All Metal Or With Adjacent Metals Patents (Class 428/544)
  • Patent number: 11866363
    Abstract: The present invention relates to a plate, intended to equip appliances of the chimney insert, stove, chimney, boiler, heating appliance, fireplace or equivalent type and/or to serve as a fire barrier, said plate being formed of at least one glass-ceramic substrate coated on at least one of its faces with the following stack of layers: 1. a first metal nitride layer of thickness comprised in the range from 5 nm to 50 nm, 2. an indium tin oxide layer of less than 100 nm thickness, 3. a second metal nitride layer of thickness comprised in the range from 10 nm to 100 nm. The present invention also relates to a process for obtaining said plate, as well as a device incorporating said plate.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 9, 2024
    Assignee: EUROKERA S.N.C.
    Inventors: Theo Jegorel, Clément Sieutat, Pablo Vilato
  • Patent number: 11772206
    Abstract: Steel weld metal compositions can include from 9.00 to 12.00 wt % chromium, from 0.02 to 0.06 wt % carbon, from 0.3 to 0.7 wt % manganese, from 0.1 to 0.3 wt % silicon, from 0.5 to 1.2 wt % nickel, from 0.1 to 0.5 wt % molybdenum, from 1.0 to 1.5 wt % cobalt, from 0.03 to 0.08 wt % niobium, from 0.2 to 0.8 wt % tungsten, from 0.3 to 0.8 wt % copper, from 0.005 to 0.010 wt % boron, and from 0.005 to 0.025 wt % nitrogen; wherein the balance of the steel weld metal composition is iron and unavoidable impurities. Methods of depositing the steel weld metal compositions on a workpiece by an electric arc welding process are also described without the use of a post weld heat treatment. Consumable electric arc welding electrodes producing high chromium creep resistant steel weld metal compositions are also described.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 3, 2023
    Assignee: LINCOLN GLOBAL, INC.
    Inventor: Stefano Sorrentino
  • Patent number: 11772207
    Abstract: Steel weld metal compositions can include from 10.75 to 12.00 wt % chromium, from 0.09 to 0.13 wt % carbon, from 0.2 to 0.5 wt % manganese, from 0.1 to 0.3 wt % silicon, from 0.2 to 0.7 wt % nickel, from 0.1 to 0.5 wt % molybdenum, from 0.8 to 1.2 wt % cobalt, from 0.03 to 0.08 wt % niobium, from 0.8 to 1.2 wt % tungsten, from 0.3 to 0.8 wt % copper, from 0.10 to 0.15 wt % vanadium, from 0.01 to 0.05 wt % titanium, from 0.005 to 0.010 wt % boron, from 0.005 to 0.015 wt % nitrogen; wherein the balance of the steel weld metal composition is iron and unavoidable impurities. Methods of depositing the steel weld metal compositions on a workpiece by an electric arc welding process are also described. Consumable electric arc welding electrodes producing high chromium creep resistant steel weld metal compositions are also described.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 3, 2023
    Assignee: LINCOLN GLOBAL, INC.
    Inventor: Stefano Sorrentino
  • Patent number: 11746401
    Abstract: Steel sheets and methods for manufacturing same useful for a line pipe or the like can have excellent hydrogen induced cracking resistance, and longitudinal strength uniformity. The Sttel sheets can include certain amounts of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), aluminum (Al), nitrogen (N), niobium (Nb), titanium (Ti), calcium (Ca), one or more selected from a group consisting of nickel (Ni), chromium (Cr), molybdenum (Mo), vanadium (V), and a balance of iron (Fe) and other inevitable impurities. A microstructure of the steel sheet can be comprised of ferrite or a composite structure of ferrite and acicular ferrite, and upper bainite is included in an area of 5% or less in a center portion of the thickness of the steel sheet.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 5, 2023
    Assignee: POSCO CO., LTD
    Inventors: Seong-Ung Koh, Hyo-Shin Kim, Yoen-Jung Park
  • Patent number: 11725255
    Abstract: A press hardened coated steel part with high resistance to delayed fracture, the coating containing (Fex—Aly) intermetallic compounds resulting from the diffusion of iron into an aluminum or an aluminum-based alloy, or an aluminum alloy of a precoating, wherein the chemical composition of the steel includes, in weight: 0.16%?C?0.42%, 0.1%?Mn?3%, 0.07%?Si?1.60%, 0.002%?Al?0.070%, 0.02%?Cr?1.0%, 0.0005?B?0.005%, 0.002%?Mg?0.007%, 0.002%?Ti?0.11%, 0.0008%?O?0.005%, wherein (Ti)×(O)2×107?2, 0.001%?N?0.007%, 0.001%?S?0.005%, 0.001%?P?0.025% and optionally one or more elements selected from the list of: 0.005%?Ni?0.23%, 0.005%?Nb?0.060%, the remainder being Fe and unavoidable impurities, and wherein the microstructure includes at least 95% martensite.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 15, 2023
    Assignee: ArcelorMittal
    Inventors: Blandine Remy, Thierry Sturel, Emmanuel Lucas, Gianni Boi
  • Patent number: 11702726
    Abstract: A hot stamped article having excellent shock absorption having a predetermined chemical composition, having a microstructure containing prior austenite having an average grain size of 3 ?m or less and further containing at least one of lower bainite, martensite, and tempered martensite in an area ratio of 90% or more, and having a grain boundary solid solution ratio Z defined by Z=(mass % of one or both of Nb and Mo at grain boundaries)/(mass % of one or both of Nb and Mo at time of melting) of 0.3 or more.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: July 18, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yuri Toda, Kazuo Hikida, Shingo Fujinaka, Tomohito Tanaka
  • Patent number: 11697867
    Abstract: An essentially lead free steel having improved machinability while reducing or eliminating lead (except for trace impurities) and without detriment of the material properties of the steel. The properties of the lead free steel are dependent on both the composition and method of manufacture. The improved lead free steel has, in percent by weight (wt-%): Carbon: 0.39-0.43%; Manganese: 0.75-1.00%; Silicon: 0.15-0.35%; Chromium: 0.80-1.05%; Molybdenum: 0.15-0.25%; at least one of Tellurium: 0.003-0.090 wt-%, Selenium: 0.080-0.2 wt-%, Sulfur: 0.065-0.09% wt-%, and Bismuth: 0.03-0.1 wt-%; and the balance being Fe and normally occurring scrap steel impurities. The hot-rolled lead-free steel product is subjected to a heat treatment at a first temperature for a first duration, at a second temperature for a second duration that is less than the first temperature, at a third temperature for a third time period that is greater than the second temperature, and subsequently cooling the steel product.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: July 11, 2023
    Assignee: NUCOR CORPORATION
    Inventors: Matthew J. Hicks, Jim L. Hill, Brook C. Bugenhagen
  • Patent number: 11685981
    Abstract: Special usage steels, particularly those intended to be in contact with combustion fumes, are described. Tubular components produced based on such steels are also described. The steel both is resistant to the coking phenomenon and has improved mechanical performances. The steel contains in percentage by weight from 0.08 to 0.15% carbon, from 0.4 to 0.8% manganese, from 1.5 to 2.5% silicon, from 0.5 to 2% copper, from 8 to 10% chrome, from 0.5 to 3% nickel, from 0.01 to 0.07% nitrogen, from 0.8 to 1.1% molybdenum, with the remainder being iron and impurities.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: June 27, 2023
    Assignee: VALLOUREC TUBES FRANCE
    Inventors: Valentin Rossi, Fernando Andres Bonilla Angulo, Nicolas Dulcy
  • Patent number: 11578392
    Abstract: A preferable aspect of the present invention provides a high-strength high-toughness hot-rolled steel sheet and a manufacturing method therefor, wherein the hot-rolled steel sheet contains, by weight, 0.07-0.13% C, 0.20-0.50% Si, 0.5-0.9% Mn, 0.03% or less P, 0.02% or less S, 0.005-0.03% Nb, 0.3-0.6% Cr, 0.005-0.03% Ti, 0.1-0.35% Cu, 0.05-0.3% Ni, 0.01-0.15% Mo, 0.007% or less N, 0.001-0.006% Ca, 0.01-0.05% Al, and the balance Fe and other unavoidable impurities, the alloy elements satisfying the following relational formulas [Relational formula 1] 1.6?(Mo/96)/(P/31)?6, [Relational formula 2] 1.6?(Ca/S)?3, and [Relational formula 3] 3.5?(3*C/12+Mn/55)*100?5; wherein a microstructure comprises, by area fraction, 85% or more of polygonal ferrite and 15% or less of pearlite, the crystal grain size of the polygonal ferrite being 10 ?m or less; and wherein a variation in yield strength in a width direction is 35 MPa or lower.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: February 14, 2023
    Assignee: POSCO CO., LTD
    Inventor: Jin-Ho Bae
  • Patent number: 11534806
    Abstract: The present disclosure provides a high-efficient rolling process for magnesium alloy sheet. Parameters of the rolling process are: the rolling speed of each rolling pass is 10-50 m/min, the rolling reduction of each rolling pass is controlled to be 40-90%, and both the preheating temperature before rolling and the rolling temperature of each rolling pass are 250-450° C. The present disclosure also provides a preparation method for magnesium alloy sheet, comprising: 1) preparing rolling billets; 2) high-efficient hot rolling; and 3) performing annealing. The rolling process can improve the mechanical performance especially, the strength and ductility of the sheet.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: December 27, 2022
    Assignee: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Shiwei Xu, Weineng Tang, Jianfeng Nie, Mingzhe Bian, Haomin Jiang, Pijun Zhang
  • Patent number: 11459630
    Abstract: A bearing steel part having a predetermined chemical composition, in which the number density of oxide particles having an equivalent circle diameter of 5 ?m or more, and containing CaO, Al2O3 and SiO2, such that the content ratio of Al2O3 with respect to the total mass of CaO, Al2O3, and SiO2 is 50% by mass or more, is 3.0/cm2 or less in an arbitrary cross section of the part, and in which the Vickers hardness at a depth of 50 ?m from a rolling surface is 750 or more, and in which the compressive residual stress at the rolling surface is 900 MPa or more. Also provided is a steel bar for a bearing steel part that is suitable for obtaining the foregoing bearing steel part.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 4, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tatsuya Koyama, Kei Miyanishi, Yutaka Neishi
  • Patent number: 11434542
    Abstract: A high-carbon hot-rolled steel sheet has a composition containing, on a percent by mass basis, C: 0.10% or more and less than 0.20%, Si: 0.5% or less, Mn: 0.25% to 0.65%, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0065% or less, Cr: 0.05% to 0.50%, and B: 0.0005% to 0.005%, the balance being Fe and incidental impurities, the high-carbon hot-rolled steel sheet having a microstructure containing ferrite and cementite, in which the percentage of the number of cementite grains having an equivalent circular diameter of 0.1 ?m or less is 12% or less based on the total number of cementite grains, the amount of Cr dissolved in the steel sheet is 0.03% to 0.50%, and the high-carbon hot-rolled steel sheet has a hardness of 73 or less in terms of HRB and a total elongation of 37% or more.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: September 6, 2022
    Assignee: JFE Steel Corporation
    Inventors: Yuka Miyamoto, Takashi Kobayashi, Yasuhiro Sakurai, Takeshi Yokota
  • Patent number: 11414735
    Abstract: A heat-resistant cast steel contains 0.55 mass % or more and 1.0 mass % or less C, 1.5 mass % or more and 3.5 mass % or less Si, more than 0 mass % and 2 mass % or less Mn, 6 mass % or more and 11 mass % or less Ni, 22 mass % or more and 27 mass % or less Cr, and more than 0 mass % and 0.6 mass % or less Mo, and the balance being Fe and unavoidable impurities.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 16, 2022
    Assignee: IHI Corporation
    Inventors: Koichi Kurebayashi, Yasuo Matsunaga
  • Patent number: 11371121
    Abstract: A Ni steel has a chemical composition within a predetermined range, in which a metallographic structure of a thickness middle portion contains 2.0 vol % to 20.0 vol % of an austenite phase, an average grain size of prior austenite grains is 3.0 ?m to 12.0 ?m, an average aspect ratio of the prior austenite grains is 2.6 to 10.0, a plate thickness is 4.5 mm to 20 mm, a yield stress at room temperature is 590 MPa to 710 MPa, and a tensile strength at the room temperature is 690 MPa to 810 MPa, when the plate thickness is more than 16 mm, the Ni steel contains Ni: 11.5% or more, and when the plate thickness is 16 mm or less and the Ni steel contains Ni: less than 11.5%, the average grain size of the prior austenite grains is 6.0 ?m or less.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 28, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tetsuya Namegawa, Manabu Hoshino, Shinichi Omiya, Takayuki Kagaya
  • Patent number: 11371126
    Abstract: This nickel-containing steel for low temperature includes, as a chemical composition, by mass %: C: 0.030% to 0.070%; Si: 0.03% to 0.30%; Mn: 0.10% to 0.80%; Ni: 12.5% to 17.4%; Mo: 0.03% to 0.60%; Al: 0.010% to 0.060%; N: 0.0015% to 0.0060%; and O: 0.0007% to 0.0030%, in which a metallographic structure contains 2.0% to 30.0% of an austenite phase by volume fraction %, in a thickness middle portion of a section parallel to a rolling direction and a thickness direction, an average grain size of prior austenite grains is 3.0 ?m to 20.0 ?m, and an average aspect ratio of the prior austenite grains is 3.1 to 10.0.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 28, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tetsuya Namegawa, Manabu Hoshino, Shinichi Omiya, Takayuki Kagaya
  • Patent number: 11371127
    Abstract: A nickel-containing steel for low temperature according to an aspect of the present invention has a chemical composition within a predetermined range, in which a metallographic structure of a thickness middle portion contains 2.0 vol % to 20.0 vol % of an austenite phase, an average grain size of prior austenite grains is 3.0 ?m to 15.0 ?m, an average aspect ratio of the prior austenite grains is 1.0 to 2.4, a plate thickness is 4.5 mm to 30 mm, the chemical composition and the average grain size of the prior austenite grains are further limited depending on the plate thickness, a yield stress at room temperature is 460 MPa to 710 MPa, and a tensile strength at the room temperature is 560 MPa to 810 MPa.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 28, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tetsuya Namegawa, Manabu Hoshino, Shinichi Omiya, Takayuki Kagaya
  • Patent number: 11364540
    Abstract: A method for manufacturing a tip for cutting tool use includes a shaping step of injecting a material into a mold to thereby form a molded body which becomes a tip for cutting tool use. The shaping step injects the material into the mold through a gate located on the inner side of a part corresponding to an intersecting ridge part formed by a major surface and an outer peripheral surface of the tip for cutting tool use.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: June 21, 2022
    Assignee: KYOCERA Corporation
    Inventors: Hirohisa Ishi, Makoto Kimiyama, Yoshihiro Kouzen
  • Patent number: 11339461
    Abstract: A austenitic stainless steel which has a chemical composition consisting of, by mass %, C: 0.04 to 0.12%, Si: 0.25 to 0.55%, Mn: 0.7 to 2.0%, P: 0.035% or less, S: 0.0015% or less, Cu: 0.02 to 0.80%, Co: 0.02 to 0.80%, Ni: 10.0 to 14.0%, Cr: 15.5 to 17.5%, Mo: 1.5 to 2.5%, N: 0.01 to 0.10%, Al: 0.030% or less, O: 0.020% or less, Sn: 0 to 0.01%, Sb: 0 to 0.01%, As: 0 to 0.01%, Bi: 0 to 0.01%, V: 0 to 0.10%, Nb: 0 to 0.10%, Ti: 0 to 0.10%, W: 0 to 0.50%, B: 0 to 0.005%, Ca: 0 to 0.010%, Mg: 0 to 0.010% and REM: 0 to 0.10%, with the balance being Fe and impurities, and satisfying [18.0?Cr+Mo+1.5×Si?20.0] and [14.5?Ni+30×(C+N)+0.5×(Mn+Cu+Co)?19.5].
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: May 24, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Hirata, Katsuki Tanaka, Kana Jotoku
  • Patent number: 11332799
    Abstract: Disclosed are a case hardened steel which is suitable as a material for producing mechanical structural parts having high rotating bending fatigue strength and impact fatigue strength at a relatively low cost, and a method of producing the same. The case hardening steel has a chemical composition containing, by mass %, C, Si, Mn, P, S, Cr, Mo, B, Ti, N, and O within a range satisfying a predetermined relationship, and Al in at least a predetermined amount in relation to the B, N, and Ti contents, with the balance being Fe and inevitable impurities, wherein ?I?80 is satisfied, where I represents an area in ?m2 of an oxide-based inclusion located at the center of a fish-eye on a fracture surface of the case hardening steel after being subjected to carburizing-quenching and tempering and subsequently to a rotating bending fatigue test.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 17, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Keisuke Ando, Takashi Iwamoto, Kimihiro Nishimura, Katsuyuki Ichimiya
  • Patent number: 11187352
    Abstract: A parallel wire cable is produced from a plurality of wires arranged in a bundle for use as a structural cable. Each wire in the plurality of wires is parallel to every other wire in the bundle, and each wire in the plurality of wires is tensioned to a tension value.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: November 30, 2021
    Inventor: Walter L. Lambert
  • Patent number: 10766224
    Abstract: An integrated panel made of interconnected laminates includes stacked first and second metal layers (5, 5?, 5?) and fibre-reinforced adhesive layers (19) between adjacent metal layers. At the location of the transition from the outer surface (7) of the first outer metal layer (5) to the outer surface (7) of the second outer metal layer (4) is located a filler (11). The panel further includes a cladding layer (14), which includes at least one fibre material layer (15, 24) that extends over the filler (11) and the adjacent outer surface regions (12, 13) of the outer metal layers (5, 4) located on opposite sides and which are adhered to the outer surface regions.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 8, 2020
    Assignee: FOKKER AEROSTRUCTURES B.V.
    Inventor: Abdoelfaziel Rajabali
  • Patent number: 10669613
    Abstract: A titanium alloy includes 15 to 27 atomic % (at %) of tantalum (Ta) and 0 to 8 at % of tin (Sn), the balance being titanium (Ti) and unavoidable impurities, when the entire 5 amount of the titanium alloy is taken as 100 at %. Therefore, the titanium alloy provided has characteristics suitable for medical device materials, biocompatible materials, etc.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 2, 2020
    Assignees: NIPPON PISTON RING CO., LTD., NATIONAL UNIVERSITY CORPORATION SAITAMA UNIVERSITY
    Inventors: Shunsuke Takeguchi, Yoshiki Ishikawa, Takasumi Kubo, Shin Ishida, Hiroki Takahashi, Masafumi Morita, Masahito Miki
  • Patent number: 10619264
    Abstract: A method including: employing pure magnesium or a magnesium alloy as a substrate material, and sanding and cleaning the substrate material; preparing an electrolyte including 0.8-8 mmol/L of Zn2+, 30-50 mmol/L of Ca+, 15-35 mmol/L of H2PO4?, 0-0.5 mol/L of NaNO3, and 0-0.05 mmol/L of a magnesium ion complexing agent; employing the substrate material as a cathode, a graphite flake as an anode, heating the electrolyte to a temperature of between 60 and 90° C., and synchronously immersing the cathode and the anode into the electrolyte; and implementing an electrochemical deposition method in the electrolyte for between 20 and 60 min.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 14, 2020
    Assignee: ZHENGZHOU UNIVERSITY
    Inventors: Shaokang Guan, Di Mei, Yashan Feng, Shijie Zhu, Jun Wang, Liguo Wang, Yanhua Wang
  • Patent number: 10355204
    Abstract: A method of fabricating a magneto-resistive random access memory (MRAM) cell with at least one magnetic tunnel junction (MTJ) is provided. The method includes disposing a metallic landing pad within a dielectric pad in a substrate and selectively depositing seed layer material over the substrate. This selective deposition forms a seed layer on which the MTJ is disposable on the metallic landing pad but not the dielectric pad.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Nathan P. Marchack, Eugene J. O'Sullivan
  • Patent number: 10100572
    Abstract: The invention relates to triple glazing comprising at least one glass sheet that has a system of layers on one side which are produced using sputtering and include at least one metal layer that reflects infrared radiation. The at least one glass sheet has a set of low-emission layers on the other side, said set of layers comprising one or more oxide layers that are deposited using gas phase pyrolysis. The disclosed glazing has a minimum light transmittance of 60 percent (standard EN 410, illuminant D65 at 2°) with 4 mm thick glass sheets.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 16, 2018
    Assignee: AGC Glass Europe
    Inventors: Lorenzo Pesce, Eric Tixhon
  • Patent number: 10031615
    Abstract: The embodiment of the disclosure discloses a touch substrate, a touch display panel and a method for calculating touch pressure. The touch substrate comprises at least two semiconductor pressure sensors, a bias voltage applying circuit and a voltage detecting circuit, wherein the bias voltage applying circuit is used for applying bias voltage to each semiconductor pressure sensor; the voltage detecting circuit is used for acquiring strain voltages of each semiconductor pressure sensor. A first straight line connecting the first connecting terminal and the second connecting terminal intersects a second straight line connecting the third connecting terminal and the fourth connecting terminal. According to the technical scheme of the disclosure, the semiconductor pressure sensors can be integrated inside the touch display panel.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: July 24, 2018
    Assignees: SHANGHAI TIANMA MICRO-ELECTRONICS CO., LTD., TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Feng Lu, Qijun Yao, Liang Liu, Shaolong Ma, Yingteng Zhai
  • Patent number: 9816613
    Abstract: A sliding element, such as a piston ring, including a substrate, base coating, and relatively thin sliding coating is provided. The base coating is typically applied to a running surface of the substrate by PVD, CVD, galvanic deposition, electrodeposition, or a thermal spray process. The sliding coating includes a polymer matrix and hard particles disposed throughout the matrix. The sliding coating is applied to the base coating when the base coating is still in its as-applied condition and has a surface roughness of at least 4.0 ?m. During use of the sliding element, the thin sliding coating acts as a sacrificial run-in layer. In addition, as the polymer matrix of the sliding coating wears away, the hard particles polish the rough surface of the base coating. Thus, polishing or lapping of the as-applied base coating prior to use of the sliding element is not required.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 14, 2017
    Assignee: Federal-Mogul LLC
    Inventors: Troy Kantola, James R. Toth, Robert R. Aharonov
  • Patent number: 9637843
    Abstract: A stainless wire that does not have a crystal grain of 200 nm or greater in maximum length in a surface normal to a fiber axis within a range of 1 ?m square from a center of a diameter in a cross section normal to a fiber axial direction is used as the stainless wire that forms a fabric material.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: May 2, 2017
    Assignee: TOYOTA BOSHOKU KABUSHIKI KAISHA
    Inventors: Hideaki Kunisada, Yoshiteru Honma, Hiroki Kashima, Miki Imai, Tatsuro Shinozaki, Masako Furuta
  • Patent number: 9551419
    Abstract: A sliding element, such as a piston ring, including a substrate, base coating, and relatively thin sliding coating is provided. The base coating is typically applied to a running surface of the substrate by PVD, CVD, galvanic deposition, electrodeposition, or a thermal spray process. The sliding coating includes a polymer matrix and hard particles disposed throughout the matrix. The sliding coating is applied to the base coating when the base coating is still in its as-applied condition and has a surface roughness of at least 4.0 ?m. During use of the sliding element, the thin sliding coating acts as a sacrificial run-in layer. In addition, as the polymer matrix of the sliding coating wears away, the hard particles polish the rough surface of the base coating. Thus, polishing or lapping of the as-applied base coating prior to use of the sliding element is not required.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: January 24, 2017
    Assignee: Federal-Mogul Corporation
    Inventors: Troy Kantola, James R. Toth, Robert R. Aharonov
  • Patent number: 9274298
    Abstract: There is provided a deformed steel wire includes, as a chemical component, by mass %; C: 0.30% to 1.10%, Si: 0.10% to 1.50%, and Mn: 0.20% to 1.50%, and the balance consists of Fe and unavoidable impurities, in which a metallographic structure is a ferrite-pearlite structure or a pearlite structure, integration degrees of a crystal orientation <110> in a longitudinal direction of a thickness center area and a surface area are in a range of 2.0 to 4.0, an absolute value of a difference in the integration degree between an inner surface and an outer surface of the surface area is 0.3 or less, an integration degree of a crystal orientation <100> in a thickness direction of the thickness center area is in a range of 1.2 to 3.8, and a dimensional accuracy index is in a range of 0.5 to 2.0.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 1, 2016
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, Namitei Co., Ltd., OCC Corporation
    Inventors: Makoto Kosaka, Shouichi Ohashi, Seiki Nishida, Masatsugu Murao, Kouichi Murao, Ken Oyamada, Syunya Ikebata
  • Publication number: 20150147584
    Abstract: Fibrous copper microparticles having a minor axis of 1 ?m or less and an aspect ratio of 10 or more, wherein the content of the copper particles having a minor axis of 0.3 ?m or more and an aspect ratio of 1.5 or less is 0.1 or less copper particle per one fibrous copper microparticle.
    Type: Application
    Filed: June 11, 2013
    Publication date: May 28, 2015
    Applicant: UNITIKA LTD.
    Inventors: Munenori Yamada, Kou Takeuchi, Mutsumi Matsushita, Akira Shigeta, Masahiro Hosoda, Yoshiaki Echigo
  • Publication number: 20150140352
    Abstract: A semifinished product for an implant and implants produced from the semifinished product, the semifinished product comprising or consisting of a region of a magnesium alloy, which is characterized by a grain size gradient of the magnesium alloy between two opposed surfaces from ?3 ?m to ?8 ?m, in each case in relation to the average grain size. Use of the semifinished product for producing corresponding implants, and also a method for producing semifinished products.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 21, 2015
    Inventors: Ullrich Bayer, Okechukwu Anopuo, Bernd Block
  • Publication number: 20150132595
    Abstract: Provided is a preparing method of an Ag nano-particle for mass-producing Ag nano-particles, the method including: performing a first reaction of a reaction solution containing an Ag precursor and oleylamine at a set first temperature T1; performing a second reaction of the reaction solution at a second temperature T2 set so as to be higher than the first temperature; and obtaining a reactant from the reaction solution, wherein at least one of the first and second reactions is performed in a state in which the reaction solution is not stirred.
    Type: Application
    Filed: February 10, 2014
    Publication date: May 14, 2015
    Applicant: Korea Basic Science Institute
    Inventors: Gaehang LEE, Yeon Suk CHOI, Doo Ri BAE
  • Publication number: 20150104669
    Abstract: A high-strength magnesium alloy member is suitable for products in which at least one of bending stress and twisting stress primarily acts. The member has required elongation and 0.2% proof stress, whereby strength and formability are superior, and has higher strength and large compressive residual stress in the vicinity of the surface of a wire rod. In the magnesium alloy member formed as a wire rod in which at least one of bending stress and twisting stress primarily acts, the wire rod includes a surface portion having the highest hardness of 170 HV or more in the vicinity of the surface and an inner portion having a 0.2% proof stress of 550 MPa or more and an elongation of 5% or more, and the wire rod has the highest compressive residue stress in the vicinity of the surface of 50 MPa or more.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 16, 2015
    Applicant: NHK SPRIG CO., LTD.
    Inventors: Yuji Araoka, Tohru Shiraishi, Yoshiki Ono
  • Patent number: 9004341
    Abstract: Provided is a method for producing a welded steel pipe having excellent buckling resistance. The method for producing a welded steel pipe according to the present embodiment includes steps of: preparing a welded pipe, and expanding the welded pipe over the entire length thereof by using a pipe expanding head such that an undulation wavelength ratio D defined by Formula (1) is not more than 0.8, or not less than 1.8: D=p/???(1), where p is an undulation wavelength in the axial direction of the welded steel pipe, and ? is a Timoshenko's buckling wavelength as defined by Formula (2): ?=3.44×(r×t)1/2 ??(2), where r is an inner radius of the welded steel pipe and t is a wall thickness of the welded steel pipe.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 14, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventor: Hidenori Shitamoto
  • Patent number: 9004128
    Abstract: Without decreasing the strength in the axial direction of the cord, and without increasing the thickness in the radial direction, a steel cord for reinforcing a rubber article, which improves durability against cut, as well as a construction vehicle tire utilizing the steel cord for reinforcing a rubber article as a reinforcing material is provided. A steel cord for reinforcing a rubber article is formed by twisting a plurality of sheath strands 2 formed by twisting a plurality of wires around a core strand 1 formed by twisting a plurality of wires, wherein the core strand 1 is constituted of a 4-layer-twisted structure and the diameter of the steel cord is 5 mm or larger.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 14, 2015
    Assignee: Bridgestone Corporation
    Inventor: Keisuke Nakamura
  • Patent number: 8986569
    Abstract: A flexible multi-layer getter with a gas-permeable layer covering a gas reservoir layer. In an embodiment, the gas-permeable layer covers part of the gas reservoir layer. In another embodiment, a barrier covers part of the gas reservoir layer. The barrier may include a foil substrate, a passivation layer, or a gas-permeable layer.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 24, 2015
    Assignee: SAES Getters, S.p.A.
    Inventors: Richard Kullberg, Tim Armstrong, Andrea Conte, Enea Rizzi
  • Publication number: 20150078912
    Abstract: The disclosure relates generally to core compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to core compositions and methods for casting hollow titanium-containing articles, and the hollow titanium-containing articles so molded.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bernard Patrick BEWLAY, Joan MCKIEVER, Brian Michael ELLIS, Nicholas Vincent MCLASKY
  • Publication number: 20150072163
    Abstract: A ceramic core includes sintered ceramic powder and a hole opening on a surface of the ceramic core and having an opening portion with a maximum size of 100 ?m or less. A manufacturing method for a ceramic core includes: preparing an injection molding composition by mixing ceramic powder and a binder; manufacturing a ceramic compact by performing the injection molding of the injection molding composition; and manufacturing a ceramic core by sintering the ceramic compact, wherein cumulative percentage of coarse powder with a particle diameter of more than 50 ?m included in the ceramic powder is 30% or less on an integrated volume particle size distribution curve of the ceramic powder.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventor: Hideko FUKUSHIMA
  • Publication number: 20150050510
    Abstract: The invention provides an amorphous alloy ribbon consisting of Fe, Si, B, C, and unavoidable impurities, in which a content of Si is from 8.5 atom % to 9.5 atom %, and a content of B is from 10.0 atom % to less than 12.0 atom % when a total content of Fe, Si, and B is 100.0 atom %, a content of C relative to the total content of 100.0 atom % is from 0.2 atom % to 0.6 atom %, and the ribbon has a thickness of from 10 ?m to 40 ?m and a width of from 100 mm to 300 mm.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 19, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Takayuki Motegi, Daichi Azuma, Hajime Itagaki, Yoshio Bizen
  • Publication number: 20150044491
    Abstract: The invention provides tantalum alloys, methods for forming tantalum alloys having a luminous, black, ceramic surface, and articles, such as, but not limited to, jewelry and watches, formed from the tantalum alloys.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Inventor: Daniel S. PISCITELLI
  • Publication number: 20150034883
    Abstract: While a water reaction system containing silver ions is irradiated with ultrasonic waves to cause cavitation therein, a reducing agent containing solution, which contains an aldehyde as a reducing agent, is mixed with the water reaction system to deposit silver particles, the solid-liquid separation of which is carried out, and thereafter, the separated silver particles are washed and dried to produce a spherical silver powder which has a closed cavity in each particle thereof.
    Type: Application
    Filed: February 12, 2013
    Publication date: February 5, 2015
    Inventors: Koji Hirata, Noriaki Nogami
  • Patent number: 8945719
    Abstract: This steel plate for cold forging includes a hot-rolled steel plate, wherein the hot-rolled steel plate includes: in terms of percent by mass, C: 0.13% to 0.20%; Si: 0.01% to 0.8%; Mn: 0.1% to 2.5%; P: 0.003% to 0.030%; S: 0.0001% to 0.008%; Al: 0.01% to 0.07%; N: 0.0001% to 0.02%; and O: 0.0001% to 0.0030%, with a remainder being Fe and inevitable impurities, an A value represented by the following formula (1) is in a range of 0.0080 or less, a thickness of the hot-rolled steel plate is in a range of 2 mm to 25 mm, and an area percentage of pearlite bands having lengths of 1 mm or more in a region of 4/10t to 6/10t when a plate thickness is indicated by t in a cross section of a plate thickness that is parallel to a rolling direction of the hot-rolled steel plate is in a range of not more than a K value represented by the following formula (2), A value=O%+S%+0.033Al%??(1) K value=25.5×C%+4.5×Mn%?6??(2).
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: February 3, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masayuki Abe, Kengo Takeda, Shuji Yamamoto, Yasushi Tsukano, Shinichi Yamaguchi
  • Publication number: 20150030870
    Abstract: Provided is a carbon tool steel strip suitable for use in various spring materials, valve materials, and the like, in which press punching properties and fatigue characteristics are enhanced. A carbon tool steel strip having a thickness of 1 mm or less and a carbon tool steel composition containing 0.8-1.2% C by mass %, wherein the carbon tool steel strip has a Vickers hardness of 500-650 (Hv), and when a cross-section at the center in the sheet thickness direction of the carbon tool steel strip is viewed with the plane of observation in a direction at a right angle to a rolled surface of the carbon tool steel strip and in the length direction of the carbon tool steel strip, the area ratio of carbides having an equivalent circle diameter of at least 0.5 ?m among the carbides present in the metallographic structure is 0.50-4.30%.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 29, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Tomonori Ueno, Hiroyoshi Fujihara, Ichirou Kishigami
  • Publication number: 20150028724
    Abstract: A product, such as one or more thin sheets, each containing a single or near-single crystalline inclusion-containing magnetic microstructure, is provided. In one embodiment, the inclusion-containing magnetic microstructure is a Galfenol-carbide microstructure. Various methods and devices, as well as compositions, are also described.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 29, 2015
    Inventors: Eric Summers, Rob Meloy
  • Patent number: 8936856
    Abstract: The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: January 20, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuuki Tauchi, Katsutoshi Takagi, Junichi Nakai, Toshiki Sato
  • Publication number: 20150017469
    Abstract: The invention relates to sheet steel for use as packaging steel, made of a non-alloy or low-alloy and cold-rolled steel having a carbon content of less than 0.1%. According to the invention, in order to use such sheet steel for packaging steel that has good formability and can be produced in a cost-effective way, the sheet steel contains less than 0.4 wt % of manganese, less than 0.04 wt % of silicium, less than 0.1 wt % of aluminum, and less than 0.1 wt % of chromium and is provided with a multi-phase structure, comprising ferrite and at least one of the structure constituents martensite, bainite, and/or residual austenite. The invention further relates to a method for producing such packaging steel from cold-rolled sheet steel.
    Type: Application
    Filed: October 2, 2012
    Publication date: January 15, 2015
    Inventors: Reiner Sauer, Burkhard Kaup, Dirk Matusch, Dimitrios Nouskalis
  • Publication number: 20150017462
    Abstract: A cast alloy is generally provided, along with methods of forming the cast alloy and components constructed from the cast alloy (e.g., stationary components of a turbine). The cast alloy can include, by weight, 0.12% to 0.20% carbon, 0.50% to 0.90% manganese, 0.25% to 0.60% silicon, 0.10% to 0.50% nickel, 1.15% to 1.50% chromium, 0.90% to 1.50% molybdenum, 0.70% to 0.80% vanadium, 0.0075% to 0.060% titanium, 0.008% to 0.012% boron, the balance iron, optionally low levels of other alloying constituents, and incidental impurities.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: Deepak Saha, Subrahmanyam Thangirala, Jeffrey Michael Breznak, Steven Louis Breitenbach
  • Publication number: 20150010770
    Abstract: A chromium-based reflective coating for a polymeric substrate, wherein the coating has a thickness of 200 nm or less and is an alloy of chromium and a dopant material, the dopant material being selected from the hexagonally close-packed transition metals, the alloy having a crystal structure of a primary body-centered cubic phase in coexistence with a secondary omega hexagonally close-packed phase.
    Type: Application
    Filed: January 24, 2013
    Publication date: January 8, 2015
    Applicants: UNIVERSITY OF SOUTH AUSTRALIA, SMR PATENTS S.A.R.L.
    Inventors: Drew Raymond Evans, Kamil Zuber, Colin James Hall, Simon David Field
  • Publication number: 20150010769
    Abstract: A method for preparing core-shell and hollow silver particles is provided. In the method silver salts and glycine nitrate or starch are mixed with solvent to form precursor solution. The mole percentage of the silver salts over the silver salts plus glycine nitrate or starch is 5 to 50 mol %. The precursor solution is then atomized to form precursor droplets. The precursor droplets are heated by pyrolysis to form silver particles. The composition of the precursor solution can be adjusted to finely manipulate the structure of the silver particles.
    Type: Application
    Filed: November 22, 2013
    Publication date: January 8, 2015
    Applicant: National Taiwan University of Science and Technology
    Inventors: Shao-Ju Shih, I-Chen Chien, Yu-Hsuan Wu