Electron Emissive Or Suppressive (excluding Electrode For Arc) Patents (Class 427/77)
  • Patent number: 8449974
    Abstract: An electrically responsive composite material is disclosed, along with a method of producing an electrically responsive composite material, a transducer having a substrate for supporting a flowable polymer liquid and a method of fabricating a transducer. The electrically responsive composite material produced is configurable for application in a transducer. The method includes the steps of receiving the flowable polymer liquid and introducing electrically conductive acicular particles (1501, 1502) to facilitate the conduction of electricity by quantum tunneling. Dielectric particles (1505, 1506) are added of a size relative to the acicular particles such that a plurality of these dielectric particles are dispersed between adjacent acicular particles.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 28, 2013
    Assignee: Peratech Limited
    Inventors: David Lussey, David Bloor, Paul Jonathan Laughlin, Adam Graham, Cyril Hilsum
  • Publication number: 20130130125
    Abstract: A cross-linked microporous polymeric battery electrode separator membrane is described. Such membranes, which would otherwise be soluble above a particular, generally high temperature in selected battery electrolyte systems, once at least in part cross-linked, swell in the electrolyte at the particular higher temperature instead of dissolving. When the membrane separators are restrained between solid electrodes in a battery, the separator cannot increase in bulk volume, and the swelling occurs within the pores with the pore volume decreasing from its original bulk volume. The drop in pore volume causes the battery current density to drop, thereby reducing the heat generation within the hot area of the battery. This process provides a measure of safety against overheating and fires, and the battery is capable of continued usage if the overheating is localized.
    Type: Application
    Filed: May 16, 2012
    Publication date: May 23, 2013
    Inventor: Ray L. Hauser
  • Publication number: 20130130077
    Abstract: An electrode includes a conductive substrate and a plurality of conductive structures providing a compressible matrix of material. An active material is formed in contact with the plurality of conductive structures. The active material includes a volumetrically expanding material which expands during ion diffusion such that the plurality of conductive structures provides support for the active material and compensates for volumetric expansion of the active material to prevent damage to the active material.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MOSTAFA M. EL-ASHRY, Osama Tobail, George S. Tulevski
  • Publication number: 20130130108
    Abstract: A battery electrode for a lithium ion battery that includes an electrically conductive substrate having an electrode layer applied thereto. The electrode layer includes an organic material having high alkalinity, or an organic material which can be dissolved in organic solvents, or an organic material having an imide group(s) and aminoacetal group(s), or an organic material that chelates with or bonds with a metal substrate or that chelates with or bonds with an active material in the electrode layer. The organic material may be guanidine carbonate.
    Type: Application
    Filed: June 30, 2011
    Publication date: May 23, 2013
    Applicant: VERY SMALL PARTICLE COMPANY LIMITED
    Inventors: Jose Antonio Alarco, John Louis Bradley, Mark Ronald Quinlan, Peter Cade Talbot
  • Publication number: 20130118775
    Abstract: The present invention relates to a method of forming copper nanowires with a metallic coating. In a preferred embodiment, the metallic coating is copper. Due to the metal coating, the nanowires become magnetically guidable and chemically stable. As such, the nanowires can be used to form nanomesh. Further, the nanowire and nanomesh of the present invention can be used as transparent electrodes that are used in TV, PC, touch-control, and solar industries.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 16, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Hua Chun Zeng, Shengmao Zhang, Yu Chang, Mei Ling Lye
  • Publication number: 20130113360
    Abstract: An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 9, 2013
    Inventors: Yong-chul KIM, In-taek HAN, Ho-suk KANG
  • Patent number: 8435671
    Abstract: A multilayer material includes a solid substrate and at least two superimposed solid layers containing particles of an electrochemically active material, the first solid layer adhering to the solid substrate and the second solid layer adhering to the first solid layer. The multilayer material has a constant thickness of upper layer not less than 95% and a depth of penetration of the second layer into the first layer which is less than 10% of the thickness of the first layer, and enables as electrode constituent, generators having a low risk of overload degradation to be prepared.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: May 7, 2013
    Assignee: Hydro-Quebec
    Inventors: Karim Zaghib, Michel Petitclerc, Patrick Charest, Abdelbast Guerfi, Martin Dontigny
  • Publication number: 20130106727
    Abstract: A touch sensing device is disclosed. The device includes a transparent substrate having a sensing region and a non-sensing region enclosing the sensing region. A sensing structure is disposed on the transparent substrate in the sensing region. A shielding layer is disposed on the transparent substrate in the non-sensing region and exposes the sensing region. A specific pattern layer is disposed between the transparent substrate and the shielding layer and has a specific pattern, such that the shielding layer above the specific pattern layer has a first thickness and the shielding layer outside of the specific pattern layer has a second thickness greater than the first thickness. A passivation layer covers the sensing structure and the shielding layer. A method for fabricating the touch sensing device is also disclosed.
    Type: Application
    Filed: February 23, 2012
    Publication date: May 2, 2013
    Inventors: Yi-Chung Juan, Hsuan-Chen Liu, Chang-Ching Yeh, Sung-Chun Lin
  • Publication number: 20130101906
    Abstract: A process for producing a gas diffusion electrode comprising the steps of: casting a porous electrically conductive web with a suspension of particles of an electrically conductive material in a solution of a first binder to provide a first layer which is an electrochemically active layer (AL); casting a suspension of particles of a hydrophobic material in a solution of a second binder on said first layer to provide a second layer; and subjecting said first and second layer to phase inversion thereby realising porosity in both said first layer and said second layer, wherein said subjection of said second layer to phase inversion thereby realises a water repellent layer; a gas diffusion electrode obtained therewith; the use of a gas diffusion electrode in an membrane electrode assembly; a membrane electrode assembly comprising the gas diffusion electrode; and a method of producing a membrane electrode assembly is realised, said membrane electrode assembly comprising a membrane sandwiched between two electrodes
    Type: Application
    Filed: June 29, 2011
    Publication date: April 25, 2013
    Applicant: VITO NV
    Inventors: Yolanda Alvarez Gallego, Philippe Vermeiren, Andre-Viktor Claes, Walter Adriansens
  • Publication number: 20130101919
    Abstract: Provided are a MEA, a fuel cell, and a gas detoxification apparatus that allow at high efficiency a general electrochemical reaction causing gas decomposition or the like and are excellent in cost efficiency; and a method for producing a MEA. In this MEA 7, a porous base 3, a porous anode 2, an ion-conductive solid electrolyte 1, and a porous cathode 5 are stacked. The anode 2 or the cathode 5 is in contact with a surface of the porous base 3. The porous anode 2 includes a metal deposit body 21 having catalysis for gas decomposition.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 25, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu
  • Publication number: 20130101880
    Abstract: A battery and method of making such battery, adapted to operate at low (typically ambient) temperatures for a short initial period and thereafter at higher temperatures. A Li—Mg alloy anode is provided, comprising up to 25% magnesium, in a liquid thionyl chloride bath which as the cathode for high temperature operation. A thin, substantially pure lithium layer is applied to a surface of the Li—Mg anode, preferably in the range of 0.0019 to 0.0025 inches (0.04826-0.0635 mm), to allow obtaining of sufficiently high power and voltage output at lower temperatures for a short period where at such lower temperatures the required voltage and power would not otherwise be available from a Li—Mg anode. Thereafter, the battery may thereafter be used in, and exposed to, higher temperatures of up to 220° C. where at such temperatures the necessary voltage and power from the remaining Li—Mg alloy anode is then available.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: Engeneered Power Services Inc.
    Inventors: Richard J. MARSHALL, Robert YETMAN
  • Patent number: 8420158
    Abstract: A process for making an electrode sheet for lithium electrochemical cells is disclosed. The process comprises the steps of: a) admixing a polyether polymer or copolymer soluble in water, at least one lithium salt, at least one electrochemically active material, water and an organic solvent miscible with water in a water/organic solvent ratio of a maximum of 50% organic solvent by volume to form a water-based solution/suspension containing by weight at least 20% active electrode material, at least 5% of a polyether polymer or copolymer, and at least 1.5% lithium salt; b) coating the water-based solution/suspension in the form of an electrode thin film onto an electrode support; and, c) drying the electrode thin film to obtain an electrode thin sheet having less than 1000 ppm of residual water.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 16, 2013
    Assignee: Bathium Canada Inc.
    Inventors: Patrick Leblanc, Frederic Cotton, Dave Lessard, Alain Vallee
  • Publication number: 20130084444
    Abstract: The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 ?m to about 1.0 ?m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 ?m to about 20.0 ?m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 ?m to about 20.0 ?m.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran, Sheng Chao, Shanshan Liu, Manoj Narayanan
  • Publication number: 20130071553
    Abstract: The present invention relates to a method for manufacturing cathode active material for a lithium secondary battery. The manufacturing method according to the present invention is characterized by including: (1) an intermediate generation process, wherein an intermediate which is powder or a shaped object containing the first material compound which is a compound of the transition metal other than lithium, which constitutes said lithium composite oxide, is generated, (2) a lithium source compound addition process, wherein the second material compound which is a lithium compound is added so that the second material compound in the shape of film may adhere to the surface of said intermediate, and (3) a sintering process, wherein lithium composite oxide is generated by sintering said intermediate in the state where said second material compound has adhered to its surface.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: NGK Insulators, Ltd.
    Inventors: Naoto OHIRA, Ryuta Sugiura, Shohei Yokoyama, Miho Endo, Koji Kimura, Tsutomu Nanataki
  • Publication number: 20130070445
    Abstract: A micro-optical switching device, an image display apparatus including the micro-optical switching device, and a method of manufacturing the micro-optical switching device are provided. The micro-optical switching device includes a substrate; a first electrode disposed on the substrate and including a first opening array, wherein the first opening array includes a plurality of openings; and a second electrode disposed spaced apart from the first electrode and including a second opening array including a plurality of openings, wherein the plurality of openings of the second opening array do not overlap with the plurality of openings of the first opening array.
    Type: Application
    Filed: May 1, 2012
    Publication date: March 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-sik SHIM, Jong-seok KIM, Yong-seop YOON, Hyung CHOI, Woon-bae KIM
  • Publication number: 20130059134
    Abstract: A method of conductively coupling a carbon nanostructure and a metal electrode is provided that includes disposing a carbon nanostructure on a substrate, depositing a carbon-containing layer on the carbon nanostructure, according to one embodiment, and depositing a metal electrode on the carbon-containing layer. Further provided is a conductively coupled carbon nanostructure device that includes a carbon nanostructure disposed on a substrate, a carbon-containing layer disposed on the carbon nanostructure and a metal electrode disposed on the carbon-containing layer, where a low resistance coupling between the carbon nanaostructure and metal elements is provided.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Yang Chai, Arash Hazeghi, Kuniharu Takei, Ali Javey, H.S. Philip Wong
  • Patent number: 8389051
    Abstract: In a method for applying an electron absorber layer to a substrate, an electron absorber layer is produced from a composite material, by coating the substrate with a metallic material, and material inclusions made from an additional material are embedded in the metallic material during coating. The metallic material contains aluminum, magnesium, cobalt, iron, chromium, titanium, nickel, copper, or an alloy or mixture thereof. The additional material contains one or more of the following substances: boron, carbon or silicon, a mixture of these elements, one or more chemical compounds made from or having at least two of these elements, or a mixture of such chemical compounds.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Joerg Freudenberger, Oliver Stier
  • Publication number: 20130045427
    Abstract: The present invention provides a battery or supercapacitor current collector which is prelithiated. The prelithiated current collector comprises: (a) an electrically conductive substrate having two opposed primary surfaces, and (b) a mixture layer of carbon (and/or other stabilizing element, such as B, Al, Ga, In, C, Si, Ge, Sn, Pb, As, Sb, Bi, Te, or a combination thereof) and lithium or lithium alloy coated on at least one of the primary surfaces, wherein lithium element is present in an amount of 1% to 99% by weight of the mixture layer. This current collector serves as an effective and safe lithium source for a wide variety of electrochemical energy storage cells, including the rechargeable lithium cell (e.g. lithium-metal, lithium-ion, lithium-sulfur, lithium-air, lithium-graphene, lithium-carbon, and lithium-carbon nanotube cell) and the lithium ion based supercapacitor cell (e.g, symmetric ultracapacitor, asymmetric ultracapacitor, hybrid supercapacitor-battery, or lithium-ion capacitor).
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Aruna Zhamu, Yanbo Wang, Bor Z. Jang
  • Publication number: 20130040188
    Abstract: Rechargeable lithium battery cell having a housing, a positive electrode, a negative electrode and an electrolyte containing a conductive salt, wherein the electrolyte comprises SO2 and the positive electrode contains an active material in the composition LixM?yM?z(XO4)aFb, wherein M? is at least one metal selected from the group consisting of the elements Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, M? is at least one metal selected from the group consisting of the metals of the groups II A, III A, IV A, V A, VI A, IB, IIB, IIIB, IVB, VB, VIB and VIIIB, X is selected from the group consisting of the elements P, Si and S, x is greater than 0, y is greater than 0, z is greater than or equal to 0, a is greater than 0 and b is greater than or equal to 0.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: Fortu Intellectual Property AG
    Inventors: Laurent ZINCK, Christian PSZOLLA, Christiane RIPP, Markus BORCK, Claudia WOLLFARTH
  • Publication number: 20130040193
    Abstract: A composite positive electrode active material includes: a positive electrode active material which includes a transition metal; and a reaction suppressor which is formed so as to cover a surface of the positive electrode active material, and which is made of a polyanion structure-containing compound having a cation moiety composed of a metal atom that becomes a conducting ion and having a polyanion structural moiety composed of a center atom that is covalently bonded to a plurality of oxygen atoms. A transition metal-reducing layer which has self-assembled on the surface of the positive electrode active material in contact with the reaction suppressor owing to reaction of the transition metal with the polyanion structure-containing compound, has a thickness of 10 nm or less.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 14, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasushi Tsuchida, Toshihiro Seguchi
  • Publication number: 20130022881
    Abstract: The present application relates to a layer of an oxidant electrode having hygrophobic and current collecting properties, and electrochemical metal-air cell utilizing the same.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. FRIESEN, Joel Hayes
  • Publication number: 20130017440
    Abstract: A secondary cell electrode includes a mix layer containing an active substance, a conductive agent, and a binder which is swollen by coexistence with an electrolytic solution and thus has a volume thereof increased; and a current collector formed of a conductive metal foil, the mix layer being located right on the current collector. The current collector has, in a surface thereof, a first concaved portion which is opened and a first convexed portion forming a wall of the first concaved portion; at least a part of a side surface of at least either one of the first concaved portion and the first convexed portion includes at least either one of a second concaved portion and a second convexed portion; and a mixture containing at least either one of the binder, the conductive material and the active substance is put into a space in the first concaved portion.
    Type: Application
    Filed: January 18, 2012
    Publication date: January 17, 2013
    Applicant: SAMSUNG YOKOHAMA RESEARCH INSTITUTE CO., LTD.
    Inventor: Yasuo TAKANO
  • Publication number: 20130016271
    Abstract: A light transmittance adjusting device is provided, including a first electrode, a second electrode, and a first elastomer layer disposed between the first and second electrodes. A light transmittance of the first elastomer layer is variable depending on a voltage applied thereto.
    Type: Application
    Filed: February 15, 2012
    Publication date: January 17, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-oh KWON, Che-heung KIM
  • Publication number: 20130011750
    Abstract: The present invention provides a lithium-air hybrid battery and a method for manufacturing the same, which has a structure in which a liquid electrolyte electrode and a solid electrolyte electrode are stacked on both sides of an ion conductive glass ceramic. That is, disclosed is a lithium-air hybrid battery and a method for manufacturing the same, which has a structure in which a lithium metal negative electrode includes a liquid electrolyte and a porous air positive electrode comprising a carbon, a catalyst, a binder and a solid electrolyte are separately stacked on both sides of an impermeable ion conductive glass ceramic, and the liquid electrolyte is present only in the lithium metal negative electrode.
    Type: Application
    Filed: October 25, 2011
    Publication date: January 10, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Dong Hui Kim, Sam Ick Son, Kyoung Han Ryu, Jun Ki Rhee, Yun Seok Kim, Ho Taek Lee
  • Publication number: 20130011737
    Abstract: A process of electroless plating a tin or tin-alloy active material onto a metal substrate for the negative electrode of a rechargeable lithium battery comprising steps of (1) immersing the metal substrate in an aqueous plating solution containing metal ions to be plated, (2) plating tin or tin-alloy active material onto the metal substrate by contacting the metal substrate with a reducing metal by swiping one on the other, and (3) removing the plated metal substrate from the plating bath and rinsing with deionized water. A rechargeable lithium battery using tin or tin-alloy as the anode active material.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventor: SHENGSHUI ZHANG
  • Publication number: 20130011732
    Abstract: A secondary battery includes a base material, an intermediate layer including a carbon material on the base material, and an active material layer on the intermediate layer. A secondary battery including an intermediate layer may improve adhesion between the base material and the active material layer, thereby reducing the risk of separation of the active material from the base material and improving the reliability and lifetime of the secondary battery.
    Type: Application
    Filed: May 14, 2012
    Publication date: January 10, 2013
    Inventors: Jun-Sik Kim, So-Ra Lee, Sung-Soo Kim, Soo-An Song, Jeong-Soon Shin
  • Patent number: 8349394
    Abstract: A method of forming an electrode having an electrochemical catalyst layer is disclosed, which comprises providing a substrate with a conductive layer formed on the surface of a substrate, conditioning the surface of the substrate, immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioned surface of the substrate, and thermally treating the polymer-protected electrochemical catalyst layer at a temperature approximately below 300° C.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 8, 2013
    Assignee: Tripod Technology Corporation
    Inventors: Chao Peng, Jo-Lin Lan, Ya-Huei Chang, Wen-Chi Hsu, Hai-Peng Cheng, Shien-Ping Feng, Wen-Hsiang Chen, Tzu-Chien Wei
  • Patent number: 8343690
    Abstract: A method for the fabrication of a mesoporous metal electrode in a non-liquid crystalline phase was tested. Specifically, there was tested the efficacy of the method for the fabrication of a mesoporous metal electrode which comprises forming the mesoporous metal electrode on a substrate by chemical or electrochemical reduction of a mixture comprising a solvent, a structure-directing agent, and a source of a metal, characterized in that the mixture is maintained in a non-liquid crystal phase. Furthermore, the usefulness of the mesoporous metal electrode thus prepared from the non-liquid crystalline phase was also tested. The mesoporous metal electrode prepared from the non-liquid crystalline phase had a large surface area, and a roughness factor thereof was controlled by charges passed during electroplating. The method made it possible to fabricate the mesoporous metal electrode in the non-liquid crystalline phase, even more flexible than a liquid crystalline phase.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 1, 2013
    Assignee: Seoul National University R&DB Foundation
    Inventors: Hee-Chan Kim, Taek Dong Chung, Sejin Park, Hankil Boo, Sunyoung Lee
  • Publication number: 20120327567
    Abstract: Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Inventors: Anna-Katrina Shedletsky, Christopher Prest
  • Publication number: 20120327568
    Abstract: Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Inventors: Anna-Katrina Shedletsky, Christopher Prest
  • Publication number: 20120312585
    Abstract: There is provided a soft electrode material including an electrode layer containing a mixture of carbon black and at least one selected from carbon nanotube and graphene, so that the soft electrode material can facilitate various transformation thereof in response to physical transformation of an electrode, such as warpage, elongation, and the like; prevent the rapid reduction in electric conductivity of an electrode while maintaining flexibility and elasticity of the electrode at the time of the transformation; and provide excellent reliability, and thus, electrical-mechanical energy conversion efficiency of a soft electronic component such as an actuator including the soft electrode material, can be increased, and electric conductivity of the electrode layer can be improved as the electrical-mechanical conversion efficiency increases.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 13, 2012
    Applicant: CIJ. CO., LTD.
    Inventors: Jong Tae Baek, Moon Pyung Park, Hyung-Ho Park, Hyuncheol Kim, Jin-Seok Lee
  • Publication number: 20120308716
    Abstract: Provided is a manufacturing method of a CNT emitter with density controlled CNT, comprising: (i) fabricating a CNT paste by dispersing a carbon nanotube (CNT) powder, two kinds or more of inorganic fillers which have a lower melting temperature than the CNT and different oxidation degrees of the CNT, and an organic binder in a solvent; (ii) coating the CNT paste on an electrode formed above a substrate; (iii) sintering the substrate coated with the CNT paste to selectively oxidize the CNT around one kind of inorganic filler among two kinds or more of the inorganic fillers; and (iv) treating the surface of the CNT paste so that the surface of the CNT paste is activated.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jin Woo JEONG, Jun Tae Kang, Yoon Ho Song, Jae Woo Kim
  • Publication number: 20120305522
    Abstract: Memory devices and methods of forming memory devices including forming a plurality of preliminary electrodes, each of the plurality of preliminary electrodes including a protruding region, protruding from a first mold insulating layer, forming a second mold insulating layer on the first mold insulating layer, removing at least a portion of the plurality of preliminary electrodes to form a plurality of openings in the second mold insulating layer and a plurality of lower electrodes, and forming a plurality of memory elements in the plurality of openings. Memory devices and methods of forming memory devices including forming one or more insulating layers on sidewalls of all or part of a plurality of lower electrodes and/or a plurality of memory elements.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Inventors: Doo-hwan Park, Gyu-hwan Oh, Dong-whee Kwon, Kyung-min Chung
  • Publication number: 20120308887
    Abstract: A rechargeable battery is disclosed having electrode and separator structures which are made up of fibre-reinforced composite material, thereby allowing the battery itself to serve as an integral structural component. The utilisation or efficiency of the rechargeable battery is considerably enhanced by rendering at least part of the matrix material of the electrodes and the separator porous, thereby to facilitate improved access to active sites on the electrodes, with the porosity in the separator allowing improved ion transport, both of which enhance cell operation. The porous structure also provides improved electrolyte containment and retention in the event of damage.
    Type: Application
    Filed: February 9, 2011
    Publication date: December 6, 2012
    Applicant: BAE SYSTEMS PLC
    Inventors: Martyn John Hucker, Michael Dunleavy, Amy Elizabeth Dyke, Sajad Haq
  • Patent number: 8323744
    Abstract: A variety of methods, devices, systems and arrangements are implemented involving nanowire meshes. One such method is implemented to include synthesizing metal nanowires in a solution containing a structure-directing agent. The metal nanowires are deposited on a substrate to form a sheet of nanowires. The deposited metal nanowires are heated to a temperature less than about 200 degrees Celsius and for a period of time of about 10 minutes to 60 minutes, thereby removing the structure-directing agent and modifying the electrical conductivity and optical transmittance of the sheet of nanowires.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 4, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steve T. Connor, Jung-Yong Lee, Yi Cui, Peter Peumans
  • Publication number: 20120300285
    Abstract: Disclosed herein are an electronic paper display device including a lower electrode; twist balls provided in each cell of a barrier structure formed on the lower electrode; and an upper electrode provided above the twist balls and having an anti-reflection part provided on a surface thereof and having a moth-eye pattern, the surface facing the twist balls, and a method of manufacturing the same. According to the present invention, the upper electrode can be molded simultaneously with forming of the anti-reflection part rather than the anti-reflection coating film is formed on the upper electrode of the electronic paper display device through a separate process, thereby making it possible to simplify the manufacturing process of the upper electrode having the anti-reflection effects and reduce the manufacturing costs thereof, and improve productivity.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 29, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Seung Hyun RA
  • Publication number: 20120301790
    Abstract: A method of forming an electrode of a lithium ion secondary battery includes combining a binder and active particles to form a mixture, coating a surface with the mixture to form a coated article, translating the article along a first plane, cutting a first plurality of carbon fibers, each having a first average length, to form a second plurality of carbon fibers, each having a longitudinal axis and a second average length that is shorter than the first average length, inserting the second plurality of fibers into the mixture layer so that the longitudinal axis of each of at least a portion of the second plurality of fibers is not parallel to the first plane to form a preform, wherein the second plurality of fibers forms a truss structure disposed in three dimensions within the mixture layer, and heating the preform to form the electrode. An electrode is also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xinran Xiao, Adam T. Timmons, Stephen J. Harris
  • Publication number: 20120299457
    Abstract: A spark plug is provided. The spark plug has an insulative sleeve with a central axial bore and an exterior surface of a shaped tip portion. A coating is disposed on the exterior surface of the shaped tip portion and the coating comprises a transition metal compound or a combination of transition metal compounds, and an alkali metal compound. A center electrode extends through the central axial bore of the insulative sleeve. A metal sleeve is provided, wherein the insulating sleeve is positioned within, and secured to, the metal shell. A ground electrode is coupled to the metal shell and positioned in a spaced relationship relative to the center electrode so as to define a spark gap.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 29, 2012
    Applicant: FRAM GROUP IP, LLC
    Inventors: Peter D. Unger, Ronald P. Rohrbach, Jeffrey T. Boehler, Jing Zheng
  • Patent number: 8318237
    Abstract: A pixel observation system includes a memory unit, a coordinate generation unit, and an observation unit. The memory unit is configured to store at least nozzle information indicative of discharge states of a liquid material in a plurality of nozzles and arrangement information indicative of an arrangement of each of the nozzles with respect to each of a plurality of pixel regions in relative movement of the nozzles and a substrate. The coordinate generation unit is configured to generate observation coordinates of observation regions on the substrate based on the nozzle information and the arrangement information, and to include coordinates of at least some of the pixel regions over which the nozzles scan through one cycle of the relative movement in the observation coordinates. The observation unit is configured and arranged to observe the pixel regions positioned at the observation coordinates generated by the coordinate generation unit.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: November 27, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Toyotaro Kinoshita
  • Patent number: 8314539
    Abstract: A field electron emitter includes a thin film layer including a carbon nanotube (“CNT”) disposed on a substrate, wherein the thin film layer includes nucleic acid.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 20, 2012
    Assignees: Samsung Electronics Co., Ltd., Korea University Industrial & Academic Collaboration Foundation
    Inventors: Yoon-chul Son, Yong-chul Kim, Jeong-na Heo, Byeong-kwon Ju
  • Patent number: 8313796
    Abstract: A method for manufacturing a positive electrode for a nonaqueous electrolyte secondary battery includes forming an inorganic particle slurry layer formed on a surface of a positive electrode active material layer. The method includes forming a positive electrode active material layer on a surface of a positive electrode collector, and coating an inorganic particle slurry containing inorganic particles and carboxymethyl cellulose on a surface of the positive electrode active material layer and thereafter drying the slurry to form a porous inorganic particle layer. The inorganic particle slurry contains carboxymethyl cellulose having an etherification degree of 0.8 or more and a viscosity of 800 mPa·s or more in a 1% aqueous solution at a ratio of 0.2% by mass or more and 1.0% by mass or less with respect to the inorganic particles.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 20, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Satoshi Yamamoto
  • Publication number: 20120288736
    Abstract: Disclosed herein are an energy storage apparatus including a magnetic layer formed on any one of a positive electrode, a negative electrode, and a separator, or an exterior frame, and a method for manufacturing the same. With the energy storage apparatus, the magnetic layer is provided in a vicinity of the separator in order to increase ion conductivity or a magnetic material is contained on surfaces of positive electrode and negative electrode current collectors or in positive electrode and negative electrode active materials, such that conductivity and mobility of lithium ions between the positive electrode and the negative electrode are increased, thereby making it possible to improve a charging and discharging speed. In addition, a shortage due to an ion trap and a defect according to shrinkage ratio may be improved.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 15, 2012
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yong Suk KIM, Young Seuck Yoo, Kang Heon Hur
  • Publication number: 20120288749
    Abstract: An electrode plate of a secondary battery includes an electrode current collector, an active material coated portion on at least one surface of the electrode current collector, and an uncoated portion on the electrode current collector, the uncoated portion including pressed portions extending from a boundary of the active material coated portion and the uncoated portion to a distance on the uncoated portion in a widthwise direction of the electrode current collector.
    Type: Application
    Filed: March 6, 2012
    Publication date: November 15, 2012
    Inventor: Jaehyung KIM
  • Publication number: 20120282393
    Abstract: An apparatus and method operations are provided for battery plate fabrication, in particular for applying paste to battery plate grids. A conveyer-type pasting machine includes a conveyer belt for moving battery plate grids under a new type of paste dispensing hopper, which includes closely spaced knurled rollers and an angled paste deflector member, which cooperate to generate a pressurized stream of paste for extrusion thru the battery plate grid. The apparatus also includes a specialized grid support sheet that also enables a consistent layer of paste to be applied to both exterior sides of a manufactured battery plate grid by enabling application of paste to one side of the grid and facilitating transmission of the paste through to and past the opposite, exterior side of the grid.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 8, 2012
    Applicant: MAC ENGINEERING AND EQUIPMENT COMPANY, INC.
    Inventor: Roy A. Fredrickson
  • Publication number: 20120276453
    Abstract: A method for producing a coated nickel hydroxide powder suitable as a cathode active material for alkaline secondary battery includes the steps of: dispersing a nickel hydroxide powder in water to prepare a suspension, an aqueous alkali solution to the suspension with stirring to keep a pH of the suspension at 8 or higher as measured at 25° C., and supplying an aqueous cobalt salt solution to the suspension to coat a surface of each of particles of the nickel hydroxide powder with cobalt hydroxide crystallized out by neutralization.
    Type: Application
    Filed: January 23, 2012
    Publication date: November 1, 2012
    Inventors: Ryuichi KUZUO, Minoru Shiraoka
  • Publication number: 20120276459
    Abstract: A negative electrode for a lithium secondary battery that includes an organic-inorganic hybrid protective layer where the lithium ion conductivity of a polymer included in the organic-inorganic hybrid protective layer is about 10?4 S/cm or less, a method of manufacturing the same, and a lithium secondary battery employing the same.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 1, 2012
    Applicants: National University Corporation Mie University, Samsung Electronics Co., Ltd.
    Inventors: Dong-min IM, Dong-joon Lee, Yasuo Takeda, Osamu Yamamoto, Nobuyuki Imanishi
  • Publication number: 20120276458
    Abstract: Methods and devices for enhanced energy storage in an electrochemical cell are provided. In some embodiments, an electrode for use in a metal-air electrochemical cell can include a plurality of nanofiber (NF) structures having high porosity, tunable mass, and tunable thickness. The NF structures are particularly suited for energy storage and can provide the electrode with exceptionally high gravimetric capacity and energy density when used in an electrochemical cell.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Betar M. Gallant, Yang Shao-Horn, Carl V. Thompson, II, Robert R. Mitchell, III
  • Patent number: 8287943
    Abstract: The invention relates to the preparation of multilayer microcomponents which comprise one or more films, each consisting of a material M selected from metals, metal alloys, glasses, ceramics and glass-ceramics. The method consists in depositing on a substrate one or more films of an ink P, and one or more films of an ink M, each film being deposited in a predefined pattern selected according to the structure of the microcomponent, each film of ink P and each film of ink M being at least partially consolidated before deposition of the next film; effecting a total consolidation of the films of ink M partially consolidated after their deposition, to convert them to films of material M; totally or partially removing the material of each of the films of ink P. An ink P consists of a thermoset resin containing a mineral filler or a mixture comprising a mineral filler and an organic binder. An ink M consists of a mineral material precursor of the material M and an organic binder.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 16, 2012
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Claude Lucat, Francis Menil, Hélène Debeda-Hickel, Patrick Ginet
  • Publication number: 20120258241
    Abstract: The feasibility of adding glass to conventional SOFC cathode contact materials in order to improve bonding to adjacent materials in the cell stack is assessed. A variety of candidate glass compositions were added to LSM and SSC. The important properties of the resulting composites, including conductivity, sintering behavior, CTE, and adhesion to LSCF and MCO-coated 441 stainless steel were used as screening parameters. The most promising CCM/glass composites were coated onto MCO-coated 441 stainless steel substrates and subjected to ASR testing at 800° C. In all cases, ASR is found to be acceptable. Indeed, addition of glass is found to improve bonding of the CCM layer without sacrificing acceptable conductivity.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: The Regents of the University of California
    Inventors: Michael C. Tucker, Lutgard C. DeJonghe
  • Publication number: 20120258362
    Abstract: An electrode active material, a method of preparing the electrode active material, an electrode including the electrode active material, and a lithium secondary battery including the electrode; the electrode active material comprising a core active material; and a coating layer formed on a surface of the core active material, wherein the coating layer comprises a composition including a compound represented by Formula 1 below and a carbonaceous material, or a first coating layer including a carbonaceous material and a second coating layer including the compound represented by Formula 1 below: LixMy(PO4)z, ??Formula 1 where M is selected from the group consisting of alkali metal, alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element, and combinations thereof; 1?x?3, 0?y?3, and 1?z?3.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 11, 2012
    Applicant: Samsung Electronics Co. Ltd.
    Inventors: Sang-kook MAH, Gue-sung KIM