating a photoconductor coupled liquid crystal valve comprising the step of; deposing a transparent electrode on a transparent substrate; forming on said transparent electrode a photoconductive layer formed of amorphous silicon by the ECR; forming on said photoconductive layer an optical shielding layer formed of amorphous silicon by the ECR; forming on said optical shielding layer an optical reflection layer; forming an orientation film on said optical reflection layer; laminating on said orientation film a transparent substrate having a transparent electrode and another orientation film stoked thereon by the above method in such a manner that the two orientation films face each other with a spacer interposed therebetween; and disposing liquid crystals into said spacer.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: June 28, 1994
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takashi Hayakawa, Shiro Narikawa, Katsumi Adachi, Akitsugu Hatano
  • Patent number: 5302420
    Abstract: Polymeric fluorocarbon layer is prepared by plasma enhanced chemical vapor deposition in a chamber, the walls of which are coated with a polymeric fluorocarbon film by introducing a gaseous polymerizable fluorocarbon into the chamber and applying radio-frequency at a power level of about 100 to about 1000 watts, employing a pressure of about 10 to 180 mTorr and a self-bias voltage of about -50 to about -700 volts. The polymeric fluorocarbon layer is about 0.05 to about 5 .mu.m thick, has a maximum dielectric constant of about 2.5, has a C/F ratio of about 1:1 to about 1:3, is thermally stable at temperatures of at least about 350.degree. C., and is substantially free from metallic contamination and oxygen.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: April 12, 1994
    Assignee: International Business Machines Corporation
    Inventors: Thao N. Nguyen, Gottlieb S. Oehrlein, Zeev A. Weinberg
  • Patent number: 5298290
    Abstract: A method and apparatus for applying a protective coating onto a substrate comprises a power supply for generating an amplitude-modulated alternating electromagnetic field in a vacuum chamber. A silicon-organic compound is supplied in a gaseous state into the vacuum chamber and is plasma polymerized onto the substrate in the chamber without powdery portions. Another process parameter for controlling coating rate is adjusted to be at a high level so that when the amplitude modulation is stopped, powdery portions do appear in the coating. Thus at high coating rates amplitude-modulation according to the invention avoids such powdery portions.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: March 29, 1994
    Assignee: Balzers Aktiengesellschaft
    Inventors: Stephen Jost, Leonhard Senn
  • Patent number: 5294464
    Abstract: A process gas atmosphere consisting essentially of (a) organosiloxanes and inert gas, or (b) pure silane or (c) silane plus inert gas is introduced into a vacuum chamber and exposed to microwaves to produce an electro-cyclotron resonance in a plasma for coating substrates. The process is useful for producing an adherent coating on a plastic substrate, especially an intermediate coating for a reflective coating in an automotive headlamp.
    Type: Grant
    Filed: February 11, 1993
    Date of Patent: March 15, 1994
    Assignee: Leybold Aktiengesellschaft
    Inventors: Michael Geisler, Rudolf Koetter-Faulhaber, Susanne Wuerz
  • Patent number: 5260093
    Abstract: A method of permanently modifying the surface of a substrate material so as to develop a microscopically smooth, biocompatible surface thereon comprises covalently grafting a biocompatible polymeric material to the surface of the substrate material by radio frequency plasma-induced grafting. The biocompatible polymeric material is preferably the same as the substrate material. In addition, a method of permanently modifying the surface of a substrate material comprises subjecting the substrate surface to radio frequency plasma sufficient to raise the temperature at the substrate material to just above the glass transition temperature (T.sub.g) of the substrate material for a time sufficient to produce a microscopically smooth, biocompatible surface on the substrate material. Further, a prosthesis used in mammals, including an intraocular lens, comprises a polymeric material core and a biocompatible polymeric material covalently grafted to the polymer core by radio frequency plasma induction.
    Type: Grant
    Filed: January 13, 1992
    Date of Patent: November 9, 1993
    Assignees: Drexel University, Ophthalmic Research Corporation
    Inventors: Ihab Kamel, David B. Soll
  • Patent number: 5227202
    Abstract: In a plasma-enhanced chemical vapor deposition method, in order to achieve greater space for positioning workpieces to be coated simultaneously and essentially identically on all sides, the workpiece are positioned at a distance from one electrode on the basis of a coating rate gradient.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: July 13, 1993
    Assignee: Balzers Aktiengesellschaft
    Inventors: Francis Thiebaud, Heinrich Zimmermann