Component Of Composite Having Metal Continuous Phase Interengaged With Nonmetal Continuous Phase Patents (Class 428/545)
  • Patent number: 5455116
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by successively laminating (A) an electromagnetic wave reflecting material layer, if needed, (B) a supporting layer, (C) a resin layer, if needed, (D) a supporting layer, and (E) a metallic pattern layer prepared by arranging at least one of a pattern unit comprising a geometrical pattern formed by use of a continuous metallic band, or comprising a multi-figured structure formed by combining a plurality of band-shaped metallic figures so as not to contact with each other; and an electromagnetic wave reflection-preventing method by use of the electromagnetic wave reflection-preventing material.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: October 3, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Tetsu Maki, Naozumi Iwasawa
  • Patent number: 5455117
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by successively laminating (A) an electromagnetic have reflecting metallic material layer, if needed, (B) a substrate layer, (C) a resin layer containing a powder of at least one selected from ferrite, carbon, metal powder and an electrically conductive metallic oxide, and, if needed, a good dielectric material, if needed, (D) a supporting film layer, and (E) a pattern coating layer prepared in the form of a geometrical pattern, containing a metal powder and having a volume resistivity of 10.sup.-3 to 10.sup.10 .OMEGA..multidot.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: October 3, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Naozumi Iwasawa, Tetsu Maki
  • Patent number: 5453328
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by a process which comprises successively laminating (A) a pattern layer formed in the form of a geometrical pattern having a volume resistivity of 10.sup.3 .OMEGA. .
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: September 26, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Naozumi Iwasawa, Tetsu Maki
  • Patent number: 5443917
    Abstract: A densified ceramic or cermet armor material comprises greater than fifty percent by weight titanium nitride or greater than eight percent by weight of a mixture of titanium nitride and aluminum nitride to impart low compressive strength to said armor material and may additionally comprise components suitable for densification with said titanium nitride or titanium nitride-aluminum nitride mixture where the resulting armor material has high density and low porosity with a Young's modulus greater than 200 GPa and a compressive strength of less than 5.5 GPa.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: August 22, 1995
    Assignee: GTE Products Corporation
    Inventor: Christopher A. Tarry
  • Patent number: 5422187
    Abstract: A vapor phase corrosion inhibitor-desiccant composite comprising silica gel granules coated with a vapor phase corrosion inhibitor component. The corrosion inhibitor component is selected from a formulation comprising anhydrous molybdates such as ammonium dimolybdate, sodium molybdate and amine molybdates mixed with benzotriazole and sodium nitrate, or from a formulation comprising amine benzoates, amine nitrates and benzotriazole. The composites can be impregnated into foam, extruded with polyolefin films which can additionally be laminated with metallized second film, or encapsulated in an air-permeable container. The corrosion inhibitor formulations have vapor pressures which provide ongoing corrosion protection for susceptible articles situated favorably with respect to the composite.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: June 6, 1995
    Assignee: Cortec Corporation
    Inventors: Boris A. Miksic, Joseph M. Foley, Tsi-Zong Tzou
  • Patent number: 5418070
    Abstract: An impregnated cathode comprising three layers: a very thin emitting surface layer of metal such as an alloy of tungsten with a high fraction of an activating metal of the platinum group to provide low workfunction; an underlying, thin buffer layer of porous tungsten alloyed with a fraction of activating metal, to retard diffusion loss of activating metal from the emitting layer; and a substrate of porous tungsten impregnated with barium aluminate.
    Type: Grant
    Filed: April 28, 1988
    Date of Patent: May 23, 1995
    Assignee: Varian Associates, Inc.
    Inventor: Michael C. Green
  • Patent number: 5418072
    Abstract: A consumable brazing encapsulate is used for joining aluminum to metal surfaces, e.g. aluminum, copper, brass or steel surfaces, by brazing. The encapsulate comprises a mixture of particles of an eutectic forming metal selected from the group consisting of silicon, germanium, copper and zinc and particles of a brazing flux encapsulated in a layer or layers of aluminum or its alloys, said eutectic forming metal and flux being present in the following parts by weight per 100 parts by weight of the total aluminum in the encapsulate: (a) 7 to 15 parts of silicon and 7 to 45 parts of flux; (b) 25 to 120 parts of germanium and 100 to 250 parts of flux; (c) 40 to 70 parts of copper and 20 to 100 parts of flux; (d) 1300 to 2400 parts of zinc and 1000 to 2000 parts of flux; such that when the encapsulate is placed between aluminum surfaces to be joined and is heated, the eutectic forming metal and the encapsulating aluminum are totally converted in situ into an eutectic filler metal for joining the aluminum surfaces.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: May 23, 1995
    Assignee: Alcan International Limited
    Inventors: Antonio Baldantoni, Roland S. Timsit
  • Patent number: 5384200
    Abstract: A thermal barrier coating and method of depositing the same on the surfaces of combustion chamber components in compression-ignition internal combustion engines is disclosed. The thermal barrier coating is a dual layer having a first metallic layer comprised of MCrAlY material deposited on the component surface. A porous ceramic layer comprised of Yttria partially stabilized zirconia or Ceria-Yttria partially stabilized zirconia is deposited on the metallic layer to impede the flow of heat therethrough. In operation, the metallic layer creates a mechanical bond between the component surface and the ceramic layer, allows for a smooth transition between the differing physical properties of the component and the ceramic layer and serves as a corrosion barrier by protecting the component from combustion gases and contaminants.
    Type: Grant
    Filed: April 18, 1994
    Date of Patent: January 24, 1995
    Assignee: Detroit Diesel Corporation
    Inventors: David C. Giles, Roger E. Begin, David R. Dugger, Eric W. Paskvan
  • Patent number: 5376462
    Abstract: A thixoformable material and a method for forming it are provided in which the material comprises a series of sequentially deposited layers of substantially metallic material, at least some of the layers having different properties. The layers may be of different materials or the layers may differ in that some are provided with reinforcing material whereas other are not. The reinforcing material may consist of particles of spherical, fiberous or other shapes and may be made of various carbides or other suitable reinforcing materials.The thixoformable material may be formed in sheets, cylindrical forms or any other shape and subsequently cut to the volume and/or shape required for the forming stage.A layered material of this sort offers the advantages of thixoformable materials but with enhanced toughness and damage resistance due to the layered 3-dimensional structure.
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: December 27, 1994
    Assignee: Lucas Industries public limited company
    Inventor: Peter R. G. Anderson
  • Patent number: 5373983
    Abstract: A composite article is manufactured by preparing a machined surface of the composite article for diffusion bonding. The method includes removing most of the exposed fibers by shot peening followed by acid etching. The acid etch may be followed by grit blasting and then another acid etch. After the method is applied to the surface, the article can be diffusion bonded to other composite article to form complex shapes.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: December 20, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Steven C. Stenard, Mohsen Sohi, Donald R. Schuyler, Mani Janakiram
  • Patent number: 5356720
    Abstract: The present invention relates to self-supporting ceramics or ceramic composite bodies which include a polycrystalline ceramic material comprising the oxidation reaction product of a silicon parent metal with a nitrogenous oxidant, including a nitrogenous vapor-phase oxidant, and optionally, one or more metallic constituents dispersed throughout the polycrystalline ceramic material. A barrier means comprising, for example, at least one of titanium nitride, zirconium nitride, aluminum nitride and boron nitride or a barrier means that has undergone chemical changes or alterations may be removably attached to the self-supporting ceramics or ceramic composite bodies of the present invention.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: October 18, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: David K. Creber, William B. Johnson, Marc S. Newkirk
  • Patent number: 5350637
    Abstract: Microlaminated composite articles are made by combining one or more sheets of flexible sintered crystalline ceramic foil with one or multiple inorganic substrate layers, e.g., of metal foil, to form a stack which is then heated below the melting temperatures of the foil and substrate layers, and under slight or moderate pressure, to provide a well-bonded composite article which is essentially free of interlaminar cementing or sealing materials.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: September 27, 1994
    Assignee: Corning Incorporated
    Inventors: Thomas D. Ketcham, Leroy S. Share, Dell J. St. Julien
  • Patent number: 5346775
    Abstract: New solder compositions which can have improved mechanical properties are disclosed. In a preferred embodiment, the solder comprises a matrix material and magnetically dispersed particles. A desirable dispersion of the magnetic particles in the matrix material, is accomplished by applying a magnetic field to the molten matrix material containing magnetic particles and solidifying it in the presence of the magnetic field. The particle-dispersed microstructures improve the mechanical properties of the solder composition. The improved solder composition can be made into a powder to be used in solder paste, cream or reshaped while substantially retaining the improved mechanical properties.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: September 13, 1994
    Assignee: AT&T Laboratories
    Inventors: Sungho Jin, Mark T. McCormack
  • Patent number: 5344690
    Abstract: Self-supporting ceramic bodies comprising a polycrystalline material comprising the oxidation reaction product of a parent metal and having therein one or more channels which inversely replicate the geometry of the configured fugitive metal are formed. These self-supporting bodies may be utilized as articles for regulating and facilitating the passage of a fluid therethrough.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: September 6, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Danny R. White, Michael K. Aghajanian
  • Patent number: 5342468
    Abstract: A joint forming sheet comprising a substrate having an easy release surface having a contact angle with water of at least 50.degree., having provided on the easy release surface thereof an inorganic thin layer, the interfacial adhesive force of the inorganic thin layer to the substrate surface being greater than the tensile strength of the inorganic thin layer. The inorganic thin layer can be released and transferred to a part on which an electrical joint is to be formed with high precision to form a joint causing no electrical connection failure.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: August 30, 1994
    Assignee: Nitto Denko Corporation
    Inventors: Shozo Kawazoe, Hidehito Okano
  • Patent number: 5310840
    Abstract: Polymerizable compositions having at least one cationically polymerizable monomer; an optional free radically polymerizable monomer; an energy-polymerizable catalyst system wherein the catalyst system comprises an organometallic complex salt; a thermally decomposable ester reaction product of a tertiary alkyl alcohol and an acid that forms a chelation complex with the metal ion of the organometallic complex salt; optionally, a peroxide. The polymerized compositions are useful as cured adhesive films, pressure sensitive adhesives, protective coatings, liquid adhesives, structural and semi-structural adhesives, and free standing films.
    Type: Grant
    Filed: July 29, 1993
    Date of Patent: May 10, 1994
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Peggy S. Willett, Janis Robins, Kent S. Tarbutton, Michael A. Kropp
  • Patent number: 5304520
    Abstract: There is disclosed a method for making a self-supporting ceramic composite article having a porous core bearing a dense surface layer formed integrally with said core. A preform comprises a filler material and parent metal distributed therethrough, wherein the volume percent of parent metal is sufficient to form a volume of oxidation reaction product exceeding the total volume available within said preform. The parent metal is melted and reacted with an oxidant to form an oxidation reaction product filling the spatial volume and leaving voids. The reaction is continued to further transport molten parent metal through the oxidation reaction product to at least one surface of the preform to form oxidation reaction product on said surface substantially free of voids thereby forming a relatively dense surface layer.
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: April 19, 1994
    Assignee: Lanxide Technology Company, LP
    Inventor: Ratnesh K. Dwivedi
  • Patent number: 5296419
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: March 22, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Danny R. White, Terry D. Claar
  • Patent number: 5296417
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: March 22, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Steven M. Mason, Kevin P. Pochopien, Danny R. White, William B. Johnson, Michael K. Aghajanian
  • Patent number: 5296016
    Abstract: There is disclosed a surface coated cermet blade member which includes a cermet substrate and a hard coating of an average thickness of 0.5 to 20 .mu.m formed thereon. The substrate contains, apart from unavoidable impurities, a binder phase of 5 to 30% by weight of at least one of cobalt, nickel, iron and aluminum, and a hard dispersed phase of a balance carbo-nitride of metals. The metals are titanium, tungsten and at least one of tantalum, niobium, vanadium, zirconium, molybdenum and chromium. The substrate includes a surface portion having a hardness greater than an interior portion. The hard coating may be composed of one or more coating layers. Each coating layer is formed of TiX or Al.sub.2 O.sub.3, where X denotes at least one element of carbon, nitrogen, oxygen and boron.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: March 22, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hironori Yoshimura, Seiichirou Nakamura, Niro Odani
  • Patent number: 5277989
    Abstract: A net shaped ceramic-reinforced aluminum matrix composite is formed by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contacting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: January 11, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Terry D. Claar
  • Patent number: 5268234
    Abstract: Shaped, self-supporting ceramic bodies are produced by preparing a mold by applying a permeable, conformable material to a shape-defining surface of an expendable pattern. The permeable, conformable material, when set or stable, provides a mold with a shaped surface which is defined by, and is therefore substantially congruent to, the shape-defining surface. Upon heating, the material of the expendable pattern combusts or volatilizes and thus establishes the shaped cavity mold. A molten parent metal is then vaporized with a vapor-phase oxidant in such a manner as to form a ceramic body which grows into the mold cavity, and is shaped by it. The ceramic body is recovered from the mold having a shaped surface replicating the shape-defining surface of the expendable pattern.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: December 7, 1993
    Assignee: Lanxide Technology Company, LP
    Inventor: E. Allen LaRoche, Jr.
  • Patent number: 5266415
    Abstract: A method of producing self-supporting ceramic bodies having a modified metal-containing component includes first providing a a self-supporting ceramic body comprising (i) a polycrystalline oxidation reaction product formed upon oxidation of a molten parent metal precursor with an oxidant, and (ii) an interconnected metal-containing component at least partially accessible from one or more surfaces of said ceramic body. The surface or surfaces of the ceramic body is contacted with a quantity of foreign metal different from said interconnected metal-containing component at a temperature and for a time sufficient to allow for interdiffusion, whereby at least a portion of said metal-containing component is displaced by said foreign metal. The resulting ceramic body, having an altered metal-containing component, exhibits modified or improved properties.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: November 30, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker
  • Patent number: 5266414
    Abstract: An impregnated thermionic cathode includes a porous matrix of sintered tungsten-alloy particles containing less than six percent iridium and/or other platinum-group metal. The pores of the matrix are impregnated with a temporary process impregnant such as molten copper or an organic monomer, and upon solidification is machined to a desired shape. Thereafter the temporary process impregnant is removed, and the matrix pores again infiltrated with a barium oxide such as molten barium aluminate, or other alkaline earth. A thin, iridium-rich surface activating layer, preferably of about 50% iridium, is then applied to the emitting surface. The diffusion of surface activating iridium is substantially blocked; superior emission and lifetime is provided; and the cathode is relatively low cost and easy to fabricate.
    Type: Grant
    Filed: March 18, 1988
    Date of Patent: November 30, 1993
    Assignee: Varian Associates, Inc.
    Inventors: Gerard A. Goeser, Michael C. Green
  • Patent number: 5248661
    Abstract: A ductile, high electrical conductivity composite is made, containing alkaline earth metal-copper oxide particles (14), having a gold coating (16), within a skeletal matrix of hyperconducting aluminum (22) enclosed by a metallic sheath (12).
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: September 28, 1993
    Assignee: Westinghouse Electric Corp.
    Inventors: Cecil J. Mole, Alan T. Male, Walter J. Carr, Jr., Clifford K. Jones
  • Patent number: 5238886
    Abstract: Ceramic bodies are bonded together via a layer of an oxidation reaction product of a molten metal, which metal is present in one or both of the ceramic bodies prior to bonding. At least one of the ceramic bodies comprises a ceramic product formed by the oxidation reaction of molten parent metal (e.g., alumina from molten aluminum) and grown as molten metal is transported through, and oxidized on the surface of, its own oxidation product. One or both of the ceramic bodies used in the bonding process contains surface-accessible channels of residual metal, i.e., metal channels which have resulted from molten-metal transport during the ceramic growth process. When the suitably assembled ceramic bodies are heated in the presence of an oxidant at a temperature above the melting point of the residual metal, molten metal at the surface of at least one of the ceramic bodies reacts with the oxidant to form a layer of oxidation reaction product, which may or may not incorporate at least one filler material.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: August 24, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Stanley J. Luszcz, Andrew W. Urquhart, Marc S. Newkirk
  • Patent number: 5236786
    Abstract: In the present invention there is provided a method for producing a self-supporting ceramic or ceramic composite body by the oxidation of a parent metal to form a polycrystalline ceramic material comprising the oxidation reaction product of said parent metal with an oxidant, including a vaporphase oxidant, and optionally one or more metallic constituents dispersed throughout the polylcrystalline ceramic material. The method comprises the steps of providing at least a portion of said parent metal for establishing at least one surface of the ceramic body, and heating said parent metal to a temperature above its melting point but below the melting point of the oxidation reaction product to form a body of molten metal. At that temperature, the molten metal is reacted with the oxidant, thus forming the oxidation reaction product.
    Type: Grant
    Filed: February 22, 1991
    Date of Patent: August 17, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Robert C. Kantner
  • Patent number: 5217814
    Abstract: The wear resistance and seizure resistance of the sliding material consisting of a metal backing, a Cu-based sintered layer, and resin and solid lubricant filled in the pores of the sintered layer are improved by determining the following features (a) multi-layer Cu particles; from 30 to 200 .mu.m of the diameter of the Cu particles; porosity of from 5 to 70% of the sintered layer; resin, MoS.sub.2 and graphite filled in the pores.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: June 8, 1993
    Assignee: Taiho Kogyo Co., Ltd.
    Inventors: Shinya Kawakami, Shinichi Miziguchi, Tatsuhiko Fukuoka, Yasunori Kabeya, Keiichi Shimasaki
  • Patent number: 5196271
    Abstract: A method is provided for producing a self-supporting ceramic body comprising a polycrystalline material comprised of the oxidation reaction product of a parent metal and having therein one or more channels which inversely replicate the geometry of a configured fugative metal. The method includes providing an assembly of the configured fugitive metal and the parent metal, optionally including a bed of permeable filler, and heating the assembly to form a body of molten parent metal. The molten parent metal is oxidized under selected conditions to grow the polycrystalline material to engulf the configured fugitive metal (and to infiltrate the filler, if the filler is present) and to cause the fugitive metal to disperse into the engulfing polycrystalline material thereby leaving behind as the one or more channels the space formerly occupied by the configured fugitive metal.
    Type: Grant
    Filed: February 20, 1992
    Date of Patent: March 23, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Danny R. White, Michael K. Aghajanian, Harry R. Zwicker
  • Patent number: 5189009
    Abstract: A method of preparing a superconducting oxide by combining the metallic elements of the oxide to form an alloy, followed by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: February 23, 1993
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory J. Yurek, John B. VanderSande
  • Patent number: 5185303
    Abstract: A self-supporting ceramic body produced by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: February 9, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White
  • Patent number: 5185215
    Abstract: A ceramic material suitable for packaging of large scale integrated circuit is produced by the process of forming a mixture of a powdered glass ceramic material which is a glassy precursor to cordierite ceramic material, formed by the steps which are as follows:a. Mix tetragonal phase material selected from the group consisting of zirconia or hafnia powder containing a stabilizing oxide compound selected from the group consisting of MgO, CaO and Y.sub.2 O.sub.3 and a glass frit powder or frit of a glassy precursor of cordierite glass ceramic to yield a suspension of solids. Preferably, a binder is included.b. Disperse the suspended solids to yield a dispersion of the zirconia or hafnia with the stabilizing oxide compound and the glassy precursor.c. Densify the dispersion of zirconia or hafnia with the stabilizing oxide compound and the glassy precursor by a sintering heat treatment at a temperature of about 840.degree. C.
    Type: Grant
    Filed: February 26, 1991
    Date of Patent: February 9, 1993
    Assignee: International Business Machines Corporation
    Inventors: Richard W. Adams, Jr., David R. Clarke, Sarah H. Knickerbocker, Linda L. Rapp, Bernard Schwartz
  • Patent number: 5164347
    Abstract: In a method for producing ceramic body by oxidation of a parent metal having a graded microstructure characterized by a plurality of zones differing from each other in one or more properties by altering the process conditions during formation of said ceramic body such that a zone of the oxidation reaction product formed posterior to said altering has one or more properties different from a zone of the oxidation reaction product formed anterior to said altering.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: November 17, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Christopher R. Kennedy, Andrew W. Urquhart, Danny R. White, Marc S. Newkirk, Jeffrey R. Ramberg
  • Patent number: 5141819
    Abstract: A net shaped ceramic-reinforced aluminum matrix composite is formed by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contracting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: August 25, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Terry D. Claar
  • Patent number: 5124198
    Abstract: The present invention provides a metal/polymer composite comprising a polymeric substrate and a sintered mat of randomly-oriented metal fibers embedded therein, the fibers having a substantially circular cross-section and a diameter of about 10 to 200 .mu.m. The polymeric substrate is typically a thin, flexible sheet-like material having a pair of planar surfaces. The polymeric substrate is preferably thermoformable. If thermoformability is desired the metal will have a melting point of less than the thermoforming temperature of the polymeric substrate. The thermoformable metal/polymer composite of the present invention may be stretched to at least 20%, and often can be stretched at least 200% of its original dimensions, at least in certain regions, without loss of electrical continuity or EMI shielding properties. The present invention also provides a method of making a metal/polymer composite and a sintered mat of randomly-oriented metal fibers.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: June 23, 1992
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: David C. Koskenmaki, Clyde D. Calhoun, Pamela S. Tucker, Robert L. Lambert, Jr.
  • Patent number: 5106698
    Abstract: Self-supporting ceramic bodies having a modified metal-containing component are formed by first providing a self-supporting ceramic body comprising (1) a polycrystalline oxidation reaction product formed upon oxidation of a molten parent metal precursor with an oxidant, and (ii) an interconnected metal-containing component at least partially accessible from one or more surfaces of said ceramic body. The surface or surfaces of the ceramic body are contacted with a quantity of foreign metal different from said interconnected metal-containing component at a temperature and for a time sufficient to allow for interdiffusion, whereby at least a portion of said metal-containing component is displaced by said foreign metal. The resulting ceramic body, having an altered metal-containing component, exhibits modified or improved properties.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: April 21, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker
  • Patent number: 5071826
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: October 13, 1989
    Date of Patent: December 10, 1991
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby
  • Patent number: 5066618
    Abstract: There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
    Type: Grant
    Filed: August 16, 1990
    Date of Patent: November 19, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White
  • Patent number: 5059489
    Abstract: A structure comprising a mixture of metals and metal alloys which are sintered into a hard porous body is presented. The structure can be useful for many different chemical and physical purposes, such as for catalysis, desorption and absorption, and selective leaching of the structure components into solutions.
    Type: Grant
    Filed: July 15, 1988
    Date of Patent: October 22, 1991
    Assignee: Corning Incorporated
    Inventors: Charles Q. Buckwalter, Jr., Irwin M. Lachman, Mallanagouda D. Patil, Jimmie L. Williams
  • Patent number: 5045402
    Abstract: A ceramic material suitable for packaging of large scale integrated circuits is produced by the process of forming a mixture of a powdered glass ceramic material which is a glassy precursor to cordierite ceramic material, formed by the steps which are as follows:a. Mix tetragonal phase material selected from the group consisitng of zirconia or hafnia powder containing a stabilizing oxide compound selected from the group consisting of MgO, CaO and Y.sub.2 O.sub.3 and a glass frit powder or frit of a glassy precursor of cordierite glass ceramic to yield a suspension of solids. Preferably, a binder is included.b. Disperse the suspended solids to yield a dispersion of the zirconia or hafnia with the stabilizing oxide compound and the glassy precursor.c. Densify the dispersion of zirconia or hafnia with the stabilizing oxide compound and the glassy precursor by a sintering heat treatment at a temperature of about 840.degree. C.
    Type: Grant
    Filed: May 9, 1989
    Date of Patent: September 3, 1991
    Assignee: International Business Machines Corporation
    Inventors: Richard W. Adams, Jr., David R. Clarke, Sara H. Knickerbocker, Linda L. Rapp, Bernard Schwartz
  • Patent number: 5017219
    Abstract: Normally reject sponge metal fines, especially those produced by the crushing and screening of a regulus of zirconium and/or hafnium metal sponge, are added to the initial reduction charge of the metal tetrachloride and magnesium metal, and the so-modified charge is then passed through the conventional reduction and vacuum distillation steps to produce a regulus of the metal that has the reject fines incorporated therein by sintering.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: May 21, 1991
    Assignee: Westinghouse Electric Company
    Inventors: Randy W. Wahlquist, John M. Reinarts, Timothy L. Francis
  • Patent number: 5013610
    Abstract: In a heat resisting aluminum alloy member with local metal matrix composite which contains inorganic fibers as reinforcing material, the matrix aluminum alloy of the metal matrix composite contains very little alloying elements in order to attain the highest heat shock resistance.
    Type: Grant
    Filed: March 26, 1990
    Date of Patent: May 7, 1991
    Assignee: Izumi Industries, Ltd.
    Inventor: Yoshihiro Suzuki
  • Patent number: 4970123
    Abstract: A novel isotropically reinforced microcomposite is described. An entirely fluid-phase method has been devised for producing the net-shape filamentary structures. The process depends for its success on the ability to generate in situ, within a shaped mold, a three-dimensional random weave of carbon filaments by catalytic decomposition of a hydrocarbon feed. Almost any desired filament filler matrix combination can be produced by utilizing chemical vapor deposition to modify the surface and bulk properties of the filamentary structure. Infiltration of filler matrix materials can be achieved by adaptation of existing materials technologies.
    Type: Grant
    Filed: February 9, 1990
    Date of Patent: November 13, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Horst Witzke, Bernard H. Kear
  • Patent number: 4956137
    Abstract: There is disclosed a method for making a self-supporting ceramic composite article having a porous core bearing a dense surface layer formed integrally with said core. A preform comprises a filler material and parent metal distributed therethrough, wherein the volume percent of parent metal is sufficient to form a volume of oxidation reaction product exceeding the total volume available within said preform. The parent metal is melted and reacted with an oxidant to form an oxidation reaction product filling the spatial volume and leaving voids. The reaction is continued to further transport molten parent metal through the oxidation reaction product to at least one surface of the preform to form oxidation reaction product on said surface substantially free of voids thereby forming a relatively dense surface layer.
    Type: Grant
    Filed: September 16, 1986
    Date of Patent: September 11, 1990
    Assignee: Lanxide Technology Company, LP
    Inventor: Ratnesh K. Dwivedi
  • Patent number: 4956216
    Abstract: In an optical recording medium, for an audio-video or ROM compact disc comprising a pitted translucent base material and a layer (9) of a corrosion resistant metal or combination of metals from the groups 4N, 5N, 7N or 8N of the periodic table of elements is disclosed. For example NiCr can Be Applied onto the surface having the pits (7), thereby providing good adhesion, reflecting light and providing printable surface and not requiring any further coating such as a protective lacquer. Also, in the event that a gold-colored glossy layer is necessary, a CuBe layer can be sputtered onto the substrate (8).
    Type: Grant
    Filed: October 24, 1988
    Date of Patent: September 11, 1990
    Assignee: Leybold Aktiengesellschaft
    Inventors: Alfons Hausler, Rainer Ludwig, Michael Geibler, Michael Jung
  • Patent number: 4945814
    Abstract: The invention relates to the manufacture of composite metal armour plating comprising ceramic inserts (42) regularly disposed through the thickness and giving reliable, reproducible ballistic efficiency.The ceramic inserts are positioned at regular intervals by disposing them in enveloping shells comprising male and female portions fitting into one another in order to bring about relative predetermined positioning and leave gaps into which the actual casting metal can flow during casting.
    Type: Grant
    Filed: July 8, 1985
    Date of Patent: August 7, 1990
    Assignee: Aluminum Company of America
    Inventor: Roger Huet
  • Patent number: 4939038
    Abstract: A light metallic composite material containing therein fine granular additives dispersed in a matrix of a light metallic material, which composite material has a light weight, high mechanical strength, and excellent characteristics such as high damping ability. The additives each have a density less than that of the matrix and heat resistance enough to withstand a heating temperature at which they are composited with the matrix. Preferably, the additives are each formed with a coating which increases mechanical strength and provides an electromagnetic characteristic different from that of the matrix. Preferably, the composite material is produced by heating a mixture of matrix powders and additives up to a temperature where only part of the mixture including no microspheres is softened but the mixture is adequately composited, an amount of additives being equal to 10% to 70% by volume of the matrix, and by forming the composited mixture into a desired shape and solidifying same.
    Type: Grant
    Filed: November 30, 1987
    Date of Patent: July 3, 1990
    Assignee: Inabata Techno Loop Corporation
    Inventor: Tadao Inabata
  • Patent number: 4873038
    Abstract: A heat storage medium comprising a body of parent metal and an intrinsically cohesive ceramic layer formed integrally with the metal body and encapsulating said metal body is produced by the directed oxidation of a body of parent metal outwardly from the surface of said body to form integrally with the body of parent metal a layer of oxidation reaction product which encapsulates unreacted parent metal and forms a cavity resulting from the depletion of aprent metal.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: October 10, 1989
    Assignee: Lanxide Technology Comapny, LP
    Inventors: Robert A. Rapp, E. Allen LaRoche, Jr.
  • Patent number: 4859541
    Abstract: A safe having a wall comprising spaced steel plates, a sheathing layer between the plates consisting of hard non-metallic grains of e.g., boron carbide, silicon carbide, boron nitride, diamonds, ceramic oxides and hard metallic grains of e.g., cast iron, metal carbides, nitrides, borides, and silicides, said grains being bound together and to said plates by a hard solder mass having a copper or nickel base. The sheathing layer contains 30-70% by volume of said non-metallic grains (having a grain size of 5 to 20 mm) and metallic grains (having a grain size of 1 to 6 mm) and from 70% to 30% of said hard solder. The ratio of said non-metallic to said metallic grains is 2-4 parts to 1 part by volume. A method for making the sheathing layer is also disclosed.
    Type: Grant
    Filed: February 3, 1987
    Date of Patent: August 22, 1989
    Assignees: Metallgesellschaft AG, Bode Panzer Aktiengesellschaft
    Inventors: Heinz Maxeiner, Gerhard Kruske, Hartwig Reimann
  • Patent number: 4833039
    Abstract: A process for producing an hermetic feedthrough in a ceramic substrate by providing a sheet of liquid phase sinterable ceramic composition having a feedthrough hole, filling the feedthrough hole with refractory metal metallization material, firing the resulting structure to produce a sintered substrate and adherent metallization wherein the metallization is comprised of continuous phases of refractory metal and glass, contacting the refractory metal with electrically conductive intrusion metal and heating the resulting structure to a temperature at which the glassy phase is fluid, the refractory metal is solid, and the intrusion metal is liquid whereby the liquid metal preferentially wets the refractory metal, migrates into the metallization displacing glass and, upon subsequent solidification, partially or wholly occupies the volume space originally containing the continuous glass phase.
    Type: Grant
    Filed: November 25, 1987
    Date of Patent: May 23, 1989
    Assignee: General Electric Company
    Inventors: Stephan P. Mitoff, Richard J. Charles, Wayne D. Pasco