Nonuniform Or Patterned Ion Plating Or Ion Implanting (e.g., Mask, Etc.) Patents (Class 427/526)
  • Patent number: 8450393
    Abstract: The invention provides an ink composition, which is improved in dispersibility and fastness properties and is excellent in dispersion stability and re-solubility owing to dispersed particles in which a coloring material is included by a crosslinked hydrophobic block segment in a dispersing polymer. The ink composition contains an amphiphilic block polymer compound, in which a coloring material is included, and a medium, wherein the amphiphilic block polymer compound, in which the coloring material is included, forms a dispersed particle having the hydrophobic block segment as an internal core part, and the hydrophobic block segment is crosslinked.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keiichiro Tsubaki, Ryuji Higashi, Masayuki Ikegami, Keiko Yamagishi, Ryo Natori, Takaho Shibata
  • Patent number: 8440269
    Abstract: A method for depositing a thin film for a magnetic recording medium includes the steps of placing a substrate for a recording medium having a magnetic recording layer thereon on a substrate holder rotatably arranged within a film deposition chamber; and supplying a plasma beam from a plasma beam formation portion to the film deposition chamber so as to form a thin film of ta-C on the magnetic recording layer. In supplying the plasma beam, an inclination angle formed by a normal line to a surface of the magnetic recording layer and a plane orthogonal to a direction of incidence of the plasma beam is changed from a minimum inclination angle to a maximum inclination angle according to an increase in film thickness of the ta-C thin film.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: May 14, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Katsunori Suzuki, Takeshi Watanabe
  • Publication number: 20130108799
    Abstract: One embodiment of this ion implanter includes an ion source and a process chamber. This process chamber is connected to the ion source and separated from the ion source by a plurality of extraction electrodes. A carrier holds multiple workpieces. A mask loader in the process chamber connects a mask to the carrier. A transfer chamber and load lock may be connected to the process chamber. The ion implanter is configured to perform either blanket or selective implantation of the workpieces.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventor: Varian Semiconductor Equipment Associates Inc.
  • Patent number: 8397371
    Abstract: In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 19, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Daniel Wayne Bedell, David Patrick Druist, Edward Hin Pong Lee, Jennifer Ai-Ming Loo, Vladimir Nikitin, Sue Siyang Zhang
  • Publication number: 20130064989
    Abstract: A surface of an insulating workpiece is implanted to form either hydrophobic or hydrophilic implanted regions. A conductive coating is deposited on the workpiece. The coating may be a polymer in one instance. This coating preferentially forms either on the implanted regions if these implanted regions are hydrophilic or on the non-implanted regions if the implanted regions are hydrophobic.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 14, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. Hatem, Ludovic Godet, Louis Steen, Deepak A. Ramappa
  • Patent number: 8389068
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 5, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Patent number: 8389390
    Abstract: A method of introducing an impurity into a wafer surface is provided. The method comprises the steps of: low energy implantation of impurity into a surface of the wafer to generate an implanted dopant layer; and simultaneously removing an implanted surface of the implanted dopant layer to generate a doping profile with controlled areal impurity dosage.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: March 5, 2013
    Inventor: Tzu-Yin Chiu
  • Patent number: 8361564
    Abstract: A method for implanting a dopant in a substrate is provided. A patterned photoresist mask is formed over the substrate, wherein the patterned photoresist mask has patterned photoresist mask features. A protective layer is deposited on the patterned photoresist mask by performing a cyclical deposition, wherein each cycle, comprises a depositing phase for depositing a deposition layer over surfaces of the patterned mask of photoresist material and a profile shaping phase for providing vertical sidewalls. A dopant is implanted into the substrate using an ion beam. The protective layer and photoresist mask are removed.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 29, 2013
    Assignee: Lam Research Corporation
    Inventors: Andrew R. Romano, S. M. Reza Sadjadi
  • Patent number: 8329260
    Abstract: A substrate is implanted with a species to form a layer of microbubbles in the substrate. The species may be hydrogen or helium in some embodiments. The size at which the microbubbles are stable within the substrate is controlled. In one example, this is by cooling the substrate. In one embodiment, the substrate is cooled to approximately between ?150° C. and 30° C. This cooling also may reduce diffusion of the species in the substrate and will reduce surface roughness when the substrate is cleaved along the layer of microbubbles.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Julian G. Blake, Paul J. Murphy
  • Publication number: 20120292285
    Abstract: A method of patterning a substrate, comprises patterning a photoresist layer disposed on the substrate using imprint lithography and etching exposed portions of a hard mask layer disposed between the patterned photoresist layer and the substrate. The method may also comprise implanting ions into a magnetic layer in the substrate while the etched hard mask layer is disposed thereon.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Inventors: Alexander C. Kontos, Frank Sinclair, Anthony Renau
  • Patent number: 8313793
    Abstract: The invention relates to read/write methods for information hidden from visual perception and can be used to visualize hidden images of identification of an object, which provide protection against unauthorized reproduction. The surface of the object is first polished. An optically invisible marking image is formed on the polished surface by modifying at least one area of the surface, which changes the surface energy of modified sites. Said marking image is visualized by establishing a meta-stable environment in the vicinity of the aforementioned surface of the object. The marking image is produced in the form of distinguished structures formed by stable phase particles of the meta-stable environment at the sites of the object surface having different surface energy. Prior to performing a visualization process of the optically invisible marking image, the surface containing the modified areas is electrically-charged and cleaned by friction.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: November 20, 2012
    Assignee: Valinmark Inc.
    Inventor: Yuri Konstantinovich Nizienko
  • Publication number: 20120288637
    Abstract: Methods of affecting a material's properties through the implantation of ions, such as by using a plasma processing apparatus with a plasma sheath modifier. In this way, properties such as resistance to chemicals, adhesiveness, hydrophobicity, and hydrophilicity, may be affected. These methods can be applied to a variety of technologies. In some cases, ion implantation is used in the manufacture of printer heads to reduce clogging by increasing the materials hydrophobicity. In other embodiments, MEMS and NEMS devices are produced using ion implantation to change the properties of fluid channels and other structures. In addition, ion implantation can be used to affect a material's resistance to chemicals, such as acids.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 15, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Ludovic Godet, Christopher Hatem, Deepak Ramappa, Xianfeng Lu, Anthony Renau, Patrick Martin
  • Patent number: 8303828
    Abstract: Provided is a method for manufacturing, in a simple process, a magnetic recording medium having a distinct magnetic recording pattern formed thereon. A method for manufacturing a magnetic recording medium having a magnetically-separated magnetic recording pattern MP, the method at least including; a first step of forming a first magnetic layer 11 on a non-magnetic substrate 10; a second step of forming a resist layer 12 on the first magnetic layer 11, the resist layer 12 being patterned in correspondence with the magnetic recording pattern MP; a third step of forming a second magnetic layer 13 so as to cover a surface of the first magnetic layer 11 having the resist layer 12 formed thereon; a fourth step of removing the resist layer 12 together with the second magnetic layer 13 formed thereon; and a fifth step of partially removing the first magnetic layer 11 or partially modifying magnetic property of the first magnetic layer 11.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Showa Denko K.K.
    Inventors: Shinichi Ishibashi, Masato Fukushima, Akira Yamane
  • Publication number: 20120273807
    Abstract: A light-emitting semiconductor chip is provided, the semiconductor chip comprising a semiconductor body having a pixel region with at least two electrically isolated sub-regions, each sub-region comprising an active layer, which generates electromagnetic radiation of a first wavelength range during operation, a separately manufactured ceramic conversion die over a radiation emission area of at least one sub-region, said conversion die being configured to convert radiation of the first wavelength range into electromagnetic radiation of a second wavelength range, wherein a width of the conversion die does not exceed 100 ?m. Further, a method for the production of a light-emitting semiconductor chip and method for the production of a conversion die are provided.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicants: OSRAM SYLVANIA Inc., OSRAM Opto Semiconductors GmbH
    Inventors: Norwin Von Malm, Madis Raukas, Darshan Kundaliya
  • Publication number: 20120257300
    Abstract: Provided is a method of manufacturing a magnetic recording medium capable of manufacturing at a high productivity a useful magnetic recording medium having high surface smoothness and excellent head floating characteristics. Such a method of manufacturing a magnetic recording medium includes: forming a magnetic layer on a nonmagnetic substrate; and partially injecting ions into the magnetic layer to modify magnetic characteristics at a location of the magnetic layer where the ions are injected and to form magnetically separated magnetic recording patterns, in which, when partially injecting ions into the magnetic layer, a carbon film is formed on the surface of the magnetic layer, the carbon film is partially thinned by patterning, and ions are partially injected into the magnetic layer through locations where the carbon film is thinned.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 11, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Masato Fukushima
  • Patent number: 8263190
    Abstract: The present invention aims to provide a method of producing a magnetic recording medium which is a method of producing a magnetic recording medium having a magnetically-separated magnetic recording pattern, the method including: forming a magnetic layer on a non-magnetic substrate; then exposing a surface of the magnetic layer partially to reactive plasma, or a reactive ion generated in the plasma to amorphize the portion of the magnetic layer.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: September 11, 2012
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki, Yasumasa Sasaki
  • Publication number: 20120219820
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—C—N layer. Then, Nd ions are implanted in the Al—C—N layer by ion implantation process. The atomic percentages of N and C in the Al—C—N gradient layer gradually increase from the side of Al—C—N gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—C—N gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 30, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Publication number: 20120207944
    Abstract: Generally, the present invention relates to patterning techniques for creating nanoscale features on a substrate. The invention offers an improved method over traditional e-beam or photolithographic techniques and uses atomic layer deposition (ALD) chemistries and a source of high-energy ions. These either as focused or a flood of ions facilitate ALD deposition by providing additional energy to the reaction or, more significantly, can form part of the final chemical structure of the ALD coating. Additional embodiments include using ion beam-assisted ALD to deposit a seed layer for subsequent thermal ALD processes, and ion beam-assisted molecular layer deposition chemistries (MLD) for direct patterning of organic and/or inorganic long-chain macromolecules (e.g., polymers, proteins, peptides and polysaccharides). A further embodiment combines both ALD and MLD methods to allow fabrication of unique hybrid metal, semiconductor or dielectric ALD and organic or inorganic MLD films.
    Type: Application
    Filed: August 17, 2011
    Publication date: August 16, 2012
    Inventors: Dudley Sean Finch, Steven McClellan George
  • Publication number: 20120201970
    Abstract: A method for providing a multilayer composite includes the steps of providing a first composite comprising a film of a dielectric material with a front surface and an opposite rear surface, the front surface comprising a surface pattern; depositing an electrically conductive layer onto the surface pattern; providing a second composite comprising a film with a front surface and an opposite rear surface, the front surface comprising a surface pattern; depositing an electrically conductive layer covering at least a portion of the surface pattern; arranging the first composite on the second composite; and fixating the position of the first composite relative to the second composite.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: Danfoss A/S
    Inventors: Mohamed Yahia Benslimane, Peter Gravesen
  • Publication number: 20120196145
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—C—N layer. Then, Ce ions are implanted in the Al—C—N layer by ion implantation process. The atomic percentages of N and C in the Al—C—N gradient layer gradually increase from the side of Al—C—N gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—C—N gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Publication number: 20120196047
    Abstract: To select a relative velocity profile to be used in scanning an actual work piece with an ion implant beam of an ion implantation tool, the implantation of a virtual work piece is simulated. A dose distribution is calculated across the virtual work piece based on an implant beam profile and a relative velocity profile. A new relative velocity profile is then determined based on the calculated dose distribution and the relative velocity profile used in calculating the dose distribution. A new dose distribution is then calculated using the new relative velocity profile. A new relative velocity profile is determined and a corresponding new dose distribution is calculated iteratively until the new dose distribution meets one or more predetermined criteria. The new relative velocity profile is stored as the selected relative velocity profile when the new dose distribution meets the one or more predetermined criteria.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 2, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Cheng-Hui Shen, Zhimin Wan
  • Publication number: 20120189867
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O layer. Then, Gd ions are implanted in the Al—O layer by ion implantation process. The atomic percentages of O in the Al—O gradient layer gradually increase from the side of Al—O gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—O gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 30, 2011
    Publication date: July 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Publication number: 20120189781
    Abstract: Provided are a method of forming a conductive layer on an inner portion of a through-electrode in which uniform adhesion property of plating in the inner portion of a through-hole is enhanced and a tact time is short, and a semiconductor device. The method of forming a conductive layer includes: a first plating step of forming a first plating layer on the inner portion of the through-hole; a plating suppression layer forming step of forming a plating suppression layer including a material different from a material of the first plating layer in an opening portion of the through-hole after the first plating step; and a second plating step of forming a second plating layer by plating on the inner portion of the through-hole after the plating suppression layer forming step.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 26, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takashi Sakaki
  • Publication number: 20120189865
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O layer. Then, Nd ions are implanted in the Al—O layer by ion implantation process. The atomic percentages of O in the Al—O gradient layer gradually increases from the side of Al—O gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—O gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 30, 2011
    Publication date: July 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Publication number: 20120170152
    Abstract: [Problem] An object is to provide a magnetic recording medium with improved HDI characteristics, such as impact resistance, and its manufacturing method. [Solution] A typical structure of a magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122, a protective layer 126, and a lubricating layer 128, wherein the magnetic recording layer 122 includes, in an in-plane direction, a magnetic recording part 136 configured of a magnetic material and a non-recording part 134 magnetically separating the magnetic recording part 136, and a surface corresponding to the non-recording part 134 protuberates more than a surface corresponding to the magnetic recording part 136.
    Type: Application
    Filed: December 9, 2009
    Publication date: July 5, 2012
    Applicant: WD MEDIA (SINGAPORE) PTE. LTD.
    Inventors: Yoshiaki Sonobe, Akira Shimada, Tsuyoshi Ozawa, Masanori Aniya
  • Publication number: 20120148864
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum-copper alloy layer formed on the substrate and an aluminum nitride layer formed on the aluminum-copper alloy layer. The coated article has good corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY ( ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Publication number: 20120137971
    Abstract: A template used for printing is implanted to change the properties of the materials it is composed of. This template may have multiple surfaces that define indentations. The ion species that is implanted may be C, N, H, F, He, Ar, B, As, P, Ge, Ga, Si, Zn, and Al and is configured to render the implanted regions hydrophobic in one instance. This will reduce adhesion of a polymer to the template during a printing process. The implant may be at a plurality of angles so all surfaces of the template are implanted. In other instances, a film on the surface of the template is knocked in or hardened using the ion species.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 7, 2012
    Applicant: VANRIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Patrick M. MARTIN, Ludovic Godet
  • Patent number: 8192805
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 5, 2012
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Steven Sherman, John J. Hautala
  • Publication number: 20120121926
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum layer formed on the substrate and an aluminum oxide layer formed on the aluminum layer. The coated article has improved corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: May 17, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Patent number: 8168251
    Abstract: A method of making nanowire probes is provided. The method includes providing a template having a nanoporous structure, providing a probe tip that is disposed on top of the template, and growing nanowires on the probe tip, where the nanowires are grown from the probe tip along the nanopores, and the nanowires conform to the shape of the nanopores.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 1, 2012
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Friedrich B. Prinz, Neil Dasgupta, Munekazu Motoyama
  • Patent number: 8163355
    Abstract: A method includes forming ionic clusters of carbon-containing molecules, which molecules have carbon-carbon sp2 bonds, and accelerating the clusters. A surface of a substrate is irradiated with the clusters. A material is formed on the surface using the carbon from the molecules. The material includes carbon and may optionally include hydrogen. The material may include graphene. The material may form a monolayer. The molecules may include one or more material selected from the group consisting of graphene, carbon allotropes, ethylene, and hydrocarbon molecules containing ethylenic moieties. A fused region may be formed in the substrate as an interface between the substrate and the material. The clusters may have diameters of at least 20 nanometers and may be accelerated to an energy of at least 0.5 keV.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: April 24, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Publication number: 20120087039
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, and a magnetic recording layer formed on the substrate. The magnetic recording layer includes recording portions having patterns regularly arranged in an longitudinal direction and containing cobalt and platinum, and non recording portions formed between the recording portions and containing boron and at least one light rare earth metal selected from the group consisting of yttrium, lanthanum, and cerium.
    Type: Application
    Filed: June 20, 2011
    Publication date: April 12, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi Iwasaki, Kaori Kimura, Yoshiyuki Kamata, Tsuyoshi Onitsuka, Masatoshi Sakurai
  • Patent number: 8153207
    Abstract: A silicon oxide of a film thickness of about 50 nm is formed on a surface of a silicon substrate by thermal oxidation. Silver is implanted into the silicon oxide with implantation energy of about 30 keV by a negative ion implantation method. By subjecting the silicon oxide, into which the silver has been implanted, to heat treatment at a temperature of not lower than 200° C. and lower than the melting point of silver, silver particles are formed. By oxidizing the surface portions of the fine particles by heat treatment in an oxidizing atmosphere, silver oxide is formed as a coating layer.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 10, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobutoshi Arai, Hiroshi Iwata
  • Publication number: 20120082800
    Abstract: According to one embodiment, there is provided a method for manufacturing a magnetic recording medium, the method including: depositing a magnetic recording layer on a substrate; forming a mask on a region of the magnetic recording layer corresponding to a recording area; irradiating another region of the magnetic recording layer where the mask is not formed with an ion beam using a C-containing gas as a source gas to deactivate the another region and to thereby form a non-recording area; and forming a protective film over an entire surface of the substrate.
    Type: Application
    Filed: August 24, 2011
    Publication date: April 5, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi SAKURAI, Kaori Kimura, Yoshiyuki Kamata, Takeshi Iwasaki
  • Publication number: 20120064373
    Abstract: A technique for manufacturing hit pattern media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The method may comprise forming an intermediate layer comprising a modified region and a first region adjacent to one another, where the modified region and the first region may have at least one different property; depositing magnetic species on the first region of the intermediate layer to form an active region; and depositing non-ferromagnetic species on the modified region of the intermediate layer to form a separator.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES,INC.
    Inventors: Frank SINCLAIR, Julian G. Blake
  • Publication number: 20120027947
    Abstract: A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout.
    Type: Application
    Filed: July 26, 2011
    Publication date: February 2, 2012
    Inventors: Horacio D. Espinosa, Nicolaie A. Moldovan, Keun-Ho Kim
  • Publication number: 20110315214
    Abstract: A transparent electrically conductive substrate having a high photovoltaic conversion efficiency surface electrode, and a method for its manufacture, are disclosed. A thin-film solar cell and a method for its manufacture are also disclosed. An indium oxide based amorphous transparent electrically conductive film is formed on the substrate as an underlying film 21 and a zinc oxide based crystalline transparent electrically conductive film is formed on the so formed amorphous transparent electrically conductive film to form a surface electrode 2 of an optimum uneven surface structure. As a consequence, the surface electrode 2 having a high light confining effect may be provided and a thin-film solar cell 10 may be provided which exhibits higher photovoltaic conversion efficiency (FIG.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 29, 2011
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasunori Yamanobe, Fumihiko Matsumura
  • Publication number: 20110299194
    Abstract: [Problem] The concentration distribution in a perpendicular direction of ions implanted in a magnetic recording layer of a perpendicular magnetic recording medium is made a suitable one corresponding to a layer implanted with ions.
    Type: Application
    Filed: February 19, 2010
    Publication date: December 8, 2011
    Applicant: WD MEDIA (SINGAPORE) PTE. LTD.
    Inventors: Masanori Aniya, Yoshiaki Sonobe
  • Patent number: 8067104
    Abstract: A magnetic recording medium includes a substrate; and a recording film formed on the substrate and including a main magnetic film, the main magnetic film where a recording area and a guard area are formed by local ion doping, the guard area having saturation magnetization smaller than saturation magnetization of the recording area. A primary layer is provided at a substrate side of the main magnetic film. A main ingredient of the primary layer is at least one kind of atom selected from a group consisting of Cr, B, Mo, Al, Si, and C.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: November 29, 2011
    Assignee: Fujitsu Limited
    Inventors: Tsutomu Tanaka, Kenji Sato
  • Publication number: 20110269619
    Abstract: A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
    Type: Application
    Filed: April 19, 2011
    Publication date: November 3, 2011
    Applicant: University of North Texas
    Inventors: Guido Fridolin Verbeck, Stephen Davila
  • Publication number: 20110212272
    Abstract: A magnetic recording medium having a high magnetic pattern contrast is manufactured. By changing an acceleration voltage that accelerates ions in a process gas, depths (peak depths D0 and D1) from a magnetic layer 44, at which an injection amount of a target element is the maximum, can be made with set depths even if a film thickness of an ion permeation portion 48, which is a thin film portion of a resist 49, decreases. Since the set depths are achieved for the peak depths D0 and D1, a portion to be processed 43 of the magnetic film 44 is made non-magnetized from a top surface to a bottom surface, and a magnetic portion is separated; thus, the magnetic recording medium with a high magnetic pattern contrast can be obtained.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 1, 2011
    Applicant: ULVAC, INC.
    Inventors: Tsutomu NISHIHASHI, Kazuhiro Watanabe, Tadashi Morita, Kenji Sato, Tsutomu Tanaka, Takuya Uzumaki
  • Publication number: 20110194207
    Abstract: It is an object to provide a simple method capable of producing a magnetic storage medium, a magnetic storage medium and an information storage device which may be produced by a simple production method with a high recording density, and a magnetic disk is produced by a production method having: a film-forming process of forming, on a substrate 61, a magnetic film made of a Co—Cr—Pt alloy and having a thickness of less than 10 nm; and an ion injection process of forming, by reducing saturation magnetization by locally injecting ions into a point other than plural points that become magnetic dots on each of which information is magnetically recorded, a between-dot separator having saturation magnetization smaller than saturation magnetization of the magnetic dots, between the magnetic dots.
    Type: Application
    Filed: November 18, 2009
    Publication date: August 11, 2011
    Applicant: ULVAC, INC.
    Inventors: Kenji Sato, Tsutomu Tanaka, Takuya Uzumaki, Tsutomu Nishihashi, Tadashi Morita, Kazuhiro Watanabe
  • Patent number: 7993698
    Abstract: Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for temperature-controlled ion implantation. The apparatus may comprise at least one thermal sensor adapted to measure a temperature of a wafer during an ion implantation process inside an end station of an ion implanter. The apparatus may also comprise a thermal conditioning unit coupled to the end station. The apparatus may further comprise a controller in communication with the thermal sensor and the thermal conditioning unit, wherein the controller compares the measured temperature to a desired wafer temperature and causes the thermal conditioning unit to adjust the temperature of the wafer based upon the comparison.
    Type: Grant
    Filed: September 23, 2006
    Date of Patent: August 9, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Julian Blake, Jonathan England, Scott Holden, Steven R. Walther, Reuel Liebert, Richard S. Muka, Ukyo Jeong, Jinning Liu, Kyu-Ha Shim, Sandeep Mehta
  • Publication number: 20110189438
    Abstract: According to one embodiment, first convex patterns and second convex patterns are provided in a mesa region of a template. The second convex patterns are provided spaced apart from the first convex patterns to have the height of bases equal to that of the first convex patterns. The height of the second convex patterns is different from that of the first convex patterns.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 4, 2011
    Inventor: Kenji FURUSHO
  • Publication number: 20110177460
    Abstract: The present invention is directed to a process for producing an image on a substrate and a substrate having an image deposited thereon using the aforementioned processes.
    Type: Application
    Filed: June 9, 2009
    Publication date: July 21, 2011
    Applicant: NANOFILM TECHNOLOGIES INTERNATIONAL PTE LTD
    Inventor: Xu Shi
  • Publication number: 20110171433
    Abstract: The present disclosure relates to insert sheets and a method for manufacturing same. A film of the present invention is applicable to a variety of insert moldings or injection moldings to achieve appearance effects such as an excellent metal texture and the like, and maintain excellence in the overall physical properties such as surface properties, formability, scratch resistance, impact resistance, heat resistance, wear resistance, chemical resistance, and light resistance, etc.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: LG Hausys, Ltd.
    Inventors: Min-Ho LEE, Jin-Woo Kim, Hyung-Gon Kim
  • Publication number: 20110165719
    Abstract: A method of forming a sensor with an embedded cavity can include forming at least one cavity (50) in a substrate (52). The cavity (50) can include at least one membrane wall (54) having a plurality of holes (64) in the membrane wall (54), the plurality of holes (64) being formed in a two-dimensional array. A piezoresistive system (58) can be mechanically associated with the membrane wall (54). The method can be a front-side or back-side process for forming the cavity (50). The membrane (54) simultaneously acts as a diaphragm and a fluid passage into the cavity (50). Such sensors can be suitable as pressure sensors, chemical sensors, flow sensors and the like.
    Type: Application
    Filed: March 13, 2009
    Publication date: July 7, 2011
    Inventors: Florian Solzbacher, Michael Orthner
  • Patent number: 7943204
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 17, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Publication number: 20110109992
    Abstract: The present invention relates to a method for manufacturing a magnetic recording medium having magnetically separated magnetic recording patterns, such a magnetic recording medium, and a magnetic recording and reproducing apparatus. The manufacturing method of the present invention includes: forming a continuous recording layer on a nonmagnetic substrate; then forming, on the recording layer, a mask layer including at least one element selected from the element group of Pt, Ru, and Pd in such a manner that part of the recording layer is not masked; and then performing a magnetic characteristic modifying process including exposing the unmasked part of the surface of the recording layer to reactive plasma or reactive ions produced in the reactive plasma to amorphize the part of the recording layer and to modify the magnetic characteristics of the part, so that magnetically separated magnetic recording patterns are formed.
    Type: Application
    Filed: May 15, 2009
    Publication date: May 12, 2011
    Applicant: Showa Denko K.K.
    Inventor: Masato Fukushima
  • Publication number: 20110104393
    Abstract: Processes and apparatus of forming patterns including magnetic and non-magnetic domains on a magnetically susceptible surface on a substrate are provided. In one embodiment, a method of forming a pattern of magnetic domains on a magnetically susceptible material disposed on a substrate includes exposing a first portion of a magnetically susceptible layer to a plasma formed from a gas mixture, wherein the gas mixture includes at least a halogen containing gas and a hydrogen containing gas for a time sufficient to modify a magnetic property of the first portion of the magnetically susceptible layer exposed through a mask layer from a first state to a second state.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 5, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Martin A. Hilkene, Matthew D. Scotney-Castle, Roman Gouk, Steven Verhaverbeke