Rod, Strand, Filament Or Fiber Patents (Class 428/364)
  • Patent number: 8535800
    Abstract: A ballistic-resistant molded article having a compressed stack of sheets including reinforcing elongate bodies, where at least some of the elongate bodies are polyethylene elongate bodies that have a weight average molecular weight of at least 100,000 gram/mole. Methods for manufacturing ballistic-resistant molded articles are also provided.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: September 17, 2013
    Assignee: Teijin Aramid B.V.
    Inventors: Soon Joo Bovenschen, Marinus Johannes Gerardus Journee, Joris Van Der Eem, Erik Oscar Nienhuis, Johannes Bos
  • Patent number: 8523044
    Abstract: Provided in one embodiment is a method of forming an inorganic nanowire, comprising: providing an elongated organic scaffold; providing a plurality of inorganic nanoparticles attached to the organic scaffold along a length of the organic scaffold; and fusing the nanoparticles attached to the organic scaffold to form an inorganic nanowire.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 3, 2013
    Assignees: Board of Regents, The University of Texas System, Massachusetts Institute of Technology
    Inventors: Angela M. Belcher, Chuanbin Mao, Daniel J. Solis
  • Patent number: 8518526
    Abstract: An article includes a substrate having a surface and a nanofence supported by the surface. The nanofence includes a multiplicity of primary nanorods and branch nanorods, each of the primary nanorods being attached to said substrate, and each of the branch nanorods being attached to a primary nanorods and/or another branch nanorod. The primary and branch nanorods are arranged in a three-dimensional, interconnected, interpenetrating, grid-like network defining interstices within the nanofence. The article further includes an enveloping layer supported by the nanofence, disposed in the interstices, and forming a coating on the primary and branch nanorods. The enveloping layer has a different composition from that of the nanofence and includes a radial p-n single junction solar cell photovoltaic material and/or a radial p-n multiple junction solar cell photovoltaic material.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: August 27, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Sung-Hun Wee
  • Patent number: 8513147
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 20, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell
  • Publication number: 20130210308
    Abstract: Fibers that are formed from a thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density are provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. Fibers are thereafter formed and then stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”).
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Neil T. Scholl, Thomas A. Eby
  • Patent number: 8501898
    Abstract: A method polymerizes a monomer to form a polyamide having a reagent incorporated therein. In the method, a masterbatch is formed that includes the reagent. The masterbatch and the monomer are introduced into a reactor, and the monomer is polymerized in the presence of the reagent to form the polyamide having the reagent incorporated therein. The monomer may be a caprolactam monomer that may be polymerized in a VK tube reactor to form polyamide 6 having at least one free acid site. The reagent may be present in an amount of from 1 to 10 parts by weight per 100 parts by weight of the masterbatch. Additionally, the masterbatch and caprolactam may be introduced into the top of the VK tube reactor.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: August 6, 2013
    Assignee: BASF SE
    Inventors: Cesar G. Ortiz, William E. Grant
  • Patent number: 8501136
    Abstract: A method for preparing single-crystalline, rare-earth metal hexaboride nanowires by a chemical vapor deposition process is described. Also described are the nanowires themselves, the electron emitting properties of the nanowires, and the use of the nanowires in electron emitting devices, particularly as point electron sources.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: August 6, 2013
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Lu-Chang Qin, Han Zhang, Qi Zhang, Jie Tang
  • Patent number: 8501317
    Abstract: Cloth, in which air permeability is variable by energization, includes: a fibrous object composed of composite fibers, each of the composite fibers including: an electrical-conductive polymeric material; and a material different from the electrical-conductive polymeric material, the different material being directly stacked on the electrical-conductive polymeric material; and electrodes which are attached to the fibrous object, and energize the electrical-conductive polymeric material. Each of the composite fibers has a structure in which the material different from the electrical-conductive polymeric material is stacked on at least a part of a surface of the electrical-conductive polymeric material, or a structure in which either one of the electrical-conductive polymeric material and the material different from the electrical-conductive polymeric material penetrates the other material in a longitudinal direction.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 6, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Hiroaki Miura
  • Patent number: 8497008
    Abstract: Process for producing a laminate being built of at least two monolayers of polymeric tapes, the polymeric tapes having a tensile strength of at least 200 MPa, said process comprises the steps of forming a first monolayer of polymeric tapes by pre-tensioning the polymeric tapes and subsequently positioning the polymeric tapes under tension in a unidirectional, parallel manner, forming at least a second monolayer over the first monolayer in the same manner the first monolayer is formed, thereby stacking the at least two monolayers of polymeric tapes in such a way that the direction of the polymeric tapes is the same in every monolayer and that the polymeric tapes of each monolayer are offset to the tapes of the adjoining monolayer above or below that monolayer consolidating the thus stacked monolayers of polymeric tapes to obtain a laminate.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: July 30, 2013
    Assignee: Novameer B.V.
    Inventors: Jan Adolph Dam Backer, Bart Clemens Kranz
  • Patent number: 8481157
    Abstract: Polymeric fibers along with methods and systems for extruding polymeric fibers are disclosed. The extrusion process preferably involves the delivery of a lubricant separately from a polymer melt stream to each orifice of an extrusion die such that the lubricant preferably encases the polymer melt stream as it passes through the die orifice.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: July 9, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Bruce B. Wilson, Roger J. Stumo, Stanley C. Erickson, William J. Kopecky, James C. Breister
  • Publication number: 20130171381
    Abstract: A sandwich core material for a sandwich laminate is disclosed. The sandwich core material includes a number of flexible core material elements having a longitudinal structure. A flexible core material for a sandwich core material, a sandwich laminate and a wind turbine blade including such a sandwich core material are provided. In addition, the present a method of manufacturing such a sandwich core material is provided.
    Type: Application
    Filed: December 26, 2012
    Publication date: July 4, 2013
    Inventor: Erik Grove-Nielsen
  • Publication number: 20130171450
    Abstract: A cord, in particular for reinforcing tyres, containing a cellulosic multifilament yarn is disclosed, where the cellulosic multifilament yarn has a strength of at least 35 cN/tex and the individual filaments of the multifilament yarn have a linear density of at least 2.3 dtex. In use, such cords exhibit a significantly improved fatigue behaviour—i.e., a significantly higher fatigue resistance—than standard cords with an individual-filament linear density between 1 and 2 dtex.
    Type: Application
    Filed: August 4, 2011
    Publication date: July 4, 2013
    Applicant: CORDENKA GMBH & CO. KG
    Inventors: Britta Zimmerer, Kurt Uihlein, Holger Scheytt, Gerold Schwiersch, Dennis Moessinger
  • Patent number: 8476175
    Abstract: The invention relates to glass strands especially for the production of composites having an organic and/or inorganic matrix, the composition of which strands comprises the following constituents in the limits defined below, expressed as percentages by weight: SiO2 50-65% Al2O3 12-23% SiO2 + Al2O3 ??>79% CaO ?1-10% MgO ?6-12% Li2O ?1-3%, preferably 1-2% BaO + SrO ?0-3% B2O3 ?0-3% TiO2 ?0-3% Na2O + K2O ??<2% F2 ?0-1% Fe2O3 ??<1%. These strands are made of a glass offering an excellent compromise between its mechanical properties, represented by the specific Young's modulus, and its melting and fiberizing conditions.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: July 2, 2013
    Assignee: Saint-Gobain Adfors
    Inventor: Emmanuel Lecomte
  • Patent number: 8475919
    Abstract: A fiber blend for yarns and fabrics for use in military, fire-fighting, industrial work wear, and first responder protective clothing to provide multifunctional protection to the wearer, the fiber blend including an aramid fiber blend, wool fibers, and electrostatic dissipative fibers, wherein the aramid fiber blend includes meta-aramid fibers, para-aramid fibers and electrostatic dissipative fibers.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: July 2, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventor: Carole A. Winterhalter
  • Patent number: 8475899
    Abstract: The present invention provides a polymerization process which is conducted by contacting an olefin monomer and at least one olefin comonomer in the presence of hydrogen and a metallocene-based catalyst composition. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, low levels of long chain branches, and a ratio of Mw/Mn from about 3 to about 6.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 2, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Tony R. Crain, Randy S. Muninger, Jerry T. Lanier, Jeff S. Fodor, Paul J. Deslauriers, Chung C. Tso, David C. Rohlfing
  • Patent number: 8470222
    Abstract: A fiber formed from a thermoplastic composition that contains a thermoplastic starch and an aliphatic-aromatic copolyester is provided. The copolyester enhances the strength of the starch-containing fibers and also facilitates the ability of the starch to be melt processed. Due to its relatively low melting point, the aliphatic-aromatic copolyester may also be extruded with the thermoplastic starch at a temperature that is low enough to avoid substantial removal of the moisture found in the starch. Furthermore, the aliphatic-aromatic copolyester is also modified with an alcohol so that it contains one or more hydroxyalkyl or alkyl terminal groups. By selectively controlling the conditions of the alcoholysis reaction (e.g., alcohol and copolymer concentrations, temperature, etc.), the resulting modified aliphatic-aromatic copolyester may have a molecular weight that is relatively low.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: June 25, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Bo Shi, James H. Wang, Aimin He
  • Patent number: 8466205
    Abstract: The present invention pertains to carpet and methods of making and recycling carpet. In one aspect, the carpet includes: a primary backing which has a face and a back surface; a plurality of fibers attached to the primary backing and extending from the face of the primary backing and exposed at the back surface of the primary backing; an adhesive composition backing; and an optional secondary backing adjacent to the adhesive backing. The method of making carpet includes extrusion coating the adhesive composition onto the back surface of a primary backing to form the adhesive composition backing. The method of recycling carpet can recover one or more polymeric carpet components.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: June 18, 2013
    Assignee: Columbia Insurance Company
    Inventors: Jeffrey Wright, Kellie Ballew
  • Publication number: 20130149933
    Abstract: The present invention relates to a cellulosic regenerated fiber which contains an incorporated luminous pigment and an incorporated color pigment and the use of these for the production of yarns, textile fabrics and an article of reflective clothing and a process for the production of these fibers. This fiber satisfies the demands of standard EN 471, standard EN 1150, standard CAN/CSA, standard ANSI/ISEA and standard BS 471 with regard to light density, the color space and fastness values.
    Type: Application
    Filed: July 11, 2011
    Publication date: June 13, 2013
    Applicant: Lenzing AG
    Inventors: Ksenija Varga, Gert Kroner, Peter Wessely, Johann Männer
  • Patent number: 8461262
    Abstract: A biodegradable fiber that is formed from a thermoplastic composition that contains polylactic acid, a plasticizer, and a compatibilizer is provided. The compatibilizer includes a polymer that is modified with a polar compound that is compatible with the plasticizer and a non-polar component provided by the polymer backbone that is compatible with polylactic acid. Such functionalized polymers may thus stabilize each of the polymer phases and reduce plasticizer migration. By reducing the plasticizer migration, the composition may remain ductile and soft. Further, addition of the functionalized polymer may also promote improved bonding and initiate crystallization faster than conventional polylactic acid fibers. The polar compound includes an organic acid, an anhydride of an organic acid, an amide of an organic acid, or a combination thereof. Such compounds are believed to be more compatible with the generally acidic nature of the polylactic acid fibers.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 11, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ryan J. McEneany, Vasily A. Topolkaraev, Aimin He
  • Patent number: 8460790
    Abstract: The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10?7 to 2×10?4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10?7 to 2×10?4 dtex.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 11, 2013
    Assignee: TORAY Industries, Inc.
    Inventors: Takashi Ochi, Akira Kishiro, Shuichi Nonaka
  • Patent number: 8455081
    Abstract: The invention relates to a preformed sheet comprising at least two mono-layers, each mono-layer containing a fibrous network with fibers having a tensile strength of at least about 1.2 GPa and a tensile modulus of at least 40 GPa and a binder, and a separating film on at least one of its outer surfaces, characterized in that the separating film has an areal density of between 1 and 5 g/m2. With this preformed sheet assemblies and articles offering a substantially higher ballistic protection level at a certain weight can be obtained. The invention further relates to an assembly of at least two such sheets and to a flexible ballistic-resistant article comprising said assembly.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 4, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Martinus Johannas Nicolaas Jacobs, Martin Antonius Van Es
  • Publication number: 20130130028
    Abstract: Disclosed is a method for preparing a precursor fiber for a carbon fiber. The precursor fiber of fine denier according to the present invention is used to prepare a carbon fiber having excellent tensile strength and compressive strength by a conventional single component spinneret using a superdrawing process to prepare a high strength and high elastic carbon fiber with a reduction in stabilization time.
    Type: Application
    Filed: February 14, 2012
    Publication date: May 23, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Young-Ho Choi, Jeong Min Cho, Do Suck Han, Chi-Hoon Choi
  • Publication number: 20130130029
    Abstract: An ultrahigh molecular weight polyolefin yarn of the present invention has been drawn and has a melting point that is determined as a maximum peak temperature measured by a differential scanning calorimeter (DSC) at a temperature rise rate of 20° C./min, and the melting point is higher than a melting point of the yarn before drawing. In a production method of the present invention, a drawing bath (3) that includes a hollow yarn path (14) and a jacket portion (13) in which a heated liquid circulates is placed in a drawing zone, and the yarn is heated and drawn while passing through the yarn path (14) in a non-contact manner. A drawing device of the present invention includes a feeder (1) for feeding a yarn, a drawing bath (3) for heating and drawing the yarn, and a winder (5) for winding up the drawn yarn. The drawing bath (3) includes a hollow yarn path (14) and a jacket portion (13) in which a heated liquid circulates.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 23, 2013
    Applicant: GOSEN CO., LTD.
    Inventors: Masayuki Hirose, Atsunori Yasunaga, Shoji Uesugi
  • Patent number: 8440297
    Abstract: The instant invention generally provides polymer organoclay composite comprising a molecularly self-assembling material and an organoclay, and a process of making and an article comprising the polymer organoclay composite. The instant invention also generally provides a fiber comprising the polymer organoclay composite, and a process of fabricating and an article comprising the fiber.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 14, 2013
    Inventors: Leonardo C. Lopez, Scott T. Matteucci, Sarada P. Namhata
  • Publication number: 20130115452
    Abstract: A method for producing a bale of crimped tow band may include providing a tow band having about 10 denier per filament or greater and about 20,000 total denier or less, the tow band comprising a plurality of cellulose acetate filaments; crimping the tow band thereby yielding a crimped tow band; conditioning the crimped tow band; and baling the crimped tow band to form a bale.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: Celanese Acetate LLC
    Inventors: Christopher M. Bundren, William S. Sanderson, Paul Busby, Edward J. Clark
  • Patent number: 8420202
    Abstract: A stab and ballistic resistant material and method of preparing the same, comprising a stab-resistant layer and a ballistic resistant layer, wherein the stab-resistant layer comprises at least one layer, wherein each layer is constituted of two structural units, each of which is formed from perpendicularly combined high strength and high module unidirectional fiber prepreg strips, adjacent structural units are rotated 45°, and the stab-resistant layer has membranes adhered to both sides; the ballistic resistant layer comprises at least one layer, wherein each layer is constituted of two structural units, each of which is formed from perpendicularly combined unidirectional fiber prepreg strips, adjacent structural units are rotated 90°, and the ballistic resistant layer has membranes adhered to both sides. The stab and ballistic resistant material of the invention makes stab and ballistic resistant vests lighter, more efficient in protection, and easy to produce.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Hunan Zhongtal Special Equipment Co., Ltd.
    Inventors: Nianci Yang, Zhiquan Wu, Mingquing Lin, Chuanquing Wu, Bo Gao, Yunbo Zhou, Haijun Lin, Yuanjun Zhang, Wanqi Zhou, Yong Guo
  • Patent number: 8421062
    Abstract: A nanofiber composite including a nanofiber formed of a hydrophobic polymer, a nanowire formed of a conductive or semiconductive organic material that is oriented in the nanofiber in the longitudinal direction of the nanofiber, and an ionic active material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyun Hur, Jong-jin Park, Seung-nam Cha, Jong-min Kim, Chi-yul Yoon
  • Patent number: 8410006
    Abstract: The present invention is directed to a high surface area fibers and an improved filter composite media made from the same. More specifically, the composite media preferably comprises a winged-fiber layer having high surface area fibers for increased absorption and strength and a meltblown layer for additional filtration. In one preferred embodiment the high surface area fibers have a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the high surface area fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The high surface area fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 2, 2013
    Inventors: Walter Chappas, Behnam Pourdeyhimi
  • Patent number: 8408219
    Abstract: Dental floss products are provided which include a unitary tape of ultra-high molar mass polyethylene having an intrinsic viscosity of at least 5 dl/g, as measured in decalin at 135° C., the tape having a thickness of about 0.02-0.1 mm and a width of about 0.25-6 mm, and a tensile strength of at least 1.8 GPa. The dental floss products have very high mechanical, especially tensile strength, and show high resistance to tearing and has a low coefficient of friction. The tape can be inserted between teeth tightly together without breaking. A further advantage of the dental tape products is that most of the initial strength during flossing is retained, even if the tape separates into filaments. Processes for making a unitary tape suitable for use in a dental floss product are also provided.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: April 2, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Carina S. Snijder, Christiaan H. P. Dirks, Leonard J. A. Nielaba
  • Patent number: 8399573
    Abstract: Thermoplastic compositions having miscible and compatible immiscible polymer blends are disclosed. The miscible polymer blends have a single glass transition temperature. The compatible polymer blends have two glass transition temperatures.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: March 19, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Robert Russell Gallucci, Tara Mullen, Roy Odle, Kapil Chandrakant Sheth, James M. White
  • Patent number: 8399044
    Abstract: A method for coating medication for a medical product is disclosed. A technique for coating gel in a viscous semisolid state is provided to facilitate coating of medication. Coating of medication on an article can be facilitated using gel, and coating of medication on an article such as an article made of silk and an article made of polypropylene can be further facilitated.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 19, 2013
    Assignee: SNU R and DB Foundation
    Inventors: Jong-Sang Park, Dae-Joong Kim, In-Su Baek, Chengzhe Bai
  • Publication number: 20130059495
    Abstract: An article comprising a yarn; wherein said yarn comprises: (a) a plurality of bulked continuous filaments; (b) a denier of about 200 to 2000; (c) a denier per filament of about 1 to about 20; and (d) a tenacity of about 2.0 to about 7.0 grams per denier; wherein said yarn is interlaced.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 7, 2013
    Applicant: INVISTA North America S.a r.l.
    Inventors: David S. DEMPSTER, Allen W. Mortimer, Todd C. Barnes
  • Publication number: 20130045383
    Abstract: An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Xiaofeng Qiu, Mariappan Parans Paranthaman, Miaofang Chi, Ilia N. Ivanov, Zhenyu Zhang
  • Patent number: 8377554
    Abstract: Anti-tack additives for elastic fibers and methods of preparing the same are included. The elastic fibers include a substituted cellulose additive.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: February 19, 2013
    Assignee: INVISTA North America S.ár.l.
    Inventors: Kenneth Edward Martin, Ronald D. Bing-Wo, Robert L. Lock
  • Patent number: 8367201
    Abstract: Disclosed is a chromium-free rust-inhibitive surface treatment agent to form a siliceous film that rarely cracks or peels off and yields an excellent rust-inhibitive performance on zinc surfaces of a metal part. The chromium-free rust-inhibitive surface treatment agent is an alcoholic solution of alkoxysilane oligomer having weight-averaged molecular weight of 1,000 to 10,000, and 2.5 to 15% of silicon in molecules of the alkoxysilane oligomer has been replaced with titanium. To prepare partly titanium-replaced alkoxysilane oligomer, titanium compound, in which about a half of alkoxy groups in titanium tetraalkoxide has been chelated, is reacted with tetraalkoxysilane monomer or alkoxysilane oligomer in the alcoholic solution.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 5, 2013
    Assignee: Hoden Seimitsu Kako Kenkyusho Co., Ltd.
    Inventors: Yasuhiko Endo, Hideaki Nogami, Shunjiro Watanabe, Shoichiro Adachi, Yukiyasu Kang
  • Patent number: 8367194
    Abstract: It is an object of the present invention to provide round fiber-reinforced plastic strand, a manufacturing method thereof, and a fiber-reinforced sheet which eliminate limitation in forming speed and limit on number of products capable of being manufactured at a time, do not require use of a release agent, eliminate the necessity of operations such as roughing after forming, and thus permit a considerable reduction of the manufacturing cost and a remarkable increase in the product quality.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: February 5, 2013
    Assignee: Nippon Steel Composite Co., Ltd.
    Inventors: Toshikazu Takeda, Masaki Shimada, Hidehiko Hino, Masaki Arazoe
  • Patent number: 8367203
    Abstract: The present invention relates to a cellulosic molded body containing a cellulose/clay nanocomposite, wherein the clay component of said nanocomposite comprises a material selected from the group consisting of unmodified hectorite clays and hydrophilically modified hectorite clays.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 5, 2013
    Assignee: Lenzing Aktiengesellschaft
    Inventors: Harmut Rüf, Heinrich Firgo, Gert Kroner
  • Patent number: 8361618
    Abstract: A composite configured to release refrigerant therefrom comprises a substrate material comprising polarized fibers of glass, polyamide, phenylene sulfide, carbon or graphite or combinations of two or more thereof having bonded thereon a metal compound comprising a complex compound of a polar gaseous refrigerant and a metal salt and/or a hydrated metal hydroxide and/or a metal hydroxide of a metal comprising alkali metal, alkaline earth metal, transition metal, zinc, cadmium, tin, aluminum, or two or more thereof, at a concentration of at least about 0.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: January 29, 2013
    Assignee: Rocky Research
    Inventors: Uwe Rockenfeller, Kaveh Khalili
  • Patent number: 8357433
    Abstract: Polymer brushes (50) in a resin that create phonon pathways therein. The polymer brushes themselves comprise structured polymer hairs having a density of 0.8 to 1.0 g/cc, a chain length of 1 to 1000 nm, and a thermal conductivity of 0.5 to 5.0 W/mK. The polymer brushes are 10-25% by volume of the resin, and the polymer hairs can orient surrounding resin molecules to the polymer hairs alignment (55).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Gary C. Stevens, James D. B. Smith, John W. Wood
  • Patent number: 8354156
    Abstract: A prepreg base material includes reinforcing fibers arranged substantially in one direction and a matrix resin between the reinforcing fibers, wherein the prepreg base material has substantially throughout its entire surface incisions, each incision extending in a direction substantially crossing the reinforcing fibers, wherein substantially all of the reinforcing fibers are divided by the incisions, a length (L) of each of reinforcing fiber segments formed by the incisions is in the range of 10 to 100 mm, a thickness H of the prepreg base material is in the range of 30 to 300 ?m, and a fiber volume content by Vf of the reinforcing fibers is in the range of 45 to 65%.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 15, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Ichiro Taketa, Narumichi Sato, Eisuke Wadahara
  • Patent number: 8349449
    Abstract: The invention covers a method of forming functionally active fibers and substrates including functionally active fibers. The method includes forming a mixture of at least one poly vinyl polymer and at least one bleaching active. The mixture is then injected at a controlled flow rate into an electric field to cause the mixture to at least partially form fine fibers that have an average diameter of less than about 1000 nanometers.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 8, 2013
    Assignee: The Clorox Company
    Inventors: Marc Privitera, David Jackson Lestage, Edward Jason White
  • Patent number: 8349523
    Abstract: To provide an electrolyte membrane having excellent dimensional stability even upon absorption of water, a high proton conductance and high power generation performance; and a process for producing the electrolyte membrane with a high productivity. An electrolyte membrane for polymer electrolyte fuel cells, which is made mainly of an ion exchange resin and reinforced with a nonwoven fabric made of fiber of a fluororesin wherein at least some of intersecting points of the fiber are fixed, and which has, as the outermost layer on one side or each side, a layer not reinforced, made of an ion exchange resin which may be the same as or different from the above ion exchange resin, wherein the fluororesin is an ethylene/tetrafluoroethylene copolymer having a melting point of at most 240° C., and the above fixing is fixing by fusion of the fiber.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: January 8, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Seigo Kotera, Hiroyuki Watabe, Shigeru Aida
  • Patent number: 8349944
    Abstract: The invention concerns a polymer dispersion free of water and volatile organic solvent for preparing a lubricating composition for glass yarns and for finishing glass yarns and assembling glass yarns, in particular for grids and fabrics. The dispersion comprises the product of polymerization of a vinyl monomer in the presence of a free radical initiator in a reactive organic dispersion medium.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 8, 2013
    Assignee: Saint-Gobain Adfors
    Inventors: Gerard Riess, Christelle Delaite, Kamal Hariri, Patrick Moireau
  • Patent number: 8343625
    Abstract: Polysaccharides and/or hydroxyl polymers, more particularly, structures, especially fibers, comprising a polysaccharide and/or hydroxyl polymer and an association agent, fibrous structures comprising such structures and processes for making such structures and/or fibrous structures are provided.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 1, 2013
    Assignee: The Procter & Gamble Company
    Inventors: Larry Neil Mackey, Gregory Charles Gordon, Stephen Wayne Heinzman
  • Patent number: 8329293
    Abstract: A carbon fiber composite material having an elastomer and vapor-grown carbon fibers dispersed in the elastomer. The vapor-grown carbon fibers are rigid fibers having an average diameter of 20 to 200 nm, an average length of 5 to 20 micrometers, and an average value of bending indices defined by the following expression (1) of 5 to 15, Bending index=Lx÷D??(1) Lx: length of linear portion of the vapor-grown carbon fiber, and D: diameter of the vapor-grown carbon fiber. The carbon fiber composite material has a dynamic modulus of elasticity (E?) at 150° C. of 30 MPa or more and an elongation at break (EB) of 140% or more.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 11, 2012
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Toru Noguchi, Akira Magario, Morinobu Endo
  • Publication number: 20120309250
    Abstract: Nanofibers are fabricated by introducing a mixture of a polymer solution and inorganic precursor into a dispersion medium and shearing the mixture. Liquid strands, streaks or droplets of the mixture are spun into elongated fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
    Type: Application
    Filed: May 16, 2012
    Publication date: December 6, 2012
    Applicant: NORTH CAROLINA STATE UNIVERSITY
    Inventors: ORLIN D. VELEV, STOYAN SMOUKOV
  • Patent number: 8323791
    Abstract: A polyamide filament is disclosed. The filament includes a polyamide resin. The resin is obtained from mixing crystalline polyamide (A) with another polyamide (B). Crystalline polyamide (A) is obtained by a polycondensation reaction of metaxylenediamine and adipic acid. Crystalline polyamide (A) comprises from 5 to 50 wt. % of the resin. Polyamide (B) comprises from 50 to 95 wt. % of the resin. The filament is heated to 160 to 200° C. under a constant length condition at an initial load of 20 mg/d. After heating, a thermal contraction stress of the filament is not reduced in a cool-down region not greater than 80° C.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: December 4, 2012
    Assignee: Nippon Filcon Co., Ltd.
    Inventor: Shinya Murakami
  • Patent number: 8318297
    Abstract: In one aspect, the present invention relates to a synthetic nanostructure. In one embodiment, the synthetic nanostructure has a top region substantially comprising titanate nanowires, a middle region substantially comprising titanate nanoparticles and titanate nanowires, and a bottom region substantially comprising titanium, wherein some of the titanate nanowires of the top region are extending into the middle region, wherein the middle region is between the top region and the bottom region, and wherein some of the titanate nanowires of the top region are substantially perpendicular to the bottom surface of the titanium substrate. At least some of the titanate nanowires in the top region form 3D macroporous scaffolds with interconnected macropores.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Z. Ryan Tian, Joshua Epstein
  • Publication number: 20120295074
    Abstract: An array of nanowires and method thereof. The array of nanowires includes a plurality of nanowires. The plurality of nanowires includes a plurality of first ends and a plurality of second ends respectively. For each of the plurality of nanowires, a corresponding first end selected from the plurality of first ends and a corresponding second end selected from the plurality of second ends are separated by a distance of at least 200 ?m. All nanowires of the plurality of nanowires are substantially parallel to each other.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 22, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Matthew L. Scullin, Gabriel Alejandro Matus, Dawn L. Hilken, Chii Guang Lee, Sylvain Muckenhirn
  • Patent number: 8314044
    Abstract: Permeable composite fibrous catalytic sheets comprised of at least three distinct solid phases. A first solid phase is an electrically conductive phase comprised of randomly oriented electrically conductive carbon fibers. A second solid phase is a 3-dimensional porous network of a non-conductive porous ceramic material. A third phase is comprised of catalytic particles dispersed on said 3-dimensional porous network.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: November 20, 2012
    Inventor: Juzer Jangbarwala