Of Silicon Containing (not As Silicon Alloy) Patents (Class 428/446)
  • Patent number: 11008670
    Abstract: A manufacturing method of a SiC ingot includes a crystal growth step of growing a crystal on a principal plane having an offset angle with respect to a {0001} plane, in which, at least in a latter half growth step of the crystal growth step, after the crystal in the crystal growth step grows 7 mm or more from the principal plane, and in which, the crystal is grown by setting an acute angle, between the {0001} plane and an inclined plane which is perpendicular to a cut section cut along an offset direction and passes through both a center of a crystal growth surface and an offset downstream end portion of the crystal growth surface, to be equal to or more than an angle smaller than an offset angle by 2° and equal to or less than 8.6°.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 18, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Yohei Fujikawa, Hideyuki Uehigashi
  • Patent number: 10994522
    Abstract: A silicone sheet 1 of the present invention is a silicone sheet that is at least one selected from a silicone gel sheet and a silicone putty sheet. The silicone sheet has a Shore 00 hardness of 75 or less. The silicone sheet is cut in a thickness direction and cut faces 5a-5m and 6a-6f of the silicone sheet are adjacent to each other without gap. The cut faces of the silicone sheet are non-tacky, and the silicone sheet is separable at the cut faces. Preferably, the cut faces have a tackiness of 0.6 N or less based on a tackiness checker. The mounting method of the present invention is a method of mounting the above silicone sheet by pick and place mounting using an automatic mounting machine.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: May 4, 2021
    Assignee: Fuji Polymer Industries Co., Ltd.
    Inventors: Shingo Ito, Yuta Hatazawa
  • Patent number: 10983396
    Abstract: The present invention relates to a method for producing a liquid crystal panel. The method includes curing a first reactive mesogen layer with ultraviolet light at an illuminance within a range of 40 to 90 mW/cm2. The liquid crystal panel includes a first transparent base material, a TFT layer and a first alignment film stacked in order on the first transparent base material, a second transparent base material, a color filter layer, an in-cell retardation layer, and a second alignment film stacked in order on the second transparent base material, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, an out-cell retardation layer disposed on a side opposite to a color filter layer side of the second transparent base material, and a pair of linearly polarizing plates arranged so as to sandwich the first transparent base material and the out-cell retardation layer and having transmission axes orthogonal to each other.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 20, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Murata, Akira Sakai, Yuichi Kawahira, Takako Koide, Masahiro Hasegawa, Kiyoshi Minoura
  • Patent number: 10945499
    Abstract: Proposed is a decorative element containing (a) a transparent gemstone with a faceted surface comprising convex curved regions, (b) a transparent electrically conductive layer applied to said faceted surface comprising convex curved regions, (c) a wavelength-selective layer applied (c1) to the planar side opposite to the faceted curved surface, or (c2) to the photovoltaic cell (d); (d) a photovoltaic cell; and (e) a touch-sensitive electronic circuitry.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 16, 2021
    Assignee: D. Swarovski KG
    Inventors: Christof Gapp, Martin Scholz, Annemarie Leber, Mathias Mair, Franz Lexer, Ernst Altenberger
  • Patent number: 10941083
    Abstract: A part coated in a protective coating forms a thermal barrier and includes a ceramic first layer. The protective coating further includes a second layer present on the first layer and including a majority by weight of a first feldspar mineral having a melting temperature higher than or equal to 1010° C. and presenting a thickness greater than or equal to 10 ?m.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: March 9, 2021
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Pascal Fabrice Bilhe, André Hubert Louis Malie
  • Patent number: 10934462
    Abstract: The invention describes compositions that include amine-containing silsesquioxane or an amine-containing alkyltrialkoxysilane and a thermoplastic elastomer as well as methods of preparation of the compositions that are useful as self-bonding adhesives for various substrates.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: March 2, 2021
    Assignee: Saint-Gobain Performance Plastics Corporatoin
    Inventor: Duan Li Ou
  • Patent number: 10927445
    Abstract: Provided is a surface-coated cutting tool including: a tool body (3) and a hard coating layer on the tool body (3). The hard coating layer has an alternate laminate structure of A (1) and B layers (2). The A layer (1) is a Ti and Al complex nitride layer satisfying a compositional formula: (Ti1-zAlz)N, 0.4?z?0.7. The B layer (2) is a Cr, Al and M complex nitride layer satisfying a compositional formula: (Cr1-x-yAlxMy)N, 0.03?x?0.4 and 0?y?0.05. The value of a ratio tB/tA of the average layer thickness of the B layer (2) to the average layer thickness of the A layer (1) satisfies 0.67 to 2.0. The lattice constant a(?) of crystal grains of the hard coating layer satisfies 4.10?a?4.20. The ratio of I(200) to I(111) satisfies 2.0?I(200)/I(111)?10.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: February 23, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shun Sato, Masakuni Takahashi
  • Patent number: 10892334
    Abstract: An n-type SiC single crystal substrate of the present invention is provided which is a substrate doped with both a donor and an acceptor, and has a difference between a donor concentration and an acceptor concentration in an outer peripheral portion which is smaller than a difference between a donor concentration and an acceptor concentration in a central portion, and is smaller than 3.0×1019/cm3.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 12, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Kazuma Eto, Hiromasa Suo, Tomohisa Kato
  • Patent number: 10886159
    Abstract: A method of processing a wafer includes: preparing a support substrate that can transmit ultraviolet rays having a wavelength of 300 nm or shorter and can support the wafer thereon; integrating a face side of the wafer and the support substrate by sticking the face side of the wafer and the support substrate to each other with an UV-curable resin whose adhesive power can be lowered by ultraviolet rays applied thereto interposed therebetween, thereby integrally combining the wafer and the support substrate with each other; processing a reverse side of the wafer; destroying the UV-curable resin by applying a focused laser beam in an ultraviolet range having a wavelength of 300 nm or shorter from a support substrate side; and peeling off the support substrate from the face side of the wafer.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 5, 2021
    Assignee: DISCO CORPORATION
    Inventors: Hiroshi Morikazu, Tasuku Koyanagi
  • Patent number: 10866665
    Abstract: Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: December 15, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Jordan Thomas Boggs, Michael Timothy Brennan, Atul Kumar, Arpita Mitra, William Michael Seiderman, Yawei Sun, Wendell Porter Weeks
  • Patent number: 10822285
    Abstract: Coating systems are provided for positioning on a surface of a substrate, along with the resulting coated components and methods of their formation. The coating system may include a layer having a compound of the formula: A1?bBbZ1?dDdMO6 where: A is Al, Ga, In, Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Fe, Cr, Co, Mn, Bi, or a mixture thereof; b is 0 to about 0.5; Z is Hf, Ti, or a mixture thereof; D is Zr, Ce, Ge, Si, or a mixture thereof; d is 0 to about 0.5; and M is Ta, Nb, or a mixture thereof.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventor: Glen Harold Kirby
  • Patent number: 10808142
    Abstract: Provided are a method of preparing a graphene quantum dot, a graphene quantum dot prepared using the method, a hardmask composition including the graphene quantum dot, a method of forming a pattern using the hardmask composition, and a hardmask obtained from the hardmask composition. The method of preparing a graphene quantum dot includes reacting a graphene quantum dot composition and an including a polyaromatic hydrocarbon compound and an organic solvent at an atmospheric pressure and a temperature of about 250° C. The polyaromatic hydrocarbon compound may include at least four aromatic rings.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 20, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sangwon Kim, Minsu Seol, Hyeonjin Shin, Dongwook Lee, Yunseong Lee, Seongjun Jeong, Alum Jung
  • Patent number: 10741420
    Abstract: A cleaning wafer or substrate for use in cleaning, or in combination with, components of, for example, integrated chip manufacturing apparatus. The cleaning substrate can include a substrate having varying predetermined surface features, such as one or more predetermined adhesive, non-tacky, electrostatic, projection, depression, or other physical sections. The predetermined features can provide for more effective cleaning of the components with which they are used, such as an integrated chip manufacturing apparatus in the place of the integrated chip wafer. The cleaning substrate can be urged into cleaning or other position by vacuum, mechanical, electrostatic, or other forces. The cleaning substrate can adapted to accomplish a variety of functions, including abrading or polishing. The cleaning substrate may be made by a novel method of making, and it may then be used in a novel method of use I combination with chip manufacturing apparatus.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 11, 2020
    Assignee: International Test Solutions, Inc.
    Inventors: Alan E. Humphrey, James H. Duvall, Jerry Broz
  • Patent number: 10714338
    Abstract: We describe a method for reducing bow in a composite wafer comprising a silicon wafer and a silicon carbide layer grown on the silicon wafer. The method includes applying nitrogen atoms during the growth process of the silicon carbide layer on the silicon wafer so as to generate a compressive stress within the composite wafer.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 14, 2020
    Assignee: ANVIL SEMICONDUCTORS LIMITED
    Inventor: Peter Ward
  • Patent number: 10704148
    Abstract: A laminated film includes a flexible base material, a first thin film layer formed on at least one of surfaces of the base material, and a second thin film layer formed on the first thin film layer, and the first thin film layer contains a silicon atom (Si), an oxygen atom (O) and a carbon atom (C), the second thin film layer contains a silicon atom, an oxygen atom and a nitrogen atom (N), and the first thin film layer and the second thin film layer are formed by using glow discharge plasma.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: July 7, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuhiro Yamashita, Yutaka Ito, Hideaki Nakajima
  • Patent number: 10676266
    Abstract: A tapping valve with a plastic valve housing for shipping and storage tanks for liquids, which are equipped with an inner tank with a filling socket and a drain socket for connecting the tapping valve, an outer jacket of a metal cage or sheet metal, and a pallet-like metal support frame. The tapping valve is screwed by means of the inlet socket of the valve housing onto a connecting flange, which is designed as a threaded flange, is made of an electrically conductive plastic material, and is welded onto the drain socket of the inner tank. The connecting flange of the valve housing is connected with the support frame or the outer jacket of the shipping and storage tank by an electric grounding conductor.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 9, 2020
    Assignee: PROTECHNA S.A.
    Inventor: Udo Schütz
  • Patent number: 10669447
    Abstract: A method for producing a coating on a substrate. The method includes producing a clearcoat directly on the substrate by applying an aqueous clearcoat material directly to the substrate. The method further includes curing the applied clearcoat material, the clearcoat material being a two-component coating composition. Also disclosed are coatings produced according to the method and their uses.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: June 2, 2020
    Assignee: BASF Coatings GmbH
    Inventors: Jens-Henning Noatschk, Eva-Kathrin Schillinger, Simon Winzen
  • Patent number: 10654100
    Abstract: The present disclosure is directed at alloys and method for layer-by-layer deposition of metallic alloys on a substrate. The resulting deposition provides for relatively high hardness metallic parts with associated wear resistance. Applications for the metallic parts include pumps, valves and/or bearings.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: May 19, 2020
    Assignee: The NanoSteel Company, Inc.
    Inventors: Charles D. Tuffile, Harald Lemke
  • Patent number: 10633738
    Abstract: Embodiments described herein relate to a protective coating that protects an underlying chamber component (i.e. the object upon which the coating is being deposited) from corrosion or deterioration within a corrosive environment.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Son T. Nguyen, Michael Fong
  • Patent number: 10629796
    Abstract: A laminate includes, on a substrate, a first buffer layer substantially made of zirconium oxide or stabilized zirconia, a second buffer layer substantially made of yttrium oxide, a metal layer substantially made of at least one among platinum, iridium, palladium, rhodium, vanadium, chromium, iron, molybdenum, tungsten, aluminum, silver, gold, copper, and nickel, and a magnesium oxide layer substantially made of magnesium oxide, in this order.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: April 21, 2020
    Assignee: TDK CORPORATION
    Inventors: Kazuya Maekawa, Makoto Shibata, Katsuyuki Nakada, Yohei Shiokawa, Kazuumi Inubushi
  • Patent number: 10607776
    Abstract: A multilayer ceramic electronic component includes a ceramic body in which dielectric layers and internal electrodes are alternately stacked. The dielectric layers contain at least one dielectric grain having a ratio of a long axis to a short axis that is 3.5 or more. The internal electrodes contain a ceramic component containing a grain growth adjusting ingredient for dielectric grains. Each dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, and concentrations of the grain growth adjusting ingredient in the interfacial portions and the central portion are different from each other.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: March 31, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kum Jin Park, Chang Hak Choi, Jong Hoon Yoo, Doo Young Kim, Min Gi Sin, Chi Hwa Lee, Chul Seung Lee, Jong Han Kim
  • Patent number: 10593546
    Abstract: A method of producing graphene or other two-dimensional material such as graphene including heating the substrate held within a reaction chamber to a temperature that is within a decomposition range of a precursor, and that allows two-dimensional crystalline material formation from a species released from the decomposed precursor; establishing a steep temperature gradient (preferably >1000° C. per meter) that extends away from the substrate surface towards an inlet for the precursor; and introducing precursor through the relatively cool inlet and across the temperature gradient towards the substrate surface. The steep temperature gradient ensures that the precursor remains substantially cool until it is proximate the substrate surface thus minimizing decomposition or other reaction of the precursor before it is proximate the substrate surface. The separation between the precursor inlet and the substrate is less than 100 mm.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: March 17, 2020
    Assignee: Paragraf Ltd.
    Inventor: Simon Charles Stewart Thomas
  • Patent number: 10573825
    Abstract: Provided are a compound represented by Formula 1 and an organic light-emitting device including the same: wherein descriptions of Formula 1 are provided in the detailed description of the present specification.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: February 25, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sanghyun Han, Sooyon Kim, Hyejin Jung, Youngkook Kim, Seokhwan Hwang
  • Patent number: 10571672
    Abstract: An apparatus for compressive sensing may include a filter array, a detector, and a reconstruction engine. The filter array may be configured to generate a first illumination pattern in response to a first wavelength of light and a second illumination pattern in response to a second wavelength of light. The first illumination pattern and the second illumination pattern may be projected onto an object. The detector may be configured to determine a first intensity of a first light emitted by the object in response to the first illumination pattern and a second intensity of a second light emitted by the object in response to the second illumination pattern. The reconstruction engine may be configured to generate an image of the object based at least on the first intensity, the first illumination pattern, the second intensity, and the second illumination pattern.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 25, 2020
    Assignee: The Regents of the University of California
    Inventors: Zhaowei Liu, Eric Huang, Qian Ma
  • Patent number: 10546769
    Abstract: According to one embodiment, a semiconductor manufacturing method for a stacked body that includes a semiconductor substrate, a supporting substrate containing silicon, and a joining layer arranged between the semiconductor substrate and the supporting substrate to joint the semiconductor substrate and the supporting substrate, in which a surface of the semiconductor substrate opposite to the joining layer is to be ground, includes irradiating the stacked body with electromagnetic wave having energy of 0.11 to 0.14 eV from a side of the supporting substrate, and separating the semiconductor substrate from the supporting substrate.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: January 28, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tatsuhiko Shirakawa, Kenji Takahashi, Eiji Takano, Masaya Shima
  • Patent number: 10529891
    Abstract: An optoelectronic device that includes a germanium containing buffer layer atop a silicon containing substrate, and a first distributed Bragg reflector stack of III-V semiconductor material layers on the buffer layer. The optoelectronic device further includes an active layer of III-V semiconductor material present on the first distributed Bragg reflector stack, wherein a difference in lattice dimension between the active layer and the first distributed brag reflector stack induces a strain in the active layer. A second distributed Bragg reflector stack of III-V semiconductor material layers having a may be present on the active layer.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana
  • Patent number: 10508361
    Abstract: In a first step, protrusions (42) are formed on a surface of an SiC substrate (40), and the SiC substrate (40) is etched. In a second step, the protrusions (42) of the SiC substrate (40) are epitaxially grown through MSE process, and an epitaxial layer (43a) containing threading screw dislocation, which has been largely grown in the vertical (c-axis) direction as a result of MSE process, is at least partially removed. In a third step, MSE process is performed again on the SiC substrate (40) after the second step, to cause epitaxial layers (43) containing no threading screw dislocation to be grown in the horizontal (a-axis) direction to be connected at the molecular level, so that one monocrystalline 4H—SiC semiconductor wafer (45) having a large area is generated throughout an Si-face or a C-face of the SiC substrate (40).
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: December 17, 2019
    Assignee: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida
  • Patent number: 10494738
    Abstract: A method of growing crystalline materials on two-dimensional inert materials comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material. A crystalline material grown on a two-dimensional inert material made from the process comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 3, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Virginia Wheeler, Charles R. Eddy, Jr., Francis J. Kub, Travis J. Anderson, Michael A. Mastro, Rachael L. Myers-Ward, Sandra C. Hangarter
  • Patent number: 10450650
    Abstract: The present invention relates to a method of manufacturing large area graphene for graphene-based photonics devices such as bolometric graphene detectors, or for use as a saturable absorber in ultra-high bandwidth detectors for producing ultrafast laser pulses. The method includes: growing a first graphene layer on one side of a metal substrate, and a second graphene layer on another side of the metal substrate; coating the first graphene layer with a plurality of resist layers including a low molecular weight polymethylmethacrylate, and a high molecular weight polymethylmethacrylate; removing the second graphene layer and the metal substrate to reveal the first graphene layer; disposing the first graphene layer on an optical substrate; and removing the plurality of resist layers from the first graphene layer to reveal a final graphene layer, which can be used as the basis to manufacture a multilayer graphene structure for graphene detectors.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 22, 2019
    Assignee: The United States of America as represented by the Admininstrator of the National Aeronautics and Space Administration
    Inventors: Mahmooda Sultana, Mary J. Li, Anthony W. Yu
  • Patent number: 10429308
    Abstract: A carrier for Raman spectroscopy comprising: a substrate having a first metal surface; a plurality of graphene islands disposed on the substrate, wherein parts of the neighboring graphene islands are not connected and thereby form a plurality of gaps between the graphene islands; and a plurality of second metal particles disposed at the gaps between the graphene islands.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 1, 2019
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Yon-Hua Tzeng, Ying-Ren Chen
  • Patent number: 10369595
    Abstract: A semiconductor structure is provided including an electrically-conducting substrate and a layer of a two-dimensional material. The structure further includes a solid organic spacer layer arranged between the electrically-conducting substrate and the layer of the two-dimensional material.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventor: Pio Peter Niraj Nirmalraj
  • Patent number: 10371890
    Abstract: An optical waveguide element includes: a cladding portion made of silica-based glass; and a plurality of optical waveguides positioned in the cladding portion and made of silica-based glass in which ZrO2 crystal particles are dispersed. The optical waveguide element is a planar lightwave circuit. The plurality of optical waveguides configure an arrayed waveguide grating element.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: August 6, 2019
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasuyoshi Uchida, Yuuki Taniguchi, Hiroshi Kawashima, Kazutaka Nara, Masanori Takahashi
  • Patent number: 10370240
    Abstract: A layer structure may include a carrier, a two-dimensional layer, and a holding structure. The holding structure is arranged on the carrier and holds the two-dimensional layer on the carrier such that at least a portion of the two-dimensional layer is spaced apart from the carrier. The holding structure includes a holding portion extending from the two-dimensional layer towards the carrier beyond the at least a portion of the two-dimensional layer spaced apart from the carrier.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies AG
    Inventors: Matthias Koenig, Guenther Ruhl
  • Patent number: 10359437
    Abstract: A sealed bag containing a reference fluid for the calibration and/or quality control of a creatine and/or creatinine sensor, the bag comprising: an inner polymer layer and an outer polymer layer; and an aluminium oxide gas barrier layer there between; and wherein the inner polymer layer is in contact with the reference fluid.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 23, 2019
    Assignee: Radiometer Medical ApS
    Inventors: Hans Peter Blaabjerg Jakobsen, Torben Rydahl
  • Patent number: 10344182
    Abstract: The present invention relates to the field of displays and discloses a polyimide substrate, which is manufactured by reacting lignin, polyimide and a free radical initiator. Because lignin contains various active groups, for example, hydroxyl, carboxyl and aryl, etc., when it is introduced into the polymer structure of polyimide, the maximum absorption peak of the polymer can be made to redshift from less than or equal to 280 nm to less than or equal to 380 nm, so that a certain absorption and screening action may be laid on the light wave during a subsequent Laser Lift Off process, and the substrate and the liquid crystal may be prevented from being damaged during a Laser Lift Off process of the glass base substrate, thereby guaranteeing the display quality of the flexible display.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 9, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Hua Huang
  • Patent number: 10329450
    Abstract: A method for producing a multicoat coating (M) on a substrate (S) that includes:(!) producing a basecoat (B) on the substrate by applying an aqueous basecoat material (b) to the substrate (S), the basecoat material being a two-component coating composition, and (II) producing a clearcoat (K) directly on the basecoat (B) by applying an aqueous clearcoat material (k) directly to the basecoat (B), the clearcoat material being a two-component coating composition.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: June 25, 2019
    Assignee: BASF Coatings GmbH
    Inventors: Jens-Henning Noatschk, Jan-Bernd Kues, Alberto Garcia Martin, Eva-Kathrin Schillinger, Dirk Riediger
  • Patent number: 10329205
    Abstract: In some examples, an article may include a substrate and a coating on the substrate. In accordance with some of these examples, the coating may include a bond layer and an overlying layer comprising at least one oxide. In some examples, the bond layer comprises silicon metal and at least one of a transition metal carbide, a transition metal boride, or a transition metal nitride.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 25, 2019
    Assignee: Rolls-Royce Corporation
    Inventors: Sean E. Landwehr, Kang N. Lee, Adam Lee Chamberlain
  • Patent number: 10325987
    Abstract: Metal-chalcogenide films disposed on a substrate comprising at least one monolayer (e.g., 1 to 10 monolayers) of a metal-chalcogenide. The films can be continuous (e.g., structurally and/or electrically continuous) over 80% or greater of the substrate that is covered by the film. The films can be made by methods based on low metal precursor concentration relative to the concentration of chalcogenide precursor. The methods can be carried out at low water concentration. The films can be used in devices (e.g., electrical devices and electronic devices).
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: June 18, 2019
    Assignee: Cornell University
    Inventors: Jiwoong Park, Kibum Kang, Saien Xie
  • Patent number: 10266398
    Abstract: A method for fabricating a Microelectromechanical System (MEMS) resonator includes providing a dielectric substrate defining a resonator and depositing a conductive coating having a resistivity of approximately 1 to 50 ??-cm on that substrate by Atomic Layer Deposition (ALD). A resonator fabricated according to this process includes a dielectric substrate defining a resonator and a conductive coating having a resistivity of approximately 1 to 50 ??-cm for electrically coupling the resonator to electronics. Another method for fabricating a MEMS resonator includes providing a dielectric substrate defining a resonator, depositing an aluminum oxide film on that substrate by ALD, and depositing a noble metal film on the aluminum oxide film, also by ALD.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 23, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Richard J. Joyce
  • Patent number: 10266763
    Abstract: Provided is a method of producing a Mn-activated complex fluoride phosphor, the method including: mixing a red phosphor as a Mn-activated complex fluoride represented by the following formula (1): K2MF6:Mn??(1) wherein M is one or two or more of tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge and Sn and necessarily includes Si, with K2MnF6 in solid state and optionally with a hydrogenfluoride represented by the following formula (2): AF.nHF??(2) wherein A is one or two or more of alkali metals and/or ammonium selected from the group consisting of Li, Na, K, Rb and NH4 and necessarily includes K, and n is a number of 0.7 to 4, in solid state; and heating the resulting mixture at a temperature of 100 to 500° C. According to the present invention, it is possible to obtain a Mn-activated complex fluoride phosphor which can be used with smaller amount as compared to those according to the related art.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 23, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masami Kaneyoshi, Hirofumi Kawazoe, Isamu Fujioka, Kazuhiro Wataya, Hajime Nakano
  • Patent number: 10240069
    Abstract: An anti-corrosion composition includes a first compound including: a first polyisobutylene having an average relative molar mass ranging from about 30,000 to about 100,000 g/mole and a Staudinger index ranging from about 15-70 cm3/g, a first depolymerized butyl rubber with Brookfield viscosity at 66° C. ranging from about 400,000-2,000,000 mPa·s and an average molecular weight ranging from about 20,000-60,000, and combinations thereof. A second compound includes a second polyisobutylene having an average relative molar mass ranging from about 900,000-6,500,000 g/mole and a Staudinger index ranging from about 240-900 cm3/g, at least one second partly cross-linked butyl rubber with a Mooney viscosity at 127° C. ranging from about 65-100 MU. The anti-corrosion composition includes at least one first or at least one second polyisobutylene as well as at least one first or at least one second butyl rubber.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: March 26, 2019
    Assignee: Denso-Holding GmbH & Co.
    Inventors: Thomas Markus Kaiser, Oleg Gryshchuk
  • Patent number: 10243110
    Abstract: The invention relates to an optoelectronic device (1) comprising at least one outer surface (2) containing silicone (20), chemical compounds, comprising an anchor group (3) and a head group (4), being bonded to the silicone via the anchor group, and the adhesion of the regions of the silicone (2) present on the outer surface being reduced owing to the head groups of the chemical compounds. A method for producing an optoelectronic device is also disclosed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: March 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Thomas Reeswinkel, Gudrun Lindberg
  • Patent number: 10221486
    Abstract: Provided is a laminate film having a substrate and at least one thin film layer which is formed on at least one surface of the substrate, wherein at least one of the thin film layers satisfies all of the following conditions (i) to (iv): (i) silicon atoms, oxygen atoms, and carbon atoms are contained, (ii) a content ratio X (at %) of the number of carbon atoms relative to a sum of the number of silicon atoms, the number of oxygen atoms, and the number of carbon atoms is 3 to 25 at %, (iii) an average density d (g/cm3) is 2.12 g/cm3 or higher and is less than 2.25 g/cm3, and (iv) the content ratio X (at %) of the number of carbon atoms and the average density d (g/cm3) satisfy a condition represented by the following formula (1): d>(2.22?0.008X)??(1).
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 5, 2019
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Akira Hasegawa
  • Patent number: 10214687
    Abstract: Provided is a method for producing a red phosphor which is a Mn-activated complex fluoride represented by formula (1), A2MF6:Mn (1) (M is one type or more of a tetravalent element selected from Si, Ti, Zr, Hf, Ge, and Sn, and A is one type or more of an alkali metal selected from Li, Na, K, Rb, and Cs, and includes at least Na and/or K.), wherein, as a reactive source, a solid of a complex fluoride represented by formula (2), A2MF6 (2) (M and A are as described above) and a solid of a manganese compound represented by formula (3), A2MnF6 (3) (A is as described above) are mixed and heated at a temperature of from 100° C. to 500° C. According to the present invention, a Mn-activated complex fluoride phosphor having favorable luminescence properties can be obtained without using hydrofluoric acid in a main step.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: February 26, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Masami Kaneyoshi
  • Patent number: 10189712
    Abstract: A method may include exposing a porous, carbon-containing material to a fuel source and an oxidizing agent; allowing the porous, carbon-containing material to adsorb at least some of the fuel source; and heating the porous, carbon-containing material to a temperature at which combustion of the adsorbed fuel source occurs, so that the porous, carbon-containing material is homogeneously oxidized throughout its thickness. Another method may include exposing a microporous, carbon-containing material to a fuel and an oxidizing agent, allowing the microporous, carbon-containing material to adsorb at least some of the fuel, and heating the microporous, carbon-containing material to a temperature at which combustion of the fuel occurs, to seal pores of the microporous, carbon-containing material adjacent to its surface.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: John D. Bass, Robert D. Miller, Bobby E. Feller
  • Patent number: 10158212
    Abstract: An improved structure for reducing compound semiconductor wafer distortion comprises a contact metal layer, at least one stress balance layer and a die attachment layer. The contact metal layer is formed on a bottom surface of a compound semiconductor wafer; the at least one stress balance layer is formed on a bottom surface of the contact metal layer, wherein the at least one stress balance layer is made of at least one conductive material; the die attachment layer is formed on a bottom surface of the at least one stress balance layer, wherein the die attachment layer is made of conductive material. By locating the at least one stress balance layer between the contact metal layer and the die attachment layer, the stress suffered by the compound semiconductor wafer is balanced so that the distortion of the compound semiconductor wafer is reduced.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 18, 2018
    Assignee: WIN SEMICONDUCTORS CORP.
    Inventors: Chang-Hwang Hua, Wen Chu
  • Patent number: 10060018
    Abstract: A composition and method of kinetically depositing the composition to form a coating onto an exterior surface of a zirconium alloy cladding of a light water nuclear reactor which at least partially adheres to the exterior surface. The coating composition includes a first component and a second component. The first component is selected from the group consisting of zirconium, zirconium oxide and mixtures thereof. The second component is selected from the group consisting of Zr2AlC ceramic, Ti2AlC ceramic, Ti3AlC2 ceramic, Al2O3, aluminum, zirconium silicide, amorphous and semi-amorphous alloyed stainless steel, and mixtures of Zr2AlC ceramic, Ti2AlC ceramic and Ti3AlC2 ceramic. The coating has a gradient emanating from the exterior surface of the cladding toward an exposed outer surface of the coating such that percent by weight of the first component decreases and the second component increases from the exterior surface of the cladding toward the exposed outer surface of the coating.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 28, 2018
    Assignee: Westinghouse Electric Company LLC
    Inventors: Edward J. Lahoda, Jason P. Mazzoccoli, Peng Xu
  • Patent number: 10054818
    Abstract: The present invention provides a mirror plate capable of suppressing the occurrence of orange peel-like unevenness. The mirror plate includes a mirror film including a mirror layer and an adhesive layer; and a substrate. The adhesive layer is attached to one surface of the substrate. The one surface of the substrate has an arithmetic average roughness of less than 0.03 ?m. The mirror film includes no hard coat layer containing cured resin. The thicknesses of the mirror layer and the adhesive layer have a relation satisfying: tA/tM?0.18, where tM represents the thickness of the mirror layer and to represents the thickness of the adhesive layer.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 21, 2018
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akira Sakai, Masahiro Hasegawa, Hiroyuki Hakoi, Kiyoshi Minoura
  • Patent number: 10054487
    Abstract: An object of the present invention is to provide a gas barrier laminated film having high adhesion under a high-temperature working environment.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: August 21, 2018
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Guan Li, Yasuhiro Yamashita, Mitsunori Nodono
  • Patent number: 10000614
    Abstract: The present invention concerns a method of preparing a film of nanofibrillated cellulose (NFC) on at least one surface of a support material, wherein the film is applied and spread directly onto a surface of the plastic support material in the form of a suspension of nanofibrillated cellulose, whereby the nanofibrillated cellulose forms a film. Further, the invention concerns a structure containing or consisting of a film of nanofibrillated cellulose prepared using said method.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: June 19, 2018
    Assignees: Teknologian tutkimuskeskus VTT Oy, Aalto University Foundation sr
    Inventors: Tekla Tammelin, Ulla Hippi, Arto Salminen