Metal Or Metal Alloy Containing Coating Material Applied Patents (Class 427/597)
  • Patent number: 6852362
    Abstract: A method of vapor depositing a film is provided wherein the film is not thermally damaged or broken due to the effects of heat and electrification of the film during the heating of a vapor deposition material. The film can be moved and vapor-deposited stably, and a loss of the film can be decreased as compared to the conventional method. The method forms a thin film on a long film, comprising aromatic polyamide, in vacuum. During the heating of the vapor deposition material, the long film stands still or is moved at a very low speed of 1 m/min or less, wherein a shielding plate is placed between the vapor deposition material and the long film. Once the vapor deposition material is completely molten, a substantial movement of the long film is started. At the same time or thereafter, the shielding plate is removed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 8, 2005
    Assignee: TDK Corporation
    Inventors: Masao Nakayama, Hiromichi Kanazawa
  • Patent number: 6830776
    Abstract: A method of manufacturing a high temperature superconductor is disclosed. The method includes depositing, by pulsed laser deposition, alternating layers of YBa2Cu3O7-x (Y123) and Y2BaCuO5-y (Y211). The Y211 layers are characterized by a multiplicity of nanosized globular inclusions, effectively enhancing flux pinning and thus increasing current transport.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: December 14, 2004
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Timothy J. Haugan
  • Patent number: 6803078
    Abstract: The invention relates to a process for producing a surface layer with embedded inter-metallic phases, which is distinguished by the fact that a layer comprising a metal and a ceramic is applied to a substrate element, that a reaction takes place between the metal and the ceramic of the layer as a result of energy being introduced during the application of the layer or as a result of a subsequent introduction of energy, and as a result the surface layer is produced, with inter-metallic phases being formed.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: October 12, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Tilman Haug, Patrick Izquierdo, Michael Scheydecker, Oliver Storz, Tanja Tschirge, Karl-Ludwig Weisskopf
  • Patent number: 6797336
    Abstract: The present invention is a method and apparatus for the synthesis of multi-component substances, comprising entities of at least two elements, molecules, grains, crystals, structural units, or phases of matter, in which the scale of the distribution of the elements, molecules, or phases of matter may range from on the order of nanometers or less, to about one millimeter, depending upon the specific materials and process conditions that are chosen. The method and apparatus of the present invention further provides processes for preparing these compositions of matter as thin films or particles.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 28, 2004
    Assignee: AMBP Tech Corporation
    Inventors: James F. Garvey, Gary S. Tompa, Stuart G. MacDonald, Robert L. DeLeon
  • Patent number: 6797338
    Abstract: A process for forming a thin metal oxide film is disclosed that comprises molding an amorphous powder of organic metal chelate complexes to obtain a target. The process also includes subjecting the target to a PVD process that forms the thin metal oxide.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: September 28, 2004
    Assignees: Chubu Chelest Co., Ltd.
    Inventors: Hidetoshi Saitoh, Shigeo Ohshio, Ryo Satoh, Nobuyoshi Nambu, Atsushi Nakamura, Masanori Furukawa
  • Patent number: 6749904
    Abstract: High areal storage density, patterned magnetic media comprising a patterned plurality of at least partially crystalline, ferromagnetic particles or grains are provided by means of a simple, economical process wherein a non-magnetic substrate is provided with a layer of an amorphous, paramagnetic or anti-paramagnetic material comprising at least one component, e.g., a metal element, which is ferromagnetic when in at least partially crystalline form, and at least partially crystallizing the at least one component at selected areas of the amorphous layer to form a spaced-apart pattern of at least partially crystallized, ferromagnetic particles or grains of the at least one component, the particles or grains being spaced apart and surrounded by a matrix of the amorphous material. Embodiments include utilizing a focussed or scanned laser source and an amorphous Ni—P layer for forming ferromagnetic Ni particles or grains.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: June 15, 2004
    Assignee: Seagate Technology LLC
    Inventors: Connie Chunling Liu, Li-Ping Wang, Linda Lijun Zhong, Jeffery Lee Petrehn
  • Patent number: 6712997
    Abstract: The present invention relates to composite polymers containing nanometer-sized metal particles and manufacturing method thereof, which can be uniformly dispersed nanometer-sized metal particles into polymers, thereby allowing the use thereof as optically, electrically and magnetically functional materials. The method for manufacturing composite polymers containing nanometer-sized metal particles includes the steps of: dispersing at least one metal precursor into a matrix made of polymers in a molecule level; and irradiating rays of light on the matrix containing the metal precursors dispersed in the molecule level and reducing the metal precursors into metals and fixing nanometer sized metal particles inside of matrix.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 30, 2004
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Ok Won, Yong Soo Kang, Bum Suk Jung, Yeo Sang Yoon
  • Patent number: 6709720
    Abstract: A method of marking materials, wherein the surface of a marking material and the surface of a material to be marked are matched, a laser beam is applied to the marking material while scanning the beam to form a mark, the material to be marked consisting a transparent body on which a pattern of a character or the like is formed. The method for marking comprises a first step of applying the laser beam to the marking material with the first laser power to evaporate the marking material and make them deposit to a predetermined part of the material to be marked, a second step of applying a laser beam to the deposited matter on the material to be marked with a second laser power to remove or transform the deposited mater. Steel or stainless steel is used as the marking materials.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: March 23, 2004
    Assignees: Kabushiki Kaisha Yaskawa Denki, Ye Data Inc.
    Inventors: Hirotoshi Hayakawa, Shuichi Takanami
  • Patent number: 6660343
    Abstract: A composite layer of a sorbent, chemoselective, non-electrically-conducting polymer and nano-particles of an electrically conducting material dispersed throughout the polymer is formed on a substrate by pulsed laser deposition, matrix assisted pulsed laser evaporation or matrix assisted pulsed laser evaporation direct writing.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: December 9, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Douglas B. Chrisey, Alberto Pique
  • Patent number: 6660632
    Abstract: The invention is directed to a photoresist-free method for depositing films composed of metals, such as copper, or its oxides from metal complexes. More specifically, the method involves applying an amorphous film of a metal complex to a substrate. The metal complexes have the formula MfLgXh, wherein M is selected from the group consisting of Ti, V, Cr, Au, Mn, Fe, Co, Ni, Cu, Zn, Si, Sn, Li, Na, K, Ba, Sr, Mo, Ru, Pd, Pt, Re, Ir, and Os; L is a ligand of the formula (R2NCR′2CR″2O), wherein R, R′ and R″ are independently selected from H, CnHm, and CnHmAxBy, wherein A and B are independently selected from main group elements and f, g, h, n, m, x and y represent integers; and X is an anion independently selected from N3, NCO, NO3, NO2, Cl, Br, I, CN, OH, H and CH3. These films, upon, for example, thermal, photochemical or electron beam irradiation may be converted to the metal or its oxides.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: December 9, 2003
    Assignee: EKC Technology, Inc.
    Inventors: Ross H. Hill, Yo Mao Shi
  • Patent number: 6652925
    Abstract: The aim of the invention is to develop a method for producing massive-amorphous layers on massive metallic shaped bodies. According to the method, amorphous layers having a thickness of >20 &mgr;m can be produced in only one procedure step. To this end, alloys which can be used for producing massive metallic glasses under quick solidification conditions or alloy elements which can be used for producing massive metallic glasses together with the elements of the shaped body material and under quick solidification conditions are molten by means of high-energy radiation are directly applied onto the massive metallic shaped body for producing an amorphous layer that is >20 &mgr;m up to several millimeter thick or are alloyed into the surface of the shaped bodies. The melt is quickly solidified by means of natural cooling and/or forced air cooling of the shaped body. The inventive method enables to coat metallic shaped bodies with massive metallic glasses which improve the surface characteristics.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: November 25, 2003
    Assignee: Institut für Festkörper- und Werkstofforschung Dresden e.V.
    Inventors: Wolfgang Schwarz, Jürgen Eckert, Sabine Schinnerling
  • Publication number: 20030203126
    Abstract: The present invention relates to an organometal complex and a chemical vapor deposition (CVD) or atomic layer deposition (ALD) method for preparing a metal silicate thin layer using same. The inventive method can easily prepare the metal silicate thin layer having a desired composition which can be effectively used as a gate insulating layer for various semiconductor devices.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 30, 2003
    Inventors: Shi-Woo Rhee, Sang-Woo Kang, Won-Hee Nam
  • Patent number: 6635330
    Abstract: The present invention provides a method for forming thin films, wherein thin films with a uniform thickness can be formed on substrates as objects such as spheroids, even when the films are formed by conventional film-formation methods using an incident particle beam coming from a specific direction (e.g., evaporation and sputtering). In the method, thin films are formed on substrates such as spheroids with an incident particle beam coming from a particle source located in a specific direction by performing a spin motion together with a swing motion. The spin motion is a rotation of the substrate at a constant angular velocity about the spheroidal axis. The swing motion is a rotational oscillation of the same substrate for rotationally oscillating the axis at a constant cycle in one surface, where the center of the rotational oscillation is in the vicinity of the midpoint between two focal points on the axis of the spheroid.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: October 21, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuuji Omata, Naotaka Hashimoto, Masahide Yokoyama, Toshiyuki Suemitsu, Takahiro Kitai
  • Patent number: 6632480
    Abstract: A nickel-base superalloy article has a surface protective layer comprising nickel, from about 20 to about 35 weight percent aluminum, and from about 0.5 to about 10 weight percent rhenium. The protective layer, which is preferably an overlay coating of the beta (&bgr;) phase NiAl form, is formed by depositing nickel, aluminum, rhenium, and modifying elements onto the substrate surface. A ceramic layer may be deposited overlying the protective layer.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: October 14, 2003
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph D. Rigney
  • Patent number: 6623876
    Abstract: The invention concerns a mechanical part with abrasionproof surface characterized in that it comprises a sintered metallic body obtained from metallic powders and a laser-deposited cermet coating. The coating has a certain thickness whereof a portion is metallurgically bound with the metallic body. The laser deposit enables the sintered part to be surface-melted under the effect of the laser beam. The surface of the sintered part to be coated is therefore fused over a thickness ranging between 10 &mgr;m and 1 mm, which enables the surface pores to be closed, as is characteristic of sintered parts, thereby increasing its resistance to shocks. Moreover, the small surface coated at a given moment by the laser enables the self-hardening of the exposed part, following the beam displacement, by the heat-sink effect of the surrounding metallic volume. The resulting coating also has very low porosity owing to the complete fusion of the powders by laser.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: September 23, 2003
    Assignee: Invegyre Inc.
    Inventor: Paul Caron
  • Patent number: 6613161
    Abstract: A method of laser marking which comprises applying a laser beam to a metal surface under the influence of an assist gas to produce durable, repeatable and striking colors on the metal surface. The method provides an easy and flexible alternative to conventional metal decorating techniques.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: September 2, 2003
    Assignee: Singapore Institute of Manufacturing Technology
    Inventors: Hong Yu Zheng, Gnian Cher Lim
  • Publication number: 20030148038
    Abstract: A method for forming a thin film includes the steps of: supplying a deposition material in the form of a liquid onto a heated surface; heating and vaporizing the deposition material on the heated surface while the deposition material is undergoing movement; and depositing the deposition material onto a deposition surface. The deposition material is supplied onto a position of the heated surface where the vaporized deposition material does not reach the deposition surface.
    Type: Application
    Filed: March 4, 2003
    Publication date: August 7, 2003
    Inventors: Kazuyoshi Honda, Masaru Odagiri, Kiyoshi Takahashi, Noriyasu Echigo, Nobuki Sunagare
  • Patent number: 6602548
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: August 5, 2003
    Assignee: Honeywell International Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Patent number: 6589717
    Abstract: An exemplary method of selectively patterning a hard mask or reticle using a laser to cause deposition of hard mask material in locations forming the hard mask pattern. This method can include providing a vapor in a vapor chamber containing an integrated circuit substrate, and applying a laser to selected areas of the integrated circuit substrate to cause a reaction with the vapor and create a structure on the integrated circuit substrate.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: July 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kouros Ghandehari, Bruno LaFontaine, Bhanwar Singh
  • Patent number: 6576302
    Abstract: There is disclosed a method for producing a metal oxide, which comprises the steps of: dissolving a metal organic compound (e.g. a metal organic acid salt, a metal acetylacetonato complex, and a metal alkoxide having an organic group with 6 or more carbon atoms) in a solvent to provide a state of solution, applying the solution onto a substrate, drying the solution, and subjecting the resultant substrate to irradiation with a laser light of a 400 nm or less wavelength, to form a metal oxide on the substrate. According to that method, a metal oxide can be produced without applying a heat treatment at a high temperature of the degree adopted in the conventionally known application thermal decomposition method.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: June 10, 2003
    Assignee: Agency of Industrial Science and Technology
    Inventors: Susumu Mizuta, Tetsuo Tsuchiya, Akio Watanabe, Yoji Imai, Iwao Yamaguchi, Toshiya Kumagai, Takaaki Manabe, Hiroyuki Niino, Akira Yabe
  • Patent number: 6548125
    Abstract: A method of coating an inner surface of a weapon barrel includes the following steps: directing a laser beam against the inner barrel surface to cause melting of regions thereof; introducing a coating material in one of powder, wire and ribbon form into the laser beam for melting the coating material to produce in the surface regions a molten bath composed of the molten coating material and a material of the weapon barrel; and moving the laser beam inside the weapon barrel axially thereof and relative thereto, whereby the molten substance of the bath becomes rigid as the laser beam moves away therefrom.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 15, 2003
    Assignee: Rheinmetall W & M GmbH
    Inventor: Christian Warnecke
  • Patent number: 6548122
    Abstract: Methods and apparatus are provided in which a metal precursor is formed in a process that includes the following steps: depositing a metal precursor on a substrate; adding an energy to reduce the metal precursor and to precipitate metal on the substrate as a continuous metal layer; and selecting the metal precursor and the energy such that the purity of the continuous metal layer is greater than 85%, and/or the deposited layer has an electrical conductivity substantially that of a pure metal. Methods and apparatus are also provided in which a metal is deposited onto a substrate by a process which includes the following steps: depositing the metal precursor onto the substrate in a desired pattern; and applying sufficient energy to decompose the precursor to precipitate metal in a continuous metal layer in the desired pattern.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: April 15, 2003
    Assignee: SRI International
    Inventors: Sunity Sharma, Subhash Narang, Kuldip Bhasin, Madan Lal Sharma
  • Patent number: 6534134
    Abstract: Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: March 18, 2003
    Assignee: University of Puerto Rico
    Inventor: Felix E. Fernandez
  • Patent number: 6521068
    Abstract: For the purpose of producing a method for detaching a segment—disposed on a carrier—from a material layer extending in a layer plane and having a specific layer thickness, by means of a laser pulse passing through the carrier in such a way as to detach segments from a material layer with as little thermal stress and as few thermal secondary effects as possible, it is proposed that the laser pulse within a segment layer-component volume butting against the carrier, the said layer-component volume lying in the plane of the layer within an extent of the beam cross-section of the laser pulse and extending transversely to the layer plane via a part of the layer thickness, produces superheated matter of a density similar to the solid state in a state of thermodynamic non-equilibrium and in particular at a temperature above the critical temperature, and that a cohesive, solid partial layer remains in the segment on the side of the layer-component volume opposite to the carrier, the said partial layer bei
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: February 18, 2003
    Inventors: Arnd Menschig, Ralf Baehnisch, Bernd Huettner
  • Patent number: 6500497
    Abstract: A method of producing a patterned magnetic nanostructure is disclosed. The method includes providing a substrate having a non-magnetic single layer or multi layer film that can be converted into a magnetic state by annealing and/or mixing. The method further includes positioning a mask having a desired pattern and resolution associated with the patterned magnetic nanostructure on or over the film. The method additionally includes subjecting the mask-covered substrate to a beam of radiation (focussed or unfocussed) having sufficient energy to locally anneal and/or mix the non-magnetic or weak-magnetic single-layer or multi layer film. Because of the mask effect, only the desired portions of the non-magnetic film are exposed to the beam of radiation. As such, the desired portions of the non-magnetic film are changed from a non-magnetic to a magnetic state to produce an array of magnetic elements in a non-magnetic matrix. The size of each magnetic element is dependent on the resolution of mask.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 31, 2002
    Assignee: Data Storage Institute
    Inventors: Jian-Ping Wang, Tie Jun Zhou, Tow Chong Chong
  • Patent number: 6497985
    Abstract: The present invention relates to a method for marking metallic alloys using laser alloying. Specifically, the present invention is directed toward the use of laser alloying steel or aluminum alloys with a mark that provides protection against wear and corrosion and greater permanency.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: December 24, 2002
    Assignee: University of Tennessee Research Corporation
    Inventors: Mary Helen McCay, T. Dwayne McCay, John A. Hopkins, Narendra B. Dahotre, C. Michael Sharp, John Brice Bible, Frederick A. Schwartz
  • Patent number: 6479101
    Abstract: The invention relates to a method of producing an antifriction element (6), by means of which a coating is applied to at least one surface (10) of the antifriction element (6) under vacuum, by guiding the antifriction element (6) through a particle flow (4), which at least partially forms the coating, in a rotary motion about an axis perpendicular to the particle flow longitudinal median axis (5) or parallel with a length of a device containing the coating substance (2).
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: November 12, 2002
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventor: Walter Gärtner
  • Publication number: 20020157249
    Abstract: A method for manufacturing valve seats using a laser cladding process is provided that includes forming a casting material on which the valve seats are to be formed; fabricating a valve seat target position on which laser cladding will be performed, the valve seat target position being provided at a location on the casting material where a valve seat is to be formed; removing an oxidation film formed on the valve seat target position; injecting a metal powder mixture on the valve seat target position, the metal powder mixture being realized through a mixture of two or more metal powders at a predetermined ratio by weight %; and irradiating a laser beam on the metal powder mixture to clad the metal powder mixture on the valve seat target position to thereby form the valve seat.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 31, 2002
    Inventors: Yun-Seok Kim, Jea-Woong Yi, Jae-Hwan Kim, Phil-Gi Lee
  • Patent number: 6472029
    Abstract: A laminate material composite structure is fabricated using a laser-based direct-metal deposition process to provide unique physical and mechanical properties. The relative difference in physical properties such as thermal conductivity between dissimilar pure metals or metal alloys provides the ability to deposit highly conductive materials having a low level of porosity using the DMD laser-based process. The proximity of a pure metal or metal alloy which has relatively high mechanical properties, compared to that of thermally conductive material, provides the structural strength, hardness and wear resistance required of mold materials. The combination of physical and mechanical properties associated with the laminate material composite structure provide thermal management benefits which result in a reduction in molding process cycle times and improved part quality.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: October 29, 2002
    Assignee: The P.O.M. Group
    Inventor: Timothy W. Skszek
  • Patent number: 6472030
    Abstract: A method of forming an oriented film. A target is provided and material from the target is ablated onto a substrate to form a film. The film is heated in a synthesis gel of the target material to orient the film.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: October 29, 2002
    Assignee: Board of Regents, The University of Texas System
    Inventors: Kenneth J. Balkus, Jr., Mary E. Kinsel, Lisa L. Washmon
  • Patent number: 6472022
    Abstract: The present invention provides a method for forming thin films, wherein thin films with a uniform thickness can be formed on substrates as objects such as spheroids, even when the films are formed by conventional film-formation methods using an incident particle beam coming from a specific direction (e.g., evaporation and sputtering). In the method, thin films are formed on substrates such as spheroids with an incident particle beam coming from a particle source located in a specific direction by performing a spin motion together with a swing motion. The spin motion is a rotation of the substrate at a constant angular velocity about the spheroidal axis. The swing motion is a rotational oscillation of the same substrate for rotationally oscillating the axis at a constant cycle in one surface, where the center of the rotational oscillation is in the vicinity of the midpoint between two focal points on the axis of the spheroid.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: October 29, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuuji Omata, Naotaka Hashimoto, Masahide Yokoyama, Toshiyuki Suemitsu, Takahiro Kitai
  • Patent number: 6458431
    Abstract: A method for depositing nanoparticles in a thin film through the dispersion of such nanoparticles in a precursor solution which is deposited on a substrate and converted into a metal or metal oxide film. The resulting metal or metal oxide film will contain embedded nanoparticles. Such films can be used in a variety of applications such as diffusion barriers, electrodes for capacitors, conductors, resistors, inductors, dielectrics, or magnetic materials. The nanoparticle material may be selected by one skilled in the art based on the particular application.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: October 1, 2002
    Assignee: EKC Technology, Inc.
    Inventors: Ross H. Hill, Juan Pablo Bravo-Vasquez
  • Publication number: 20020122898
    Abstract: A method for depositing a transfer material onto a receiving substrate uses a source of laser energy, a receiving substrate, and a target substrate. The target substrate comprises a laser-transparent support having a laser-facing surface and a support surface. The target substrate also comprises a composite material having a back surface in contact with the support surface and a front surface. The composite material comprises a mixture of the transfer material to be deposited and a matrix material. The matrix material is a material that has the property that, when it is exposed to laser energy, it desorbs from the laser-transparent support. The source of laser energy is positioned in relation to the target substrate so that laser energy is directed through the laser-facing surface of the target substrate and through the laser-transparent support to strike the composite material at a defined target location. The receiving substrate is positioned in a spaced relation to the target substrate.
    Type: Application
    Filed: February 8, 2002
    Publication date: September 5, 2002
    Inventors: Bradley R. Ringeisen, Douglas B. Chrisey, Alberto Pique, R. Andrew McGill
  • Patent number: 6440503
    Abstract: Devices and methods for fabricating medical devices are disclosed. A device in accordance with the present inventions includes a laser beam source capable of producing a laser beam, a carrier coupled to a carrier motion actuator capable of moving the carrier relative to the laser beam, and a workpiece motion actuator capable of moving a workpiece relative the laser beam. A method in accordance with the present invention includes the steps of positioning the carrier between the laser beam source and the workpiece, illuminating a portion of the carrier with the laser beam, moving the carrier relative to the laser beam, and moving the workpiece relative to the laser beam.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: August 27, 2002
    Assignee: Scimed Life Systems, Inc.
    Inventors: Kenneth M. Merdan, Vitaliy N. Shapovalov
  • Publication number: 20020114899
    Abstract: A method of coating an inner surface of a weapon barrel includes the following steps: directing a laser beam against the inner barrel surface to cause melting of regions thereof; introducing a coating material in one of powder, wire and ribbon form into the laser beam for melting the coating material to produce in the surface regions a molten bath composed of the molten coating material and a material of the weapon barrel; and moving the laser beam inside the weapon barrel axially thereof and relative thereto, whereby the molten substance of the bath becomes rigid as the laser beam moves away therefrom.
    Type: Application
    Filed: April 28, 2000
    Publication date: August 22, 2002
    Inventor: Christian Warnecke
  • Patent number: 6432478
    Abstract: A ceramic heat barrier coating is deposited on a substrate so that the coating has a columnar growth pattern which is interrupted and repeated a number of times throughout its thickness by successive regermination of the ceramic deposit. The regermination is obtained by a vapor phase deposition process wherein a polluting gas is introduced intermittently during the deposition of the ceramic. The resulting ceramic coating has a lower thermal conductivity than conventional columnar ceramic coatings.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: August 13, 2002
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “Snecma” and Snecma Services
    Inventors: Yann Philippe Jaslier, André Hubert Louis Malie, Jean-Pierre Julien Charles Huchin, Serge Alexandre Alperine, Romain Portal
  • Publication number: 20020098298
    Abstract: A method for applying wear reducing material to a tool joint useful in a wellbore in drilling operations, the method, in at least certain aspects, including positioning the tool joint adjacent laser beam apparatus, delivering wear-reducing material to a location on the tool joint to which the wear-reducing material is to be applied, heating the wear-reducing material with the laser beam apparatus to a temperature not exceeding its melting temperature so that the wear-reducing material is welded to the tool joint; in one particular aspect, using a defocused laser beam to achieve desired heating temperatures; and, in one aspect, defocusing the laser so no plasma is formed.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 25, 2002
    Inventors: Jimmie Brooks Bolton, Billi Marie Rogers
  • Patent number: 6423411
    Abstract: A method of coating a substrate with an oriented film. A target is ablated to create a plume. The substrate is manipulated, which may be by vibration, in the plume to coat the substrate with a film. The film is heated in a synthesis gel of the target to form the oriented film.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: July 23, 2002
    Assignee: Board of Regents, The University of Texas System
    Inventors: Kenneth J Balkus, Jr., Mary E Kinsel, Ashley S Scott
  • Patent number: 6419998
    Abstract: The present invention provides a method for depositing a catalyst onto a substrate through the use of pulsed laser radiation. A solution is prepared containing the catalyst and the support. The beam from a pulsed laser whose wavelength is such that it is absorbed by the catalyst is directed into the liquid. The laser reduces the catalyst particle size and allows it to be deposited as a film or as small diameter particles onto the support thereby giving a catalyst with enhanced activity.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: July 16, 2002
    Inventor: Thomas McGrath
  • Patent number: 6410105
    Abstract: Overhang and undercut features, as well as cavities, channels, pipes and three-dimensional voids and other structures are fabricated using a laser-aided direct-metal deposition (DMD) processes. In the preferred embodiment, this is accomplished through the selective deposition of a lower melting point sacrificial material. Following the integrated deposition of both sacrificial and non-sacrificial materials using DMD, the part is soaked in a furnace at a temperature sufficiently high to melt out the sacrificial material. As preferred options, the heating is performed in an inert gas environment to minimize oxidation, with a gas spray also being used to blow out remaining deposits. Using this technique, articles having integral sensors and cooling channels may be used as part of an automated system for controlling the temperature, stress and strain during the shaping or forming of a product using the resultant smart die or mold.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: June 25, 2002
    Inventors: Jyoti Mazumder, Timothy Skszek, Joseph K. Kelly, Joohyun Choi
  • Publication number: 20020069819
    Abstract: A process for producing a wear-resistant cylinder bearing surface includes rotating a laser about its longitudinal axis and simultaneously advancing the laser in a direction of the longitudinal axis which is coaxial with a cylinder of a crankcase. A powdery material is fed through the laser and a jet of the powdery material is directed toward the cylinder bearing surface. A laser beam is deflected to an impact region where the jet of the powdery material impinges on the cylinder bearing surface. The jet of the powdery material passes through the laser beam. The laser beam at least partially melts the impact region before the powdery material impinges on the impact region. A device for producing wear-resistant surfaces is also provided.
    Type: Application
    Filed: August 20, 2001
    Publication date: June 13, 2002
    Inventors: Rolf Heinemann, Klaus Farber, Achim Sach
  • Publication number: 20020068188
    Abstract: The invention is directed to a photoresist-free method for depositing films composed of metals, such as copper, or its oxides from metal complexes. More specifically, the method involves applying an amorphous film of a metal complex to a substrate. The metal complexes have the formula MfLgXh, wherein M is selected from the group consisting of Ti, V, Cr, Au, Mn, Fe, Co, Ni, Cu, Zn, Si, Sn, Li, Na, K, Ba, Sr, Mo, Ru, Pd, Pt, Re, Ir, and Os, L is a ligand of the formula (R2NCR2′CO) wherein R and R′ are independently selected from H, CnHm and CnHmAxBy wherein A and B are independently selected from main group elements and f, g, h, n, m, x and y represent integers and wherein X is an anion independently selected from N3, NCO, NO3, NO2, Cl, Br, I, CN, OH, H and CH3. These films, upon, for example, thermal, photochemical or electron beam irradiation may be converted to the metal or its oxides.
    Type: Application
    Filed: November 8, 2001
    Publication date: June 6, 2002
    Applicant: Simon Fraser University
    Inventors: Ross H. Hill, You Mao Shi
  • Publication number: 20020068008
    Abstract: A nickel alloy composition, having particular utility for forming an oxidation resistant blade tip on a turbine blade, preferably has a composition substantially as defined by the nominal composition Cr 4.5 wt %; Al 6 wt %; Co 4 wt %; Ta 6 wt %; Re 4 wt %; Hf 0.15 wt %; C 0.05 wt %; Si 0.1 wt %.; B 0.005 wt %; W 2 wt %; La 0.003-0.005 wt %; and Y 0.003 to 0.005 wt %; the remainder being nickel.
    Type: Application
    Filed: November 15, 2001
    Publication date: June 6, 2002
    Applicant: ROLLS-ROYCE PLC
    Inventors: Mark Henry Shipton, Robert W. Broomfield
  • Patent number: 6395350
    Abstract: Mesoporous transition metal oxide thin films and methods for producing these films are provided. Also provided are methods of fabricating useful chemical sensors and electrochromic devices from the thin films of the invention. Certain mesoporous transition metal oxide molecular sieves may be used as targets for pulsed laser ablation under controlled atmosphere, resulting in deposition of a thin film of the target material upon a substrate of choice. The thin films possess a mesoporous structure which may be enhanced by means of a hydrothermal treatment. The thin films also may be treated with a means of removing the templating agent used during synthesis of the mesoporous target material.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 28, 2002
    Assignee: Board of Regents, The University of Texas System
    Inventors: Kenneth J. Balkus, Jr., Mary E. Kinsel
  • Patent number: 6379757
    Abstract: A method for coating a plastic substrate with an abrasion resistant metal oxide layer which includes placing the plastic substrate in a vacuum chamber, forming a vacuum in the chamber, conducting electron beam evaporation of an oxide-forming metal or a metal oxide in the vacuum chamber, passing the evaporated metal or metal oxide into an argon plasma into which oxygen and nitrous oxide has been passed, and, exposing the plastic substrate to the plasma, whereby the abrasion resistant layer is deposited on an exposed surface of the substrate.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: April 30, 2002
    Assignee: General Electric Company
    Inventor: Charles Dominic Iacovangelo
  • Patent number: 6348239
    Abstract: The invention is directed to a photoresist-free method for depositing films composed of metals, such as copper, or its oxides from metal complexes. More specifically, the method involves applying an amorphous film of a metal complex to a substrate. The metal complexes have the formula MfLgXh, wherein M is selected from the group consisting of Ti, V, Cr, Au, Mn, Fe, Co, Ni, Cu, Zn, Si, Sn, Li, Na, K, Ba, Sr, Mo, Ru, Pd, Pt, Re, Ir, and Os, L is a ligand of the formula (R2NCR2′CO) wherein R and R′ are independently selected from H, CnHm and CnHmAxBy wherein A and B are independently selected from main group elements and f, g, h, n, m, x and y represent integers and wherein X is an anion independently selected from N3, NCO, NO3, NO2, Cl, Br, I, CN, OH, H and CH3. These films, upon, for example, thermal, photochemical or electron beam irradiation may be converted to the metal or its oxides.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 19, 2002
    Assignee: Simon Fraser University
    Inventors: Ross H. Hill, Yo Mao Shi
  • Patent number: 6348241
    Abstract: The method for treating the internal surface of a gas bottle includes the following steps: a) an incident laser treatment beam is introduced into a bottle through its mouth, approximately along the axis of the bottle; b) the laser beam is deflected in the bottle onto the internal surface of the bottle; c) a relative rotation between the bottle and the deflected laser beam is made approximately about the axis of the bottle; and d) a relative displacement between the bottle and the deflected laser beam is made so as to scan most of the internal surface of the bottle with the deflected laser beam. The apparatus for treating a bottle is designed to implement the steps of the method.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: February 19, 2002
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Catherine Ronge, Daniel Boucheron, Roberto Frande
  • Patent number: 6344246
    Abstract: Robotic cladding of an underlying substrate with a composite metallic surface layer on a prepatterned interface with the substrate, is performed by a laser induced surface improvement process whereby a particulate ceramic additive introduced into a matrix mixture forms the surface layer with a permanent non-skid property bonded by intermixing of molten portions of such matrix mixture and the substrate at the interface, enhanced by prepatterning of such interface.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: February 5, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene C. Fischer, Vincent J. Castelli, Dale A. Sowell
  • Patent number: 6338778
    Abstract: The invention relates to a device, in particular for a laser-induced vacuum are discharge evaporator for depositing of multiple layers with a high level of purity and high deposition rates on large-area components. According to the invention, the material source for the coating material is in a source chamber which can be evacuated and can be separated in a vacuum-tight manner from the actual coating chamber in which the substrate to be coated is located. The evaporator can, in particular, be used for deposition of amorphous carbon layers which are hydrogen-free and superhard and/or which contain hydrogen, in conjunction with high-purity metal layers or for the reactive plasma-enhanced deposition of, for example, oxidic, carbide, nitride hard material layers of ceramic layers or a combination thereof. The corresponding plasma sources can be flange-mounted on any suitable coating chambers and, consequently, also combined with conventional coating processes, for example magnetron sputtering.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: January 15, 2002
    Assignees: Bayerische Motoren Werke Aktiengesellschaft, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Daniela Giersch, Robert Schalausky, Goetz Mielsch, Hans-Joachim Scheibe
  • Patent number: 6333000
    Abstract: Processes are provided for forming composites comprising a LaMnO3 perovskite coatings (or a related perovskite) on a mat of ceramic particles (e.g., fibers, microballoons, or mixtures thereof) or LaMnO3-family sol-gel binders infused into the mat to form the connecting, rigidifying bridges.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 25, 2001
    Assignee: The Boeing Company
    Inventor: Darryl F. Garrigus