Fluorescent Or Phosphorescent Base Coating (e.g., Cathode-ray Tube, Luminescent Screen, Etc.) Patents (Class 427/64)
  • Patent number: 10428270
    Abstract: A method of producing hybrid fluorescent material includes dispersing Lu3Al5O12:Ce fluorescent material particles in a first solution; mixing the first solution in a second solution, the second solution including a mixture of a first metallic salt containing at least one element selected from the group consisting of yttrium, gadolinium, and terbium, a second metallic salt containing aluminum and/or gallium, and a third metallic salt containing cerium, wherein the mixing attaches (Y,Gd,Tb)3(Al,Ga)5O12:Ce fluorescent material precursor particles on surfaces of the Lu3Al5O12:Ce fluorescent material particles to obtain a hybrid fluorescent material precursor; separating the hybrid fluorescent material precursor particles from the first and second solutions; and calcining the hybrid fluorescent material precursor particles to obtain a hybrid fluorescent material of Lu3Al5O12:Ce fluorescent material particles covered by (Y,Gd,Tb)3(Al,Ga)5O12:Ce fluorescent material.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 1, 2019
    Assignee: NICHIA CORPORATION
    Inventor: Naoto Fujioka
  • Patent number: 10297469
    Abstract: A method for producing an electronic component and an electronic component, having barrier layers for the encapsulation of the component. The method involves providing a substrate (1) with at least one functional layer (22), and an electronic component, applying at least one first barrier layer (3) on the functional layer (22) by way of plasmaless atomic layer deposition (PLALD), and applying at least one second barrier layer (4) on the functional layer (22) by way of plasma-enhanced chemical v0apor deposition (PECVD).
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: May 21, 2019
    Assignee: OSRAM OLED GmbH
    Inventors: Christian Schmid, Tilman Schlenker, Heribert Zull, Ralph Paetzold, Markus Klein, Karsten Heuser
  • Patent number: 9999099
    Abstract: The present invention provides a heat emitting body including a) a transparent substrate, and b) a conductive heat emitting pattern having a boundary line shape of figures forming a Voronoi diagram and an intersection point part of boundary lines, at which two or more boundary lines meet each other, forming a curve on at least one side of the transparent substrate, and a method for manufacturing the same.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: June 12, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Sang-Ki Chun, In-Seok Hwang, Dong-Wook Lee, Jung-Won Park, Hyeon Choi, Hyun-Sik Kim, Hui-Jung Park, Su-Jin Kim
  • Patent number: 9855602
    Abstract: Disclosed are a method of producing a metal composite powder by wire explosion in a liquid and a metal composite powder that is coated with a multi carbon layer. The production method includes a process of forming a first carbon layer on a surface of a metal wire consisting of a first metal, a process of forming a metal layer consisting of a second metal, which is different from the first metal, on a surface of the first carbon layer, and a process of forming a metal composite powder coated with a multi carbon layer by wire exploding the metal wire containing the first carbon layer and the metal layer formed on a surface thereof in a solution.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 2, 2018
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Su-Jeong Seo, Young-Il Song, Jung-Kab Park, Tae-Yoo Kim, Hwa-Jin Son, Jin-Ha Shin, Jungwoo Lee, Younglae Cho, Jung-Ho Park, Seung-Bin Baeg, Byung-Wook Ahn, Sook-Young Yun
  • Patent number: 9859030
    Abstract: A method of manufacturing a composite powder using wire explosion and a composite powder prepared by such a method are provided. The method of manufacturing a composite powder may involve coating a metal wire with a carbon-based material, and performing wire explosion on the metal wire coated with the carbon-based material in a solution. The prepared composite powder may include a metal core and a multilayer graphene film that coats a surface of the metal core.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: January 2, 2018
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Sujeong Suh, Youngil Song, Jungwoo Lee
  • Patent number: 9735370
    Abstract: An organic light-emitting device comprises an anode, a cathode and a light-emitting layer between the anode and the cathode. The light-emitting layer comprises a compound of formula (I): wherein Ar1, Ar2, Ar3, Ar6 and Ar7 in each occurrence independently represent an unsubstituted or substituted aryl or heteroaryl group; X independently in each occurrence represents S or O; R independently in each occurrence represents H or a substituent; p is 0 or 1; q is 0 or 1; f is 1, 2 or 3; g is 1, 2 or 3; and adjacent groups Ar3 or adjacent groups Ar2 may be linked by a divalent group to form a ring. This compound can provide a bluer emitter that can be blended into current host formulations (deep blue, CIEy<0.08) suitable for solution processing.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 15, 2017
    Assignees: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, SUMITOMO CHEMICAL COMPANY LIMITED
    Inventor: Helen Middleton
  • Patent number: 9612460
    Abstract: The present invention relates to the field of liquid crystal panel manufacturing, and provides a liquid crystal filling device and a liquid crystal panel manufacturing apparatus. The technical solutions of the present invention solve the problem of ionic contamination of liquid crystal due to a quick diffusion rate of liquid crystal dropped on a substrate through an existing liquid crystal filling device. In embodiments of the present invention, the liquid crystal filling device includes a substrate stage and a support used for supporting a liquid crystal container. A first temperature adjustment device is provided on the support, which is used to lower the temperature of the liquid crystal in the liquid crystal container, such that the viscosity coefficient of the liquid crystal in the liquid crystal container is increased. The liquid crystal panel manufacturing apparatus includes the above liquid crystal filling device.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 4, 2017
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Chen Wang, Fengzhen Lv, Xinxia Zhang, Xiao Guo, Kang Xiang, Kui Lv
  • Patent number: 9540497
    Abstract: There is set forth herein a silicon-based patch formulation comprising about 25 to 66 percent by volume of a solvent; about 4 to 10 percent by volume of a silicon-comprising binding material; and about 30 to 65 percent by volume of a patching material, the patching material comprising particles having one or more non-actinide Group IIIA elements, wherein a molar ratio of the one or more non-actinide Group IIIA elements to silicon within the patch formulation is about 0.95 to 1.25.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: January 10, 2017
    Assignee: General Electric Company
    Inventors: Don Mark Lipkin, Nicholas Edward Antolino, David Poerschke, Kevin Paul McEvoy
  • Patent number: 9515296
    Abstract: A deposition device including a chamber configured to accommodate a substrate supported on a stage, a deposition source configured to discharge material toward the substrate, and a laser mask system configured to form a laser mask between the substrate and the stage.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: December 6, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jeongwon Han
  • Patent number: 9412959
    Abstract: A method of making a solar cell includes: preparing an active layer solution including p-type and n-type organic semiconductor materials, a solvent, and an additive, the additive containing 1, 8-iodooctane (DIO) and 1-chloronaphthalene (CN) that has a total volume not greater than 3 vol % based on a total volume of the solvent and the additive; preparing an assembly having a substrate, a first electrode layer, and a first transporting layer; coating the active layer solution on the first transporting layer to form a wet active layer; drying the wet active layer at a temperature not greater than 60° C.; and forming a second transporting layer and a second electrode layer on the active layer.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: August 9, 2016
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Hou-Chin Cha, Yu-Ching Huang, Chih-Min Chuang, De-Han Lu, Zheng-Lin Yu, Chia-Te Yen, Yeong-Der Lin, Charn-Ying Chen, Cheng-Si Tsao
  • Patent number: 9385108
    Abstract: The present application provides a multi-dimensional light-emitting device electrically connected to a power supply system. The multi-dimensional light-emitting device comprises a substrate, a blue light-emitting diode array and one or more phosphor layers. The blue light-emitting diode array, disposed on the substrate, comprises a plurality of blue light-emitting diode chips which are electrically connected. The multi-dimensional light-emitting device comprises a central area and a plurality of peripheral areas, which are arranged around the central area. The phosphor layer covers the central area. When the power supply system provides a high voltage, the central area and the peripheral areas of the multi-dimensional light-emitting device provide a first light and a plurality of second lights, respectively. The first light and the second lights are blended into a mixed light.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: July 5, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Chein-Fu Shen, Schang-Jing Hon, Tsun-Kai Ko, Alexander Chan Wang, Min-Hsun Hsieh, Cheng Nan Han
  • Patent number: 9273000
    Abstract: Provided is a method for producing an organic electroluminescence device which contains an anode, a cathode and an organic layer between the anode and the cathode where the organic layer contains a light-emitting layer and an adjacent layer adjacent to the light-emitting layer, the method including: applying to the adjacent layer a coating liquid prepared by dissolving or dispersing a light-emitting material and a host material in a solvent, and heating the coating liquid applied to the adjacent layer at a temperature higher than a melting temperature of the host material and higher than a boiling point of the solvent, to thereby form the light-emitting layer, wherein a difference as an absolute value between contact angle A (°) of the light-emitting layer with respect to pure water and contact angle B (°) of the adjacent layer with respect to pure water is 13 (°) or smaller.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 1, 2016
    Assignee: UDC Ireland
    Inventors: Naoyuki Hayashi, Ikuo Kinoshita
  • Patent number: 9199268
    Abstract: A curtain coating method including: discharging at least one coating liquid from a slot type die; forming a coating liquid film of the coating liquid freely falling; and applying the coating liquid film to a support medium continuously running, with both right and left ends of the coating liquid film being held by a pair of edge guides, wherein, during non-coating, a direction in which the coating liquid is discharged from the slot type die is kept in a horizontal direction or tilted from the horizontal direction in a direction distancing from the support medium.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 1, 2015
    Assignee: RICOH COMPANY, LTD.
    Inventors: Kazuhisa Yamamoto, Hiroki Somada, Tetsuya Hara
  • Patent number: 9186696
    Abstract: A coating apparatus including a coating part which applies a liquid material including an oxidizable metal on a substrate, a chamber having a coating space in which the coating part applies the liquid material on the substrate and a transport space into which the substrate is transported, and a removal unit which removes the liquid material from the inside of the chamber when at least one of oxygen concentration and humidity inside the chamber exceeds a threshold value.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 17, 2015
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Hidenori Miyamoto, Kenji Maruyama, Tadahiko Hirakawa, Koichi Misumi
  • Patent number: 9162921
    Abstract: A method of manufacturing fluorescent material-dispersed glass, comprising: performing production of a fluorescent material-dispersed gel utilizing sol-gel reaction and acid-base reaction by preparing a fluorescent material-dispersed sol containing silicon alkoxide, metal chloride and/or metal aklkoxide, and fluorescent material, and subsequently gelling the fluorescent material-dispersed sol; and performing production of a fluorescent material-dispersed glass by heating the fluorescent material-dispersed gel.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: October 20, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hiroyo Segawa, Hisato Yoshimizu, Satoru Inoue, Naoto Hirosaki
  • Patent number: 9156734
    Abstract: A method for manufacturing fluorescent powder substrate includes (1) providing a fluorescent powder and glass panels of which one forms a through hole; (2) mixing the fluorescent powder in deionized water solvent to form a slurry; (3) applying the slurry to form a fluorescent powder layer on one glass panel; (4) laying flat a loop of low melting point glass powder on the glass panel on which the fluorescent powder layer is formed; (5) laminating the other glass panel on the glass panel; (6) burning the laminated glass panels at a temperature of 400-550° C. to completely combust organic substance therebetween and to have the low melting point glass powder bonding the glass panels together; (7) evacuating interior between the glass panels through the through hole; and (8) sealing the through hole to form a fluorescent powder substrate.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 13, 2015
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Yewen Wang
  • Patent number: 9142778
    Abstract: Sources, devices, and techniques for deposition of organic layers, such as for use in an OLED, are provided. A vaporizer may vaporize a material between cooled side walls and toward a mask having an adjustable mask opening. The mask opening may be adjusted to control the pattern of deposition of the material on a substrate, such as to correct for material buildup that occurs during deposition. Material may be collected from the cooled side walls for reuse.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 22, 2015
    Assignee: Universal Display Corporation
    Inventors: William E. Quinn, Siddharth Harikrishna Mohan, Gregory McGraw
  • Patent number: 9083005
    Abstract: The present invention relates to a reactor for atomic layer deposition (ALD), comprising a reaction chamber comprising a platen and bounded internally by surfaces; at least one inlet orifice and at least one outlet orifice, each emerging from one of the surfaces bounding the chamber. The reactor furthermore comprises, within it, at least one wall apertured with at least one orifice, the apertured wall extending around the platen and over at least most of the height between the lower surface and the upper surface, at least one orifice in at least one of the apertured walls not facing the inlet orifice so as to form chicanes in the flow of gaseous precursor from each inlet orifice to the platen.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: July 14, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Tony Maindron
  • Patent number: 9054344
    Abstract: A method of fabricating an organic light emitting device is provided. A first electrode is provided, over which the rest of the device will be fabricated. A first organic layer is deposited over the first electrode via solution processing. The first organic layer includes: i. an organic host material of the first organic layer; ii. a first organic emitting material of the first organic layer; iii. a second organic emitting material of the first organic layer; A second organic layer is deposited over and in direct contact with the first organic layer. The second organic layer includes an organic emitting material of the second organic layer. A second electrode is then deposited over the second organic layer. The device may include other layers.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 9, 2015
    Assignee: Universal Display Corporation
    Inventors: Kwang Ohk Cheon, Michael Inbasekaran, Julia J. Brown
  • Publication number: 20150147803
    Abstract: A glass pipette such as an electrode for electrophysiological recording is coated with quantum dots. This greatly aids the ability to observe the glass pipette, particular in tissue as the quantum dots provide an excellent performance under two-photon illumination used to visualize objects at depths of hundreds of microns.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 28, 2015
    Applicants: Institute of Experimental Medicine of the Hungarian Academy of Sciences, Howard Hughes Medical Institute, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Igor L. Medintz, Bertalan K. Andrasfalvy, Kimihiro Susumu, James B. Delehanty, Alan L. Huston, John J. Macklin, Mladen Barbic
  • Publication number: 20150105284
    Abstract: In some embodiments, the present disclosure pertains to new compositions of matter that comprise phosphorescent reporters. In some embodiments, the phosphorescent reporters of the present disclosure comprise strontium aluminate. In some embodiments, the strontium aluminate is doped with europium and dysprosium (SrAl2O4:Eu2+, Dy3+). Additional embodiments of the present disclosure pertain to methods of making the aforementioned phosphorescent reporters. In some embodiments, the method includes size reduction of inorganic phosphorescent powders through a combination of wet milling and settling. In additional embodiments, the present disclosure pertains to methods of detecting the phosphorescent reporters in various settings, such as diagnostic settings.
    Type: Application
    Filed: August 15, 2014
    Publication date: April 16, 2015
    Applicant: University of Houston
    Inventors: Richard Willson, Andrew Paterson
  • Patent number: 9004005
    Abstract: An apparatus for aligning a dispenser includes a table having a first alignment mark, an alignment plate provided along at least one side of the table, at least one syringe supplying a dispensing material to the alignment plate through a nozzle provided at one end portion thereof to form a second alignment mark, a first image camera provided along a side of the syringe and detecting an image of the second alignment mark, a second image camera detecting an image of the first alignment mark, and an alignment control unit aligning the image of the second alignment mark and a first reference position, and aligning an image of the first alignment mark and a second reference position.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 14, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Sung-Su Jung, Yong-Keun Kwak
  • Patent number: 8999430
    Abstract: Disclosed is a method of manufacturing an electrochromic display element having improved durability. Specifically disclosed is a method of manufacturing a display element containing opposed electrodes and a porous layer which is arranged between the opposed electrodes and containing a metal oxide and an electrochromic dye supported on the metal oxide. The method contains the step of applying plural kinds of inks to the porous layer by an inkjet apparatus, wherein the inks are capable of uniformizing the amount of the electrochromic dye supported on the porous layer containing the metal oxide in one pixel of the display element.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 7, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Noriyuki Kokeguchi
  • Patent number: 8994259
    Abstract: A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Nichia Corporation
    Inventors: Hiroto Tamaki, Takayoshi Wakaki, Tadao Hayashi, Yoshiki Sato, Daisuke Oyamatsu, Takafumi Sugiyama, Takao Kosugi
  • Publication number: 20150083968
    Abstract: A manganese-doped magnesium stannate luminescent material, which has a molecular formula of: Mg2-xSnO4:Mnx@SnO2@My, where @ is a coating, where Mg2-xSnO4:Mnx is an outer shell layer, where SnO2 is an intermediate layer shell, where M is an inner core, where M is a metal nanoparticle, where M is at least one selected among Ag, Au, Pt, Pd, and Cu, where the value of x is 0<x?0.05, where y is the molar ratio between M and Sn, and where the value of y is 0<y?1×10?2. The manganese-doped magnesium stannate luminescent material is a core-shell structure luminescent material, has a high internal quantum efficiency, great luminescent intensity, and the advantages of great stability and great luminescent properties. A method for preparing the manganese-doped magnesium stannate luminescent material has simple processes, low equipment requirements, and no pollution, is easy to control and applicable for industrial production, and has a broad application prospect.
    Type: Application
    Filed: May 8, 2012
    Publication date: March 26, 2015
    Inventors: Mingjie Zhou, Rong Wang, Guitang Chen
  • Patent number: 8968821
    Abstract: An apparatus for spraying spacers with an alignment liquid, including a container for transporting the alignment liquid mixed with the spacers therein and a plurality of nozzles provided on a bottom of the container. The alignment liquid with spacers mixed therein is sprayed through the plurality of nozzles under a same inner pressure, thereby forming an alignment layer on the substrate supported.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 3, 2015
    Assignee: Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Jing Wang, Chun Bae Park
  • Patent number: 8968822
    Abstract: Although an ink jet method known as a method of selectively forming a film of a high molecular species organic compound, can coat to divide an organic compound for emitting three kinds (R, G, B) of light in one step, film forming accuracy is poor, it is difficult to control the method and therefore, uniformity is not achieved and the constitution is liable to disperse. In contrast thereto, according to the invention, a film comprising a high molecular species material is formed over an entire face of a lower electrode connected to a thin film transistor by a coating method and thereafter, the film comprising the high molecular species material is etched by etching by plasma to thereby enable to selectively form a high molecular species material layer. Further, the organic compound layer is constituted by a material for carrying out luminescence of white color or luminescence of single color and combined with a color changing layer or a coloring layer to thereby realize full color formation.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakazu Murakami, Satoshi Seo
  • Patent number: 8962068
    Abstract: An objective is to provide a method of manufacturing an organic electroluminescence element possessing a thin film exhibiting relatively low film-strength formed via a continuous wet coating process. Disclosed is a method of manufacturing an organic electroluminescence element possessing a substrate film and provided thereon at least an organic layer placed between a pair of facing electrodes, possessing a light emitting layer containing an organic light emission material; possessing the steps of forming the organic layer on a first electrode provided on the substrate film by a continuous wet coating method; and cutting the substrate film with an upper cutting blade and a lower cutting blade, wherein the lower blade faces the substrate film, the upper blade has a blade edge angle of 30-60°, and the lower blade has a blade edge angle of 80-90°.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: February 24, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kiyokazu Tanahashi, Keiichi Aoki, Yousuke Takashima
  • Patent number: 8961828
    Abstract: The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 24, 2015
    Assignee: The Regents of the University of California
    Inventors: Raffaella Buonsanti, Delia J. Milliron
  • Patent number: 8916230
    Abstract: When a mask layer is formed, a first liquid composition containing a mask-layer-forming material is applied on an outer side of a pattern that is desired to be formed (corresponding to a contour or an edge portion of a pattern) to form a first mask layer having a frame shape. A second liquid composition containing a mask-layer-forming material is applied so as to fill a space inside the first mask layer having a frame shape to form a second mask layer. The first mask layer and the second mask layer are formed to be in contact with each other, and the first mask layer is formed to surround the second mask layer. Therefore, the first mask layer and the second mask layer can be used as one continuous mask layer.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hironobu Shoji, Ikuko Kawamata
  • Patent number: 8906445
    Abstract: A shadow mask and a method of fabricating an OLED display using the same is disclosed, wherein the shadow mask is not sagging, and the shadow mask includes a plurality of columns, each column including a plurality of first or second cell-forming parts, wherein the first and second cell-forming parts are alternately arranged in the columns, and the first and second cell-forming parts provided in the adjacent columns include transmission parts having the different open directions.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 9, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Jeong Hyun Kim, Jae Yoon Lee, Heung Lyul Cho
  • Publication number: 20140339511
    Abstract: A quantum-dots containing multi-component inorganic oxide thin film is provided to include an amorphous inorganic oxide bulk region and a plurality of crystalline inorganic oxide regions, wherein the crystalline inorganic oxide regions are discontinuously formed to be surrounded by the amorphous inorganic oxide of the bulk region.
    Type: Application
    Filed: September 17, 2013
    Publication date: November 20, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Dong Chan KIM, Seok Gyu YOON, Kyu Hwan HWANG, Eung Do KIM, Bo Ra JUNG, Dong Kyu SEO, Won Jong KIM, Young Woo SONG, Jong Hyuk LEE
  • Patent number: 8888229
    Abstract: A method for forming a layer comprises (a) disposing a first droplet to two parts on an underlayer surface so as to form two dot patterns isolated each other on the underlayer surface, (b) fixing the two dot patterns to the underlayer surface, (c) giving lyophilicity with respect to a second droplet to at least the underlayer surface between the two dot patterns, and (d) disposing the second droplet to the underlayer surface between the two dot patterns so as to join the two dot patterns after the step (c).
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: November 18, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Tsuyoshi Shintate, Koichi Mizugaki, Kazuaki Sakurada, Kenji Wada
  • Patent number: 8877101
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of fabricating an electronic device comprises: depositing one or more first conductors; and depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: November 4, 2014
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark D. Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20140319572
    Abstract: A ceramic conversion element includes a multiplicity of first regions and a multiplicity of second regions, wherein the first regions vitreous, ceramic or monocrystalline fashion, at least either the first regions or the second regions are columnar and have a preferred direction forming an angle of at most 45° with a normal to a main surface of the conversion element, the first regions convert electromagnetic radiation in a first wavelength range into electromagnetic radiation in a second wavelength range different from the first wavelength range, the second regions convert electromagnetic radiation in the first wavelength range into electromagnetic radiation in a third wavelength range different from the first and second wavelength ranges, wherein the second regions are formed by a resin into which phosphor particles are embedded.
    Type: Application
    Filed: September 10, 2012
    Publication date: October 30, 2014
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ute Liepold, Carsten Schuh, Gia Khanh Pham, Mikael Ahlstedt
  • Patent number: 8859032
    Abstract: An organic EL device manufacturing method includes a step of supplying a substrate, and while moving the substrate with a non-electrode-layer side thereof in contact with a surface of a can roller, the non-electrode-layer provided with no electrode layer, discharging a material from a nozzle of a vapor deposition source to form an organic layer on an electrode-layer side of the substrate, the electrode-layer side provided with an electrode layer. The vapor deposition step includes supplying a shadow mask including an opening portion to interpose the shadow mask between the substrate contacting the can roller, and the nozzle; and forming the organic layer corresponding to the opening portion on the electrode-layer side of the substrate while moving the substrate and the shadow mask with through holes included at each of the substrate and the shadow mask engaged with projections included in the can roller.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Takahiro Nakai, Shigenori Morita
  • Publication number: 20140302230
    Abstract: In the present invention, provided is an organic electroluminescent element material having a high externally taking-out quantum efficiency, which is suitable for manufacturing an element exhibiting long light emission lifetime, and also provided is an organic electroluminescent element possessing the material, a method of manufacturing the organic electroluminescent element, and a display as well as an illuminating device fitted with the organic electroluminescent element.
    Type: Application
    Filed: May 2, 2014
    Publication date: October 9, 2014
    Applicant: Konica Minolta, Inc.
    Inventors: Tatsuo TANAKA, Hiroshi KITA, Rie KATAKURA, Hideo TAKA
  • Patent number: 8852467
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 7, 2014
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark D. Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 8828478
    Abstract: A nanocrystal capable of light emission includes a nanoparticle having photoluminescence having quantum yields of greater than 30%.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Klavs F. Jensen, Bashir O. Dabbousi, Javier Rodriguez-Viejo, Frederic Victor Mikulec
  • Patent number: 8828477
    Abstract: A deposition mask and a display unit and method of manufacturing same are provided. A red continuous organic layer, a green continuous organic layer, and a blue continuous organic layer are provided over two or more lines of a matrix configuration of organic light emitting devices in common. A film thickness distribution in the extensional direction of the red, green and blue continuous organic layer is dissolved, and an aperture ratio can be improved by just that much.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventor: Masaru Yamaguchi
  • Patent number: 8821966
    Abstract: A method for manufacturing an image display device includes the step of forming a cured resin layer by interposing a photo-curable resin composition between a protection member and a display-side panel including an image display unit and a frame member and then photo-curing the photo-curable resin composition, with the photo-curable resin composition being disposed across between the image display unit and the frame member. In the manufacturing method, a high-viscosity resin composition having a viscosity of 3000 mPa·s or more and 12000 mPa·s or less is used as the photo-curable resin composition. Alternatively, after a gap between the image display unit and the frame member is sealed with a sealing film, a photo-curable resin composition is interposed between the display-side panel and the protection member.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: September 2, 2014
    Assignee: Dexerials Corporation
    Inventors: Tomoyuki Toyoda, Yoshihisa Shinya, Yusuke Kamata
  • Patent number: 8808787
    Abstract: The formation in quantity of various different populations of a substance being studied with multiple combinations of distribution form and distribution density by dripping a suspension of a single concentration of the substance onto a masking member of a certain specified structure placed on a substrate by making use of the sedimentation of said substance.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 19, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Koji Ikuta, Masashi Ikeuchi
  • Publication number: 20140220235
    Abstract: A luminescent nanocomposite comprising functionalized graphene and a luminescent moiety, its fabrication, and uses are described. The luminescent moiety is anchored non-covalently to the functionalized graphene. Luminescence properties of the nanocomposite may be modulated by choosing appropriate luminescent moieties such as native lactoferrin, native lactoferrin protected gold clusters, and so forth. Mechanical properties of the nanocomposite may be modulated by adding a biopolymer such as Chitosan. The nanocomposite may be used as a luminescent ink for encoding information, or a luminescent film for tagging articles of manufacture such as electronic waste components.
    Type: Application
    Filed: August 7, 2012
    Publication date: August 7, 2014
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY MADRAS
    Inventors: Pradeep Thalappil, Sreeprasad Theruvakkattil Sreenivasan, Shihabudheen Mundampra Maliyekkal
  • Patent number: 8795767
    Abstract: Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group 1, and X is selected from at least one of elements of Group 17; (2) providing a source of B, wherein B is selected from at least one of elements of Group 14; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 5, 2014
    Assignee: OMNIPV, Inc.
    Inventors: William M. Pfenninger, Nemanja Vockic, John Kenney
  • Patent number: 8790745
    Abstract: A method of manufacturing an electroluminescent display apparatus includes: discharging first droplets of the fluid luminescent material from the first nozzles to the target discharge areas when the first nozzles are positioned in an area above the target discharge areas so that all of the first droplets are arranged in the target discharge areas on different X-axis direction positions so as not to overlap each other when viewed in the Y-axis direction; and discharging second droplets of fluid luminescent material from the second nozzles to the target discharge areas to which the first droplets have been discharged when the second nozzles are positioned in the area above the target discharge areas after a predetermined period of time passed since the discharge of the first droplets to the target discharge areas.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 29, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Hiroshi Kiguchi, Kazumi Aruga, Mitsuru Kuribayashi
  • Patent number: 8791630
    Abstract: A light emitting section emits fluorescence upon receiving exciting light emitted from a laser element. The light emitting section includes a plurality of fluorescent material particles made from a single type of fluorescent material or several types of fluorescent materials, the plurality of fluorescent material particles being accumulated on a metal substrate to form a layer of the plurality of fluorescent material particles. Each of the plurality of fluorescent material particles has a surface coated with a coating layer. The coating layer forms an uneven shape of a surface of the light emitting section.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 29, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yosuke Maemura, Yoshiyuki Takahira
  • Patent number: 8784930
    Abstract: The present invention pertains to a transparent conductive film including a conductive layer having different thicknesses so as to increase the optical transmittance while maintaining the conductivity of the transparent conductive film. The present invention also pertains to a process for the preparation of the above-mentioned transparent conductive film.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Far Eastern New Century Corporation
    Inventors: Da-Ren Chiou, Wei-Che Hung, Shih-Yueh Lin, Chiu-Fang Chen, Tzu-Ying Chen
  • Patent number: 8785222
    Abstract: The present invention provides phosphor inks configured to achieve high efficiency in converting LED light from one wavelength to another. The phosphor ink composition for deposition on an LED device comprises a phosphor component having nano-phosphor particles on the order of 100 to 1000 nanometers, and a curable resin component. In particular, the nano-phosphor particles are uniformly dispersed throughout the ink composition. The nano-phosphor particles may be formed by a size reduction process carried out on larger phosphor particles on the order of 1 to 50 micrometers. Preferably, the size reduction process is based on solvent wet milling. Methods for preparing the phosphor inks based on forming the nano-phosphor particles from larger particles by solvent wet milling are also provided.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: July 22, 2014
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Dennis McKean, Pan Man Wong, Wenbo Ma
  • Publication number: 20140176631
    Abstract: A nozzle ejection amount correcting method includes: a first signal correction for performing first signal correction by calculating correction amounts of the plurality of driving signals from a difference C between a predetermined amount B in a case of ejecting liquid droplets from the selected nozzles to the ejecting regions in the main scanning performed a plurality of times and the predetermined amount A that is set in advance; a second signal correction for performing second signal correction by calculating correction amounts of the plurality of driving signals before the correction corresponding to the main scanning in the later stage from a difference E between a predetermined amount D in a case of ejecting the liquid droplets to the ejecting regions and the predetermined amount A by using the plurality of driving signals, by which the first signal correction is performed, in the main scanning in the former stage.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 26, 2014
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Atsushi KITABAYASHI
  • Patent number: 8722135
    Abstract: An object is to provide a chemical solution application apparatus capable of applying a chemical solution evenly and without irregularity by a spin coating method. A plurality of nozzles are provided for applying a chemical solution to an application object that is fixed over a stage. Each of the nozzles is individually mobile in vertical and horizontal directions. For this reason, controlling a discharging point or pattern is possible, and application responding to a wider viscosity range of chemical solutions is possible. By implementing the present invention, a chemical solution application apparatus equipped with a discharging method of a chemical solution by which a coating film having a small film thickness distribution over an entire substrate and an even thickness can be obtained, as well as for which use efficiency is improved by cutting down on waste of a chemical solution to be discharged.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: May 13, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Fuminori Tateishi