Microcapsule With Fluid Core (includes Liposome) Patents (Class 428/402.2)
  • Patent number: 6919685
    Abstract: This invention comprises the use of microspheres containing ionizable gas in a gas discharge (plasma) display, photons for the gas discharge within a microsphere exciting a phosphor such that the phosphor emits wavelengths in both the visible or invisible spectrum. The invention is described in detail hereinafter with reference to an AC gas discharge (plasma) display.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: July 19, 2005
    Assignee: Imaging Systems Technology INC
    Inventors: Timothy M. Henderson, Donald K. Wedding
  • Patent number: 6913828
    Abstract: Process for making metallic microcylinders from pre-treated diacetylenic lipid tubules which includes placing the tubules into an electroless plating bath containing a metal plating reagent, depositing by electroless plating on the surfaces of the tubules enough of a metal to make the tubules electrically conducting, separating the tubules from the plating bath, treating the tubules to remove the lipid and form the metal microcylinders, washing and drying the microcylinders to produce the metal microcylinders having aspect radio of about 12, weight average length of about 20?, weight average outside diameter of about 1.5?, and weight average wall thickness of about a quarter of one micron.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 5, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Dan Zabetakis
  • Patent number: 6905766
    Abstract: The present invention provides novel encapsulation compositions and methods. In particular, the invention relates to fluorescent capsule compositions, which consists of a layer of a polymer shell enclosing one or more fluorescent materials such as fluorescent microspheres and which are capable of emitting at least two distinct fluorescent signals. Also provided are methods for their preparation. The compositions and methods of this invention are useful in a variety of applications, including preparation of multiplexed arrays for industrial, chemical, immunological, and genetic manipulation and analysis especially as related but not limited to flow cytometry.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: June 14, 2005
    Assignee: Luminex Corporation
    Inventor: Don J. Chandler
  • Patent number: 6887507
    Abstract: A membrane structure employing a structure in which a lipid membrane is held by a hydrophilic polymer. The hydrophilic polymer layer contains an aqueous phase. There are functional molecules distributed selectively throughout each layer. The membrane structure is adaptable to applications as a separating agent, filler or delivery agent by performing physical and chemical operations.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: May 3, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tsuyoshi Nomoto, Yasuko Tomida, Junji Ohyama, Tomoko Maruyama
  • Patent number: 6881482
    Abstract: Methods of making microcapsules and microcapsules comprising a core material and a shell material with substantially different dielectric constants and dissipation factors. Exposure to appropriate electromagnetic energy selectively (a) heats the core material with the higher dielectric constant and dissipation factor, directly or indirectly fusing the shell material and forming microcapsules, or (b) hardens polymerized shell material, which has a high dielectric constant and dissipation factor.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: April 19, 2005
    Assignee: Southwest Research Institute
    Inventor: Niraj Vasisht
  • Patent number: 6866838
    Abstract: The invention concerns composite nanospheres having a diameter ranging between about 50 and 1000 nm plus or minus 5%, preferably between about 100 and 500 nm plus or minus 5% and advantageously between 100 and 200 nm plus or minus 5%, and comprising an essentially liquid core consisting of an organic phase and inorganic nanoparticles, distributed inside the organic phase, and a skin consisting of at least a hydrophilic polymer derived from the polymerisation of at least one water soluble monomer, in particular N-alkylacrylamide or a N—N-dialkylacrylamide; conjugates derived from said nanospheres; their preparation methods and their uses.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: March 15, 2005
    Assignees: Bio Merieux, Centre National de la Recherche Scientifique
    Inventors: Olivier Mondain-Monval, Abdelhamid Elaissari, Eric Bosc, Christian Pichot, Bernard Mandrand, Jérôme Bibette
  • Patent number: 6858225
    Abstract: Methods for the preparation of a lipid-nucleic acid composition are provided. According to the methods, a mixture of lipids containing a protonatable or deprotonatable lipid, for example an amino lipid and a lipid such as a PEG- or Polyamide oligomer-modified lipid is combined with a buffered aqueous solution of a charged therapeutic agent, for example polyanionic nucleic acids, to produce particles in which the therapeutic agent is encapsulated in a lipid vesicle. Surface charges on the lipid particles are at least partially neutralized to provide surface-neutralized lipid-encapsulated compositions of the therapeutic agents. The method permits the preparation of compositions with high ratios of therapeutic agent to lipid and with encapsulation efficiencies in excess of 50%.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: February 22, 2005
    Assignee: Inex Pharmaceuticals Corporation
    Inventors: Sean C. Semple, Sandra K. Klimuk, Troy Harasym, Michael J. Hope, Steven M. Ansell, Pieter Cullis, Peter Scherrer, Dan Debeyer
  • Patent number: 6855422
    Abstract: The invention relates to a multi-component fiber having enhanced reversible thermal properties and methods of manufacturing thereof. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members comprising a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be formed via a melt spinning process or a solution spinning process and may be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: February 15, 2005
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Patent number: 6855277
    Abstract: A new method of producing liposomes is described using an in-line mixing system. The liposomes produced by this method find utility in numerous therapeutic applications.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: February 15, 2005
    Assignee: Optime Therapeutics, Inc.
    Inventors: Martin T. Baker, William A. Heriot
  • Patent number: 6843942
    Abstract: The invention relates to a device for producing lipid vesicles, which is equipped with a line (1) for transporting a polar liquid phase, with a line (2) for transporting an organic liquid phase containing lipids, with a collecting receptacle (7) for accommodating produced lipid vesicles, and with means for conveying the liquid phases through lines (1) and (2). At at least one location, the outer side of line (1) forms a common contact surface with line (2) inside of which a common opening (3) is provided that permits the flow of liquid and joins the inside of line (2) to the inside of line (1). Lines (1) and (2) do not contain agitating or dispersing aids in the area of the opening (3).
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: January 18, 2005
    Assignee: Polymun Scientific Immunobilogische Forschung GmbH
    Inventors: Hermann Katinger, Karola Vorauer-Uhl, Andreas Wagner, Guenter Kreismayr
  • Patent number: 6841509
    Abstract: A carbon nanocapsule supported catalysts. At least one kind of catalytic metal particle is deposited to a carbon nanocapsule, wherein the carbon nanocapsule has the following formula: F(?M)n, in which F is the carbon nanocapsule, M is the catalytic metal particle, and n is the number of the catalytic metal particle. By applying the carbon nanocapsule as a catalyst support, the catalytic behavior of the catalytic metal particle is specialized, the dispersion is improved, and the catalytic effect is enhanced.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: January 11, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Gan-Lin Hwang, Chao-Kang Chang
  • Patent number: 6841221
    Abstract: A process for making a textured coating on a substrate and compositions for such coatings are disclosed wherein coating mixtures comprising un-expanded micro-capsules and a plastisol or other suitable resins are applied to the substrate and subsequently heat treated to expand the micro-capsules within the coating. The expanded micro-capsules create an aesthetically pleasing surface texture in the coating while retaining the desired wear-resistant properties of the coating.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: January 11, 2005
    Assignee: Congoleum Corporation
    Inventor: Richard C. MacQueen
  • Patent number: 6838485
    Abstract: An emulsifier composition for treating marine cuttings, preferably in situ, to convert free hydrocarbons to isolated hydrocarbons; drill cuttings treated with the emulsifier composition; droplets of the emulsified free hydrocarbons; drill cuttings further treated with encapsulating material; and, isolated hydrocarbons comprising encapsulated droplets of free hydrocarbons and emulsifier.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: January 4, 2005
    Assignee: Baker Hughes Incorporated
    Inventor: Lirio Quintero
  • Patent number: 6835397
    Abstract: The present invention is an encapsulated yeast composite comprising a core comprising yeast and a coating containing an emulsifiable lipid. The yeast includes Saccharomyces cerevisiae. The invention also relates to other encapsulated bioactive substance composites. The nature of the coating provides controlled release of the bioactive substance from the encapsulate. The encapsulated composites are useful in the production of food compositions, food products, and animal feed products.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: December 28, 2004
    Assignee: Balchem Corporation
    Inventors: Phillip K. Lee, Paul H. Richardson
  • Patent number: 6835334
    Abstract: The present invention is directed to a method for producing macrocapsules containing therein a plurality of microcapsules. In accordance with some embodiments of the present invention, the microcapsules contain a phase change material.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: December 28, 2004
    Assignee: Microtek Laboratories, Inc.
    Inventors: Danny Allen Davis, Ronald Lee Hart, Dale Ellis Work, David Russell Virgallito
  • Patent number: 6835395
    Abstract: Lipidic compositions with superior characteristics for in vivo delivery of oligodeoxynucleotides (ODN) can easily and efficiently be made in the form of small multilamellar vesicles. The compositions contain a population of nucleic acid-containing lipid vesicles in a liquid carrier, and at least a portion of the lipid vesicles are small multilamellar vesicles. The small multilamellar vesicles are made from a lipid component including 20-30 mol % of an ionizable amino lipid such as DODAP, and a steric barrier lipid such as PEG-CerC14; and an oligodeoxynucleotide contained in the lumen or interlamellar spaces of the small multilamellar vesicles. The ODN and lipid components are preferably present in the small multilamellar vesicles in a mole ratio of from 0.15 to 0.25.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: December 28, 2004
    Assignee: The University of British Columbia
    Inventors: Sean C. Semple, Sandra K. Klimuk, Troy O. Harasym, Nancy Dos Santos, Steven M. Ansell, Pieter R Cullis, Michael J. Hope, Peter Scherrer, Deirdre McIntosh, Kim F. Wong, Norbert Maurer
  • Patent number: 6835394
    Abstract: The present invention provides biocompatible vesicles comprising semi-permeable, thin-walled encapsulating membranes which are formed in an aqueous solution, and which comprise one or more synthetic super-amphiphilic molecules. When at least one super-amphiphile molecule is a block copolymer, the resulting synthetic vesicle is termed a “polymersome.” The synthetic, reactive nature of the amphiphilic composition enables extensive, covalent cross-linking of the membrane, while maintaining semi-permeability. Cross-linking of the polymer building-block components provides mechanical control and long-term stability to the vesicle, thereby also providing a means of controlling the encapsulation or release of materials from the vesicle by modifying the composition of the membrane. Thus, the encapsulating membranes of the present invention are particularly suited for the reliable, durable and controlled transport, delivery and storage of materials.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: December 28, 2004
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dennis E. Discher, Bohdana M. Discher, You-Yeon Won, James C-M. Lee, Frank S. Bates, Daniel A. Hammer
  • Publication number: 20040234763
    Abstract: This invention provides a mounting method for reliably connecting mounting components electrically. Specifically, an anisotropically conductive adhesive can be composed of crushable microcapsules and a second liquid in which the microcapsules are dispersed. Each microcapsule encloses a first liquid and a conductive particle. The first liquid can react with the second liquid at normal temperatures to cure the second liquid. This anisotropically conductive adhesive can be applied on a flexible printed circuit (FPC). Then, a drive IC is mounted and pressed on the FPC to crush the microcapsules between electrode pads provided on the drive IC and electrode pads provided on the FPC, thereby bonding the electrode pads. Subsequently, the anisotropically conductive adhesive is heated to plasticize a capsule wall of each microcapsule, thereby bonding the drive IC and the FPC.
    Type: Application
    Filed: March 30, 2004
    Publication date: November 25, 2004
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Atsushi Saito
  • Patent number: 6818296
    Abstract: A microcapsule having a mean diameter of from about 0.1 to about 5 mm, a membrane and a matrix containing at least one active principle wherein the microcapsule is the product of the process comprising the steps of (a) forming an aqueous matrix by heating an aqueous solution comprised of a gel former, a chitosan and active principle; (b) forming a dispersed matrix by adding the aqueous matrix in an oil phase; (c) contacting the dispersed matrix with an aqueous solution of an anionic polymer selected from the group consisting of a salt of alginic acid and an anionic chitosan derivative.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: November 16, 2004
    Assignee: Cognis Iberia S.L.
    Inventors: Josep Garces Garces, Josep-Lluis Viladot Petit
  • Publication number: 20040224156
    Abstract: A waterproof heat-preservative film is formed by providing a melt of a waterproof material, mixing phase-change microcapsules with the melt to form a mixture, solidifying the mixture and pulverizing the solidified mixture to form particles containing phase-change microcapsules, and forming a film with the particles by means of extruding or blowing.
    Type: Application
    Filed: May 6, 2003
    Publication date: November 11, 2004
    Applicant: CHENG LOONG CORPORATION
    Inventor: Chieh-Jen Wu
  • Patent number: 6815472
    Abstract: A golf ball comprising a core; and a cover layer disposed concentrically about the core; wherein at least one of the core or the cover is formed of a polymer comprising lipid-based nanotubules in which an active compound is microencapsulated.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: November 9, 2004
    Assignee: Acushnet Company
    Inventor: William B. Lacy
  • Publication number: 20040219361
    Abstract: The invention relates to a super-paramagnetic composite particle with core/shell structure, preparation method and use thereof. The composite particle is consisted of a core portion and a shell portion coated on the surface of the core portion, wherein said core portion is 10-70% by weight and said shell portion is 30-90% by weight based on the total weight of the composite particle, and said core portion is consisted of magnetic particles of Fe3O4, &ggr;-Fe2O3 or other ferric oxides, or magnetic particles of ferrites of tervalent ferrum and bivalent manganese, nickel, zinc or copper, and the said shell portion is consisted of elementary gold or silver. The particle has an average diameter of 0.05-50 &mgr;m. The preparation method comprises preparing the core portion magnetic particle by chemical co-precipitation and depositing gold or silver to coat the magnetic particle by chemical reduction.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 4, 2004
    Applicant: Shanxi Lifegen Co., Ltd.
    Inventors: Yali Cui, Chao Chen, Qiong Wang, Wenli Hui
  • Publication number: 20040201117
    Abstract: A particle coated with a nonlamellar material such as a nonlamellar crystalline material, a nonlamellar amorphous material, or a nonlamellar semi-crystalline material includes an internal matrix core having at least one a nanostructured liquid phase, or at least on nanostructured liquid crystalline phase or a combination of the two is used for the delivery of active agents such as pharmaceuticals, nutrients, pesticides, etc.
    Type: Application
    Filed: July 23, 2003
    Publication date: October 14, 2004
    Inventor: David Anderson
  • Publication number: 20040169298
    Abstract: Provided are a microcapsule and a production method thereof using a low-toxicity polymer substrate which can be produced regardless of a core material's water or oil solubility, without using gelatin or an organic solvent viewed as having a problem with safety. Specifically, provided is a microcapsule comprising oil-based core material which is immiscible with water; and shell material which comprises gum arabic and an enteric anionic cellulose derivative. Also provided is a method for producing a microcapsule comprising steps of suspending an oil-based water-immiscible core material in an aqueous solution of gum arabic, and then adding an aqueous alkaline solution of an enteric anionic cellulose derivative.
    Type: Application
    Filed: November 18, 2003
    Publication date: September 2, 2004
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Miyuki Fukasawa, Kazuhisa Hayakawa
  • Patent number: 6777486
    Abstract: A vibration damping silicone composition with excellent long term storage stability and vibration damping ability contains as components (A) a silicone oil, (B) hollow particles of an organic resin having an inorganic material powder supported on its surfaces, and (C) a solid inorganic material powder.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: August 17, 2004
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventors: Hideki Kobayashi, Masayuki Hayashi
  • Patent number: 6777069
    Abstract: The transparent film-coated substrate includes a substrate and a transparent coating film formed on the surface of the substrate, the transparent coating film comprising (i) a matrix containing a silicone having a fluorine-substituted alkyl group, and (ii) inorganic compound particles comprising a shell, and a porous matter or a cavity enclosed therein, wherein the porous matter or the cavity remains unchanged in the formed transparent coating film.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: August 17, 2004
    Assignees: Kabushiki Kaisha Toshiba, Asahi Glass Co., Ltd., Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Takeo Ito, Hidemi Matsuda, Yoshimi Otani, Kazuhiko Yui, Toshiharu Hirai, Hiroyasu Nishida, Michio Komatsu
  • Patent number: 6774063
    Abstract: The present invention is a slip resistant nonwoven material. The material can be useful for surgical or clean room environments. The nonwoven is coated with microencapsulated adhesive. The microcapsule coated nonwoven is resistant for slippage. The substrate in preferred embodiments is fashioned into articles such as slip resistant table coverings or protective articles such as footwear.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: August 10, 2004
    Assignee: Appleton Papers Inc.
    Inventors: Michael Paul Bouchette, Kevin Patrick Coffey, Robert Josef Franda
  • Patent number: 6773719
    Abstract: The present invention provides a liposomal composition for treating dislipidemias in human subjects, a method of using a liposomal composition, and devices and modes of operation of the devices and of the compositions, and kits related thereto. The invention provides for the reverse transport of cholesterol from peripheral tissues to the liver in a warm blood mammal while controlling plasma atherogenic lipoprotein concentrations, including LDL concentrations. A method described above and mode of operation of the devices includes the stop of administering an effective amount of a multiplicity of acceptors comprised of phospholipids substantially free of sterol. A method described above optionally includes the stop of periodically assaying atherogenic lipoprotein concentrations with an assay during the treatment period to assess atherogenic lipoprotein concentrations and obtain an atherogenic lipoprotein profile.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: August 10, 2004
    Assignees: Esperion LUV Development, Inc., The University of British Columbia
    Inventors: Wendi V. Rodrigueza, Kevin Jon Williams, Michael J. Hope
  • Patent number: 6767637
    Abstract: A method for generating a plurality of drug-containing microcapsules employs one or more atomizers to form the microcapsules by the phenomenon of solvent exchange. A plurality of microdroplets of an aqueous solution is contacted with a plurality of microdroplets containing a polymer dissolved in a hydrophilic solvent under conditions whereby the polymer solution envelops the aqueous microdroplet. Exchange of solvent molecules between the aqueous core and its polymer-containing shell deposits the polymer as a membrane around the aqueous core. A preferred atomizer is a coaxial ultrasonic atomizer. Microcapsules can be generated in air as well as when submersed in a collection bath. Desired properties of the microcapsules, e.g., controlled release, can be achieved by providing protective excipients within the aqueous core, providing a hydrophilic polymer capable of undergoing a sol-to-gel transition within the aqueous core, optimizing selection of the polymer solvent, adjusting relative flow rates, and the like.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: July 27, 2004
    Assignee: Purdue Research Foundation
    Inventors: Kinam Park, Yoon Yeo
  • Patent number: 6753083
    Abstract: A particulate composition comprising particles having a core comprising a hydrophobic polymer within a shell, characterised in that the shell comprises a semi-permeable membrane. Particulate composition can be used for making a stable dispersion of particles uniformly distributed throughout a first hydrophobic liquid, wherein the particles comprise a core within a shell and the core comprises a hydrophobic polymer into has been imbibed a second hydrophobic liquid, Compositions can be used to encapsulate active substances and may be used in sustained release mechanisms.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: June 22, 2004
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Kishor Kumar Mistry, Janine Andrea Preston, Kenneth Charles Symes
  • Patent number: 6743638
    Abstract: A process for detecting an analyte which process comprises (a) contacting a sample suspected of containing said analyte with a containment means comprising a barrier which separates signal generating reagents from said sample, in the presence of an element which interacts specifically with said analyte, under conditions whereby interaction between the analyte and the said element results in activation of the signal generating reagents within the containment means on the side of the barrier opposite to the sample, and (b) detecting any signal generated and retained within the containment means from the sample side of the barrier. The process of the invention provides for sensitive detection of very small numbers of analyte materials using measurement techniques which include counting methods such as flow cytometry.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: June 1, 2004
    Assignee: The Secretary of State for Defence
    Inventors: Marina Tsilosani, David J Clarke, Christopher J Lloyd, Stephen Nicklin, Harmesh S Aojula, Michael T Wilson
  • Patent number: 6733857
    Abstract: The present invention relates to a material for repairing damaged painted surfaces, wherein the material includes a paint layer which is capable of deformation and which is made of microcapsules held together by a binder. The paint is contained in the microcapsules in the form of paint droplets or powdered paint particles. The microcapsules and/or the binder are preferably made from a material that becomes tacky under the action of heat.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: May 11, 2004
    Assignee: Deotexis, Inc.
    Inventor: Gerold Tebbe
  • Patent number: 6727203
    Abstract: A method capable of producing, with industrially realizable production efficiency, microcapsules whose particle diameters are small and whose particle diameter distribution is limited, specifically microcapsules for a heat-sensitive recording material, and a heat-sensitive recording material including the thus produced microcapsules. In this method, microcapsules are produced by the steps of preparing an emulsion from an oil phase that contains a material to be micro-encapsulated and a microcapsule wall material, and an aqueous phase, and micro-encapsulating the materials by using the emulsion, the emulsion preparing step being conducted by using a microreactor having channels whose equivalent diameter is no more than 1 mm, and a heat-sensitive recording material having the thus obtained microcapsules is also provided.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: April 27, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Kimio Ichikawa
  • Publication number: 20040074089
    Abstract: An uncured epoxy adhesive comprising a resin component, a hardener component, and a microencapsulated accelerator component. The microencapsulated accelerator component comprises an infrared absorber, an accelerator and a wall that covers substantially the entire surface of the accelerator. The epoxy adhesive is cured by exposing it to infrared energy. The infrared energy is absorbed by the infrared absorber which disintegrates the wall and allows the accelerator to come into contact with the other adhesive components and initiate the curing polymerization reaction.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Applicant: Cookson Electronics, Inc.
    Inventor: Kenneth B. Gilleo
  • Patent number: 6723671
    Abstract: Fragrance emitting articles are provided along with methods of making and using the same. The fragrance emitting articles provided contain microcapsules of a fragrance, which microcapsules are associated with the fragrance emitting article without the addition of a binder. The invention also relates to methods of making the subject fragrance emitting articles and methods of using those articles.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: April 20, 2004
    Assignee: Lavipharm Laboratories Inc.
    Inventors: Yelena Zolotarsky, David O'Halloran, Florence Bernard, Pradeep Thaker
  • Publication number: 20040071967
    Abstract: This invention provides water-based compositions, particularly coating, ink, fountain solution and agricultural compositions, manifesting reduced equilibrium and dynamic surface tension by the incorporation of a surface tension reducing amount of an acetylenic diol ethylene oxide/propylene oxide adduct of the structure where r and f are 1 or 2, (n+m) is 1 to 30 and (p+q) is 1 to 30. Use of such adducts as surfactants in photoresist developer/electronics cleaning compositions is particularly advantageous.
    Type: Application
    Filed: July 11, 2003
    Publication date: April 15, 2004
    Inventor: Won-Mok Lee
  • Patent number: 6716526
    Abstract: A composition comprising particles which comprise a core material within a polymeric shell, wherein the core material comprises a hydrophobic substance, characterized in that the polymeric shell comprises a copolymer formed from a monomer blend which comprises, A) 30 to 90% by weight methacrylic acid B) 10 to 70% by weight alkyl ester of (meth)acrylic acid which is capable of forming a homopolymer of glass transition temperature in excess of 60° C. and C) 0 to 40% by weight other ethylenically unsaturated monomer. The core material can comprise an active ingredient selected from the group consisting of UV absorbers, UV reflectors, pigments, dyes, colorants, scale inhibitors, corrosion inhibitors, antioxidants, pour point depressants, wax deposition inhibitors, dispersants, flame retardants, biocides, active dye tracer materials and phase change materials. The composition has the advantage that the polymeric shell is highly impermeable to the core material even at elevated temperatures.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: April 6, 2004
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Rachel Clare Weston, Howard Roger Dungworth
  • Patent number: 6716793
    Abstract: An image-recording composition comprising: a microcapsule enclosing a leuco-dye; a phenol color-developing agent; and a reaction-accelerating agent catalyzing a color-developing reaction between the leuco-dye and the phenol color-developing agent, the reaction-accelerating agent being an organic compound having at least two carboxyl groups. An image-recording sheet comprising a substrate and a color-developing layer disposed by applying the image-recording composition to the substrate is also provided.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: April 6, 2004
    Assignee: Pentax Corporation
    Inventors: Yukio Kubota, Minoru Suzuki, Kazuyuki Shimbo
  • Patent number: 6706353
    Abstract: An image-forming substrate has a sheet of paper, and a layer of microcapsules coated over the paper sheet. The microcapsule layer contains at least one type of microcapsules filled with a liquid dye, and a shell wall of each of the microcapsules is composed of resin that exhibits a temperature/pressure characteristic such that, when each of the microcapsules is squashed under a predetermined pressure at a predetermined temperature, the liquid dye seeps from the squashed microcapsule.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: March 16, 2004
    Assignee: Pentax Corporation
    Inventor: Minoru Suzuki
  • Patent number: 6706280
    Abstract: Novel compounds of formula in which R1 and R2 are phospholipid fatty acid residues and A is an aliphatic and/or cycloaliphatic hydrocarbon chain optionally substituted by hydroxy and/or further carboxylic functions. The novel compounds are useful for making liposomes of enhanced stability and entrapping capacity.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: March 16, 2004
    Assignee: Bracco Research S.A.
    Inventors: Hervé Tournier, Bernard Lamy
  • Patent number: 6703127
    Abstract: The present invention is directed to thermal energy storage compositions comprising macrocapsules containing therein a plurality of microcapsules and to methods for producing macrocapsules containing microcapsules. In accordance with some embodiments of the present invention, the microcapsules contain a phase change material.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: March 9, 2004
    Assignee: Microtek Laboratories, Inc.
    Inventors: Danny Allen Davis, Ronald Lee Hart, Dale Ellis Work, David Russell Virgallito
  • Publication number: 20040043212
    Abstract: A nonwoven textile having reversible enhanced thermal control properties, the material comprising: a bat or web bonded by polymeric binder containing thermal control material within the interior of the bat or web, wherein the thermal control material is dispersed throughout the interior of the polymeric binder, and wherein the thermal control material is substantially entirely within the interior of the nonwoven textile.
    Type: Application
    Filed: August 13, 2003
    Publication date: March 4, 2004
    Inventors: Peter Grynaeus, Duncan Russell, Terry O'Regan, David S. Dietel, Susan Gwynneth Johnson
  • Patent number: 6699499
    Abstract: Disclosed is a new structural class of amphiphilic molecules which incorporate a hydrophilic material or polymer attached, at spatially distinct sites, to at least two hydrophobic residues. Certain of the amphiphilic molecules comprise a plurality of hydrophobic moieties. All such amphiphilic molecules have a common structural motif and, in contact with water, display surface activity and self-assemble into multimolecular aggregates and liquid crystalline phases. Also disclosed are enhanced stability liposomes that incorporate such amphiphilic molecules via unique interactions, and methods of using such formulations in a variety of applications including drug delivery, nutrition, bio-diagnostics, cosmetics, blood products and related applications.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: March 2, 2004
    Assignee: Nutrimed Biotech
    Inventor: Rajindra Aneja
  • Patent number: 6699952
    Abstract: A modular cytomimetic biocompatible biomaterial, comprising a phospholipid or phospholipid derivative comprising various functional groups (e.g., lipid, peptide, sugar) having specific chemical properties which can function as a modular surface design unit to be incorporated or appended to a desired substrate (e.g., a polymer or a metal) on which it is then polymerized in situ, thereby contributing new or specified biochemical characteristics to the polymerized and stabilized biomaterial.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: March 2, 2004
    Assignee: Emory University
    Inventors: Elliot L. Chaikof, Kacey G. Marra, John H. Chon
  • Patent number: 6689466
    Abstract: A stabilized phase change composition comprises a phase change material and a stabilizing agent selected from the group consisting of antioxidants and thermal stabilizers. The stabilizing agent provides oxidative or thermal stabilization to the phase change material. The stabilized phase change composition may be used or incorporated in a variety of processes (e.g., melt spinning processes, extrusion processes, injection molding processes, and so forth) to form articles having enhanced reversible thermal properties. Exemplary articles that may be formed include, by way of example and not by limitation, synthetic fibers (e.g., nylon fibers, polyester fibers, polyethylene fibers, polypropylene fibers, and multi-component fibers), fabric materials, textiles, films, foams, sheets, pellets, granules, rods, and injection molded articles.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: February 10, 2004
    Assignee: Outlast Technologies, Inc.
    Inventor: Mark H. Hartmann
  • Publication number: 20040022990
    Abstract: The present invention relates to compositions and methods for providing extended release of fragrances and other agents into a variety of materials, including carpets, rugs, fibrous mats, furniture, drapery, and similar products and materials.
    Type: Application
    Filed: April 3, 2003
    Publication date: February 5, 2004
    Inventor: Arif Sitabkhan
  • Publication number: 20040018359
    Abstract: The invention relates to preserving the properties of active particles through use of an encapsulant which may be removable. The encapsulant may protect the active particles against premature deactivation. If desired, the encapsulant may be removed to rejuvenate the active particles. Various processes can be implemented to introduce encapsulated particles to embedding substances which may be used in various products.
    Type: Application
    Filed: June 12, 2003
    Publication date: January 29, 2004
    Inventor: Gregory W. Haggquist
  • Publication number: 20040012105
    Abstract: The invention relates to microspheres with a narrow distribution of particle size and a uniform spherical shape, consisting of a partially or completely cross-linked polymer material. The invention also relates to a method for producing said microspheres and to the use thereof.
    Type: Application
    Filed: August 6, 2003
    Publication date: January 22, 2004
    Inventors: Holger Deppe, Hanns Wurziger, Andreas Schober, Egbert Brandau, Thorsten Brandau, Esther Daldrop
  • Publication number: 20040012106
    Abstract: The present invention provides: a microcapsule composition for electrophoretic displays; a production process for the microcapsule composition for the electrophoretic displays; a production process for a sheet for the electrophoretic displays; and a handling method for microcapsules for the electrophoretic displays; wherein the microcapsule composition contains microcapsules and, when used for the electrophoretic displays, can make them as excellent as conventional in various performances (e.g. longtime stability of displaying, respondability of displaying, contrast, and number of times of display rewritability) and, particularly above all, can make the electrophoretic displays exhibit a very high performance as to the contrast.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 22, 2004
    Inventors: Sadao Kanbe, Hideyuki Kawai, Mitsuo Kushino, Makoto Matsumoto
  • Patent number: RE38459
    Abstract: An injectable physiologically acceptable aqueous phase fluorocarbon emulsion, which has substantially no free fluorocarbon, has an excellent stability is prepared by a process of the invention. Typically, more than about 99.8 wt. % of the fluorocarbon remains in the size range of about 0.2 to 0.4 microns even after being stored at room temperature for one year or more in sealed containers under a non-oxidizing atmosphere. The emulsion is useful in medical applications, for example, coronary angioplasty, cancer therapy, among others.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: March 9, 2004
    Assignee: Thomas Jefferson University
    Inventors: Stuart Raynolds, Robert H. Dettre