Microcapsule With Fluid Core (includes Liposome) Patents (Class 428/402.2)
  • Patent number: 9243130
    Abstract: The invention relates to metal oxide or semimetal oxide nanoparticles having an average particle size of from 2 to 250 nm, characterized in that the nanoparticles have at least two different, free-radically polymerizable groups on the surface. The invention further relates to nanocomposites produced from such nanoparticles and also processes for producing them.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: January 26, 2016
    Assignee: Evonik Nanoresins GmbH
    Inventors: Klaus Langerbeins, Uwe Dietrich Kühner, Werner Siol
  • Patent number: 9241912
    Abstract: The present invention relates to microcapsules comprising a polyurea shell and a core, which contains a pesticide, a water-immiscible solvent A and at least 5 wt % of an aprotic, polar solvent B, which has a solubility in water from 0.5 to 20 g/l at 20° C., based on the total weight of the solvents in the core. It further relates to microcapsules comprising a shell and a core, which contains a pesticide and 2-heptanone; to a method for preparing said microcapsules; to an aqueous composition comprising said microcapsules; and to a method for controlling phytopathogenic fungi and/or undesired plant growth and/or undesired attack by insects or mites and/or for regulating the growth of plants, with said microcapsules.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: January 26, 2016
    Assignee: BASF SE
    Inventors: Claude Taranta, Thomas Bork, Tina Schroeder-Grimonpont, Britta Katz, Tatjana Sikuljak, Simon Nord, Juergen Distler, Richard A. Warriner, Daniel Bihlmeyer, James Thomas Wofford
  • Patent number: 9211235
    Abstract: The present invention relates in a first aspect to an adhesion material for use in an individual containing encapsulated phase-change material. In particular, the adhesion material is for cosmetical or medicinal use in the body of an individual. The adhesion material contains encapsulated phase-change material having preferably a phase transition temperature above 40° C., like above 55° C. The adhesion material is particularly useful for adhering elements, like dental restorations, e.g. crowns or bridge, or brackets on elements in the body of an individual, like teeth or implants. That is, the adhesion material is particularly useful for adhering material in dental applications. In another aspect, a method is provided allowing removing a bracket, a crown or bridge, from implants, abutments or teeth. Furthermore, dental implant restoration systems and kits for permanent fixation of implants allowing improved removal thereof are provided.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: December 15, 2015
    Assignee: Rheinisch-Westfaelische Technisch Hochschule Aachen
    Inventors: Stefan Wolfart, Andrij Pich
  • Patent number: 9107824
    Abstract: One aspect of the invention relates to methods of treating cancer in a patient comprising administering intraperitoneally to a patient in need thereof a cancer treating effective amount of a composition comprising a lipid-complexed platinum compound wherein the concentration of the platinum compound of the lipid-complexed platinum compound composition is greater than about 1.2 mg/ml. Another aspect of the invention relates to lipid-complexed platinum compound compositions where the concentration of the platinum compound is greater than about 1.2 mg/ml.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 18, 2015
    Assignee: Insmed Incorporated
    Inventors: Frank G. Pilkiewicz, Roman Perez-Soler, Yiyu Zou, Walter R. Perkins, Jin K. Lee, Vladimir Malinin
  • Patent number: 9067395
    Abstract: A low temperature curable epoxy tape is provided that can be useful as a semi-structural adhesive tape in the automotive, aerospace, and electronics industries to form metal-to-metal and metal-to-plastic bonds. The provided epoxy tape includes a curative layer. The curative layer includes a scrim, a binder layer at least partially enclosing the scrim, and a latent curative dispersed in the binder layer. The curative layer is coated and then dried of solvent. Then an epoxy layer is laminated to a top and a bottom of the curative layer. The epoxy tape is placed between two parts being bonded together and then heated to temperatures of bottom up to about 110° C. to activate and disperse the active curative. A semi-structural bond is formed. Also, a method of making the epoxy tape is provided.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 30, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: David J. Plaut, Sean M. Tsuji, Chin Teong Ong, Siang Kwang Lee
  • Patent number: 9056058
    Abstract: Disclosed are microcapsules and methods for preparing and using them, as well as methods for improving various properties of microcapsules like impermeability.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: June 16, 2015
    Assignee: DSM Nutritional Products
    Inventors: Jin Yulai, Colin James Barrow, Wei Zhang, Cuie Yan, Jonathan Michael Curtis, Shawn Moulton, Nancy Beatrice Djogbenou, Lesek Alexa Demont
  • Patent number: 9056302
    Abstract: The present invention relates to microcapsules comprising a capsule core and a capsule wall, obtainable by a process comprising the free-radical polymerization of an oil-in-water emulsion which comprises the following constituents: 30 to 90% by weight based on the total weight of the monomers of one or more monomers (monomers I) from the group comprising C1-C24-alkyl esters of acrylic acid and/or methacrylic acid, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid 10 to 70% by weight based on the total weight of the monomers of one or more ethylenically unsaturated crosslinkers (monomers II), where at least 10% by weight, based on the total weight of the monomers I, II and III, is a highly branched polymeric crosslinker, 0 to 30% by weight based on the total weight of the monomers of one or more monounsaturated monomers (monomer III), which are different from the monomers I, and a hydrophobic core material, to a process for their preparation and to their use.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 16, 2015
    Assignee: BASF SE
    Inventors: Marc Rudolf Jung, Francisco Javier Lopez Villanueva, Tina Schroeder-Grimonpont, Monika Haberecht, Bernd Bruchmann
  • Patent number: 9040157
    Abstract: In one aspect, hollow nanoparticles are described herein. In some embodiments, a hollow nanoparticle comprises a metal shell and a cavity substantially defined by the shell, wherein the shell has a thickness greater than or equal to about 5 nm and the cavity has a curved surface. In another aspect, methods of making hollow nanoparticles are described herein. In some embodiments, a method of making hollow nanoparticles comprises forming a plurality of gas bubbles and forming a shell on the surface of at least one of the plurality of gas bubbles, wherein at least one of the gas bubbles is electrochemically generated. In another aspect, composite particles are described herein. In some embodiments, a composite particle comprises at least one nanoparticle and a polycrystalline metal shell substantially encapsulating at least one nanoparticle, wherein at least one surface of at least one nanoparticle is not in contact with the shell.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 26, 2015
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yaowu Hao, Chien-Wen Huang
  • Patent number: 9028965
    Abstract: Disclosed are heat storage microcapsules encapsulating a water-soluble heat storage material stably and certainly, heat storage microcapsules with high durability which prevent phase separation of an inorganic salt hydrate latent heat storage material, heat storage microcapsules which prevent supercooling of a latent heat storage material to exhibit stable heat history and a manufacturing method thereof. The heat storage microcapsules comprise a core covered with a shell, wherein the core contains (a) at least one water-soluble latent heat storage material selected from a salt hydrate and a sugar alcohol and (b) a polymer derived from a water-soluble monomer mixture of a water-soluble monofunctional monomer and a water-soluble multifunctional monomer, and the shell is composed of a hydrophobic resin.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 12, 2015
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Mikio Kouyama, Ken Ohmura
  • Patent number: 9005494
    Abstract: Prior art processes for producing protein-based capsules (for example, capsules for use in electrophoretic media) tend to be wasteful because they produce many capsules outside the desired size range, which is typically about 20 to 50 ?m. Capsule size distribution and yields can be improved by either (a) emulsifying a water-immiscible phase in a preformed coacervate of the protein; or (b) using a limited coalescence process with colloidal alumina as the surface-active particulate material.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 14, 2015
    Assignee: E Ink Corporation
    Inventors: Peter J. Valianatos, Rajesh Chebiyam, Jeremy J. Manning, Michael L. Steiner, Thomas H. Whitesides, Michael D. Walls
  • Patent number: 8986838
    Abstract: Elastic and ultra-lightweight hollow carbon fine particles and a method for producing such hollow carbon fine particles are to be provided. In the method, fine droplets are formed from a mixed solution containing a water soluble organic substance and lithium carbonate; composite fine particles of the water soluble organic substance and the lithium carbonate are prepared by drying the fine droplets formed from the mixed solution; and the composite fine particles are decomposed at a temperature in a range of 500° C. to 900° C.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 24, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Katsumi Kamegawa, Tsuyoshi Sakaki, Kinya Sakanishi, Masaya Kodama, Keiko Nishikubo, Yoshio Adachi
  • Patent number: 8968872
    Abstract: Microcapsules comprising an agglomeration of primary microcapsules, each individual primary microcapsule having a primary shell and the agglomeration being encapsulated by an outer shell, may be prepared by providing an aqueous mixture of a loading substance and a shell material, adjusting pH, temperature, concentration and/or mixing speed to form primary shells of shell material around the loading substance and cooling the aqueous mixture until the primary shells agglomerate and an outer shell of shell material forms around the agglomeration. Such microcapsules are useful for storing a substance and for delivering the substance to a desired environment.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 3, 2015
    Assignee: DSM Nutritional Products AG
    Inventor: Nianxi Yan
  • Patent number: 8957122
    Abstract: A thermoplastic molding composition is provided, which comprises A) from 30 to 90% by weight of at least one thermoplastic polymer, B) from 10 to 70% by weight of microcapsules with a capsule core made of latent-heat-accumulator material and a polymer as capsule wall, where the latent-heat-accumulator material has its solid/liquid phase transition in the temperature range from ?20° C. to 120° C.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 17, 2015
    Assignee: BASF SE
    Inventors: Stephan Altmann, Dirk Opfermann, Tina Schroeder-Grimonpont, Marco Schmidt
  • Patent number: 8951639
    Abstract: A method of making capsules includes forming a mixture including a core liquid, a polyurethane precursor system, a first component of a two-component poly(urea-formaldehyde) precursor system, and a solvent. The method further includes emulsifying the mixture, adding a second component of the two-component poly(urea-formaldehyde) precursor system to the emulsified mixture, and maintaining the emulsified mixture at a temperature and for a time sufficient to form a plurality of capsules that encapsulate at least a portion of the core liquid. The capsules made by the method may include a polymerizer in the capsules, where the capsules have an inner capsule wall including a polyurethane, and an outer capsule wall including a poly(urea-formaldehyde). The capsules may include in the solid polymer matrix of a composite material.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: February 10, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Scott R. White, Jeffrey S. Moore, Nancy R. Sottos, Benjamin J. Blaiszik, Mary M. Caruso, Christian L. Mangun
  • Patent number: 8951570
    Abstract: An extrusion process comprises extruding a material that is flowable when heated and passing the extrudate thus formed through a nozzle 10 to shape the extrudate into a plurality of substantially uniformly shaped elements such as minispheres or minicapsules.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: February 10, 2015
    Assignee: Sigmoid Pharma Limited
    Inventor: Ivan Coulter
  • Patent number: 8951542
    Abstract: The invention provides delivery systems comprised of stabilized multilamellar vesicles, as well as compositions, methods of synthesis, and methods of use thereof. The stabilized multilamellar vesicles may comprise prophylactic, therapeutic and/or diagnostic agents.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: February 10, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Darrell J. Irvine, Jaehyun Moon
  • Patent number: 8945504
    Abstract: The present invention relates to nano structures of metal oxides having a nanostructured shell (or wall), and an internal space or void. Nanostructures may be nanoparticles, nanorod/belts/arrays, nanotubes, nanodisks, nanoboxes, hollow nanospheres, and mesoporous structures, among other nanostructures. The nanostructures are composed of polycrystalline metal, oxides such as SnO2. The nanostructures may have concentric walls which surround the internal space of cavity. There may be two or more concentric shells or walls. The internal space may contain a core such ferric oxides or other materials which have functional properties. The invention also provides for a novel, inexpensive, high-yield method for mass production of hollow metal oxide nanostructures. The method may be template free or contain a template such as silica. The nanostructures prepared by the methods of the invention provide for improved cycling performance when tested using rechargeable lithium-ion batteries.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 3, 2015
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Lynden A. Archer, Xiong Wen Lou
  • Patent number: 8940394
    Abstract: Methods of preparing molecularly imprinted polymers are provided. In one embodiment, a method comprises providing a solution comprising a template molecule; and forming a product comprising calcium alginate in the presence of the template molecule so that the template molecule is imprinted in the product.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: January 27, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Nicholas A. Peppas, Edgar Perez-Herrero
  • Patent number: 8932706
    Abstract: A laminate including a plurality of layers, wherein one of the layers is a heat-activatable expandable layer including a thermally expandable composition. The heat-activatable expandable layer includes a plurality of microcapsules containing the thermally expandable composition. This thermally expandable composition includes an easily volatilizable hydrocarbon, and a binder resin. When subjected to high temperatures during the process of applying a label, the microcapsules rupture and the thermally expandable composition “foams,” which can be used to provide a texture to the label, and can raise or surround the graphics of the label.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 13, 2015
    Assignee: Multi-Color Corporation
    Inventors: Jean-Paul Laprade, Philip J. Albenice, Jean Donatelli, John W. Geurtsen
  • Patent number: 8932714
    Abstract: A method for controlling a particle diameter and a particle diameter distribution of emulsion particles during manufacturing of an emulsion dispersion is provided. The method includes causing two or more types of liquids substantially immiscible with each other to continuously and sequentially pass through net bodies. The net bodies are disposed in a cylindrical flow passage at intervals of 5 to 200 mm, and the number of the net bodies is more than 50 and 200 or less. Each of the net bodies is equivalent to a gauze having a mesh number of 35 mesh to 4000 mesh in accordance with an ASTM standard and has a surface that intersects the direction of the flow passage. An emulsification apparatus used for the method includes a feed pump for feeding two or more types of liquids substantially immiscible with each other; and a cylindrical flow passage to which the two or more types of liquids fed by the feed pump are delivered.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: January 13, 2015
    Assignee: Nippon Oil Corporation
    Inventors: Toshikatsu Shoko, Yasuo Togami, Akira Takagi, Hideko Hayashi
  • Publication number: 20140356289
    Abstract: The invention provides a droplet encapsulate comprising: a drop of a hydrophobic medium; a peripheral layer of non-polymeric amphipathic molecules around the surface of the drop; and an aqueous droplet within the peripheral layer, the aqueous droplet comprising: (a) an aqueous medium and (b) an outer layer of non-polymeric amphipathic molecules around the surface of the aqueous medium. The invention also provides processes for preparing the droplet encapsulates. Various uses of the droplet encapsulates are also described, including their use as drug delivery vehicles, in synthetic biology, and in the study of membrane proteins.
    Type: Application
    Filed: November 2, 2012
    Publication date: December 4, 2014
    Inventors: John Hagan Pryce Bayley, Andrew Heron, Gabriel Villar
  • Patent number: 8900630
    Abstract: Single-core and multi-core microcapsules are provided, having multiple shells, at least one of which is formed of a complex coacervate of two components of shell materials. The complex coacervate may be the same or different for each shell. Also provided are methods for making the microcapsules.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 2, 2014
    Assignee: DSM Nutritional Products
    Inventors: Nianxi Yan, Yulai Jin
  • Patent number: 8888908
    Abstract: Disclosed are improved colorant compositions that are suitable for encapsulation in an impact-rupturable casing that is adapted for intact projectile motion and rupture upon contact with a target surface. In many embodiments, the colorant compositions comprise (a) a carrier comprising: (i) a metathesized unsaturated polyol ester; and (ii) a polyol ester; and (b) a colorant. The colorant compositions are useful in paint balls for use in conjunction with projectile devices, such as paint ball markers.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: November 18, 2014
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Timothy A. Murphy, Brent A. Aufdembrink
  • Patent number: 8883254
    Abstract: Disclosed is a method of synthesizing hollow silica having the size of micrometers from sodium silicate. The method includes fabricating a polystyrene organic template from polystyrene latex, (B) cleaning the polystyrene organic template, (C) exchanging media by using a water-base medium, introducing the cleaned polystyrene organic template and sodium silicate, and preparing a silica-coated organic template by performing an acidic hydrolysis reaction, and (D) cleaning the silica-coated organic template included in the water-base medium by using water. The size of the organic template is adjusted by controlling an amount of introduced AIBN included when the organic template is fabricated. The cleaning of the organic template is preferably performed by using water (H2O). The method further includes (B) removing the organic template by using THF and (F) cleaning the hollow silica having no organic template.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: November 11, 2014
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Jiwoong Kim, Hee Dong Jang, Han Kwon Chang
  • Patent number: 8871347
    Abstract: An aluminum chelate-based latent curing agent having excellent latency and thermal response includes a latent curing agent in which an aluminum chelating agent is retained in a porous resin obtained by interfacial polymerization of a polyfunctional isocyanate compound, and an enzyme-treated gelatin film coating such latent curing agent. This microcapsule-type latent curing agent can be produced by dissolving an aluminum chelating agent and a polyfunctional isocyanate compound in a volatile organic solvent, charging the obtained solution into a gelatin-containing aqueous phase, carrying out interfacial polymerization by heating and stirring, and subjecting the gelatin to an enzyme treatment by adding an enzyme to the obtained polymerization reaction mixture.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: October 28, 2014
    Assignee: Dexerials Corporation
    Inventor: Kazunobu Kamiya
  • Patent number: 8865798
    Abstract: A self-healing material comprises a matrix embedded with micro-pockets of a healing-agent releasable by a crack in the matrix. The healing-agent is able to bond to the matrix to repair the crack. The healing-agent is contained in microcapsules. A corresponding catalyst for the healing-agent is embedded in the matrix and contained in a plurality of microcapsules as an emulsion. The emulsion comprises an oil, a perfluorated solvent, a hydrophobic ionic liquid, or mixtures thereof. A method of manufacturing the self-healing material comprises the steps of identifying an operational temperature range of the material, providing at least one substance as the healing-agent, which substance remaining substantially in a liquid state within the operational temperature range, identifying an operational evaporation rate of the healing-agent and providing the substance with a curing time according to the evaporation rate.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: October 21, 2014
    Assignees: Valorbec Societe en Commandite, MPB Communications Inc.
    Inventors: Philippe Merle, Yoann Guntzburger, Émile Haddad, Suong Van Hoa, Girish Thatte
  • Patent number: 8865305
    Abstract: A method of making a core-shell phosphor is provided. The method comprises mixing a lanthanum phosphate (LaPO4) core with a shell precursor mixture comprising at least one compound of La, at least one compound of Ce, and at least one compound of Tb to form a core+shell precursor mixture, heating the core+shell precursor mixture to a temperature in a range from about 900° C. to about 1200° C. with an inorganic flux material in presence of a reductant to provide a heated core+shell precursor mixture, cooling the heated core+shell precursor mixture to ambient temperature to provide a product core-shell phosphor dispersed in the inorganic flux material; and separating the product core-shell phosphor from the inorganic flux material.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: Digamber Gurudas Porob, Alok Mani Srivastava, Holly Ann Comanzo, Gopi Chandran Ramachandran, Prasanth Kumar Nammalwar
  • Publication number: 20140308438
    Abstract: A buffer material protects a microelectronic device in space constrained environments, for improved efficiency with respect to magnetostrictive materials therein, and includes a gas filled polymer shell microsphere carried in an elastomeric polymer binder. Expanded Expancel microspheres being less than 20 microns in diameter form 80% of the composition by volume. The polymer binder is a low viscosity dimethyl silicone with a hardness of less than 25. Coating thicknesses may be based upon the overall expected dimensional changes of the encapsulation material, due to its coefficient of thermal expansion and an expected operating temperature range of the component, plus the expected shrinkage of that encapsulation material during polymerization and the overall mass which shall be exerting a force upon the magnetic core, plus the dimensional changes of the component as a result of the flux density resulting in magnetostriction of the magnetic core.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Inventor: Herman Walz
  • Publication number: 20140308360
    Abstract: The invention provides multivalent surface-crosslinked micelle (SCM) particles, crosslinked reverse micelle (CRM) particles, and methods of making and using them. The SCM particles can be used, for example, to inhibit a virus or bacteria from binding to a host cell. The inhibition can be used in therapy for the flu, cancer, or AIDS. The CRM particles can be used, for example, to prepare metal nanoparticles or metal alloy nanoparticles, or they can be used in catalytic reactions.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventor: Yan Zhao
  • Patent number: 8859641
    Abstract: Particle in the shape of an encapsulated droplet comprising a core material and a shell material surrounding the core material, the shell material containing maleimide groups, preferably a copolymer of maleimide groups. The shell material contains a copolymer of styrene and maleic anhydride derivatives, of which more than 75 mole %, preferably more than 90 mole % is maleimide, and the average particle size is smaller than 300 nm. The particles are obtained by a process comprising by heating between 80° C. and 195° C., more preferably between 120° C. and 190° C. an ammonium salt of a maleic anhydride containing polymer in the presence of the core material.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: October 14, 2014
    Assignee: Topchim N.V.
    Inventor: Henk Jan Frans Van Den Abbeele
  • Patent number: 8852472
    Abstract: The present invention is related to a lipid composition comprising at least a first lipid component, at least a first helper lipid, and a shielding compound which is removable from the lipid composition under in vivo conditions.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: October 7, 2014
    Assignee: Silence Therapeutics GmbH
    Inventors: Oliver Keil, Jörg Kaufmann
  • Publication number: 20140288411
    Abstract: Magnetic resonance imaging contrast agents that include a plurality of gas vesicles configured to associate with a noble gas are provided. Also provided are magnetic resonance imaging methods that include administering to a subject a contrast agent that includes a plurality of gas vesicles, obtaining a magnetic resonance data of a target site of interest, and analyzing the data to produce a magnetic resonance image of the target site. The subject contrast agents and methods find use in magnetic resonance imaging applications.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 25, 2014
    Inventors: Mikhail Georgievich Shapiro, Richard Matthew Ramirez, Vikram Bajaj, Lindsay Joslyn Sperling, David Vernon Schaffer, Alexander Pines
  • Patent number: 8828542
    Abstract: Nanoparticles can include a core linked to a polymerizable moiety that can be polymerized, cross-linked or cured. The polymerizable nanoparticles can be included in a composition for a polymerization, cross-linking or curing reaction in an amount and disposition sufficient for inhibiting or preventing volume shrinkage during polymerization, cross-linking or curing reaction. Also, the nanoparticles can be included with monomers, dendrimers, oligomers or polymers in the compositions that can be reacted to form a polymerized, cross-linked or cured product.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 9, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Patent number: 8815394
    Abstract: Encapsulated nanoscale particles of organic pigments include a polymer-based encapsulating material, and one or more nanoscale organic pigment particles encapsulated by the polymer-based encapsulating material. Such encapsulated nanoscale particles of organic pigments can be made by providing nanosized organic pigment particles comprised of surface-associated sterically bulky stabilizer compounds; providing a copolymer material comprising organic pigment-affinic functional groups and non pigment affinic monomer units; associating the nanoscale organic pigment particles with the copolymer material so as to effect a deposited layer or shell of the copolymer material around said nanoscale organic pigment particles, thereby producing an encapsulated nanoscale organic pigment particle; and optionally further reinforcing the encapsulated nanosized organic pigment particle with one or more surface treatments.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 26, 2014
    Assignee: Xerox Corporation
    Inventors: Rina Carlini, Roger E. Gaynor, Paul F. Smith
  • Patent number: 8808587
    Abstract: The present invention relates to a method of preparing a microcapsule with a double-layered structure which comprises the steps of performing an interfacial polymerization of an amine-aldehyde prepolymer on droplets containing an inorganic metal precursor selected from carboxylate and alkoxide compounds, and hydrolyzing the including inorganic precursors for formation of inorganic inner layer. The method of the present invention can prepare a microcapsule with a double-layered structure of an inorganic inner layer and a polymer outer layer, which is effective for eluting and substituting a core material inside the capsule.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 19, 2014
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hyun Min Jung, Yong Seok Kim, Jae Heung Lee, Jong Chan Won, Soon-Ryoung Hur
  • Patent number: 8801936
    Abstract: The invention relates to a process for separating a dispersed phase from a continuous phase comprising the steps of i) contacting said phases with an effective amount of nanoparticles; ii) applying a magnetic field gradient to the obtained system; iii) separating the obtained phases wherein said nanoparticles are of the core shell type, said core consists of a metal or alloy having soft magnetic properties and said shell contains a graphene layers which are optionally functionalized; to new nanoparticles and method of manufacturing such nanoparticles.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 12, 2014
    Assignee: ETH Zürich
    Inventors: Robert N. Grass, Wendelin Jan Stark
  • Patent number: 8784984
    Abstract: A microcapsule comprising A) a core containing a hydrophobic liquid or wax, B) a polymeric shell comprising a) a polymer formed from a monomer mixture containing: i) 1 to 95% by weight of a hydrophobic mono functional ethylenically unsaturated monomer, ii) 5 to 99% by weight of a polyfunctional ethylenically unsaturated monomer, and iii) 0 to 60% by weight of other mono functional monomer, and b) a further hydrophobic polymer which is insoluble in the hydrophobic liquid or wax. The invention includes a process for the manufacture of particles and the use of particles in articles, such as fabrics, and coating compositions, especially for textiles.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: July 22, 2014
    Assignee: Ciba Corporation
    Inventor: Bryan David Grey
  • Patent number: 8765267
    Abstract: The invention relates to a composition for treating wood comprising at least one wood preserving compound and a carrier, wherein said carrier is an emulsion or microemulsion having a water to oil ratio of greater than 30 up to 92.5 water to 7.5 to less than 70 oil, wherein the oil has a flash point above 61° C. The invention also relates to methods of treating wood with the composition.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 1, 2014
    Assignee: Danip Pty Ltd
    Inventor: Peter Raynor Soundy Cobham
  • Patent number: 8754141
    Abstract: A method that produces heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: June 17, 2014
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 8747999
    Abstract: The present invention related to (micro-or nano-) capsules that have two different functional groups on the outer shell of the particles that allow deposition onto the textile surfaces (i.e. exhibit substantivity) and subsequent covalent bonding of the particles onto the textile (i.e. are reactive towards the fiber).
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: June 10, 2014
    Assignee: BASF SE
    Inventors: Bryan David Grey, Kishor Kumar Mistry, Chun-tian Zhao
  • Patent number: 8715828
    Abstract: A particle is formed from a dispersion and includes a compound and a metal disposed on the particle. The compound has the chemical formula R—Si—H. In this formula, R is an organic or inorganic moiety. The particle is also included in a corresponding dispersion. The particle is formed from a method that includes the step of forming the dispersion. The method also includes the step of disposing the metal on the particle.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: May 6, 2014
    Assignee: Dow Corning Corporation
    Inventor: Donald T. Liles
  • Patent number: 8709598
    Abstract: A microcapsule comprising a core containing a hydrophobic liquid or wax and a polymeric shell formed from: i) 1 to 20% by weight of polymerizable silane compound, ii) 1 to 94% by weight of hydrophobic mono functional ethylenically unsaturated monomer, iii) 5 to 98% by weight of polyfunctional ethylenically unsaturated monomer, and iv) 0 to 60% by weight of other mono functional monomer(s), wherein components (i), (ii), (iii) and (iv) total 100%, and in which the microcapsule also includes a hydrophilic polymer which is covalently bonded to the microcapsule. The invention includes a process for the manufacture of particles and the use of particles in articles, such as fabrics, and coating compositions, especially for textiles.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventor: Bryan David Grey
  • Patent number: 8703843
    Abstract: The present disclosure relates to processes for preparing microparticles using a solvent extraction technique, including controlled addition and/or removal of the extraction phase.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 22, 2014
    Assignee: Evonik Corporation
    Inventors: Jeffrey L. Atkinson, Brian Keith Chambers
  • Patent number: 8701879
    Abstract: A capsule-in-capsule system comprising at least two segregated chemical reactants is described. An inner capsule contains one reactant and is itself contained, with a second chemical reactant, in an outer capsule. The inner capsule and its contents is fabricated first; then it is incorporated into the second reactant; and the combination of the second reactant and inner capsule is encapsulated in the outer capsule. The reactants may be hydrophobic or hydrophilic and present as fluids, solids or combinations of solid(s) and fluids(s). When subjected to suitably high pressure, the capsule wall materials will fracture or rupture, releasing and preferably mixing all encapsulates to enable their prompt reaction. The utility of the invention is illustrated by its application to development of a corrosion inhibiting passive film on magnesium auto body material and to the adhesive bonding of members where precise positioning is desired.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Tao Xie, Anil K. Sachdev
  • Patent number: 8697233
    Abstract: A metal-coated material comprising a metal-coated lipid bilayer vesicle and a preparation method thereof are provided. A metal-coated material comprising a metal-coated lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si) on its surface. a method for preparing the metal-coated lipid bilayer vesicle comprising the following steps: (1) rendering the functional group(s) having the ability of carrying the metal catalyst to the surface of lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si bonding) on its surface, at or after the formation, by self-organization, of the lipid bilayer vesicle; (2) immobilizing the metal catalyst on the surface of the lipid bilayer vesicle; (3) optionally, reducing the metal catalyst; and (4) performing electroless plating.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 15, 2014
    Assignees: Nara Institute of Science and Technology, JX Nippon Mining & Metals Corporation
    Inventors: Jun-ichi Kikuchi, Yoshihiro Sasaki, Mineo Hashizume, Toru Imori
  • Patent number: 8691383
    Abstract: A blunt impact indicator tape includes a tape strip, a plurality of rupture-able fluid microspheres carried by the tape strip and a colored indicator fluid in each of the plurality of fluid microspheres.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 8, 2014
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, William Joseph Tapia
  • Patent number: 8685338
    Abstract: An odor compound release device includes a support that is deformed when an external stimulus is applied, and when the external stimulus is not applied, restored to its original state. A plurality of spaces are located in the support, have upper portions closed by the support, and are to be filled with odor compounds, wherein the upper portions are opened or closed by deformation or restoration of the support due to the application of the external stimulus. A member that is located in the support or on a surface of the support and applies the external stimulus to the support.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: April 1, 2014
    Assignees: Samsung Electronics Co., Ltd., The Rgegents of The University of California
    Inventors: Jong-jin Park, Sung-ho Jin, Kyu-hyun Im, Jong-min Kim
  • Publication number: 20140031463
    Abstract: A process for the preparation of a microcapsule composition, wherein the shell of the microcapsules is essentially made of silica and the core comprises at least one lipophilic component, comprising the steps of: a) providing an aqueous dispersion comprising at least one lipophilic component (A) and b1) adding to the aqueous dispersion provided in step a) a water glass solution and an acid, or b2) adding to the aqueous dispersion provided in step a) a silicic acid solution and a base, wherein the addition is effected such that the pH of the mixture resulting during the addition of the water glass solution in step b1) or during the addition of silicic acid solution in step b2) is kept in a range of 6 to 9.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: BASF SE
    Inventors: Andreas Kempter, Uwe Seemann, Holger Kreusch, Heidrun Debus, Jing Dreher, Max Siebert
  • Patent number: 8628852
    Abstract: Disclosed are core-shell resin particles (C2) each comprising one or more film-like shell layers (P) comprising a resin (a) which is a polyurethane resin and a core layer (Q) comprising a resin (b). A core-shell resin particle (C2) is characterized in that the weight ratio between (P) and (Q) is from 0.1:99.9 to 70:30, the volatile content in the resin particle (C2) is not more than 2 weight %, and the content of vinyl resins in the resin (b) is not more than 30 weight %. Such resin particles have a uniform particle diameter and are excellent in electrostatic properties, thermal and storage stability and thermal characteristics.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: January 14, 2014
    Assignee: Sanyo Chemical Industries Ltd.
    Inventors: Takashi Akutagawa, Tsuyoshi Izumi
  • Patent number: 8628851
    Abstract: The invention provides a method for encapsulating a liquid, which method comprises the steps of providing a suspension of droplets of the liquid to be encapsulated; stabilizing the suspension of droplets with a surfactant; adding a layered inorganic material to the stabilized suspension; and subjecting the suspension to a treatment which establishes that a shell of a hybrid material is formed around the droplets, which hybrid material comprises at least part of the inorganic material and at least part of the surfactant. The invention further provides encapsulated liquid droplets obtainable by said method.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: January 14, 2014
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Sabine Fischer, Hartmut Rudolf Fischer, Jacobus Eversdijk, Renz Jeroen Van Ee