Having Composition Or Density Gradient Or Differential Porosity Patents (Class 428/547)
  • Patent number: 5508114
    Abstract: A method of manufacturing a lead-provided porous metal sheet comprises the steps of: forming a porous metal material having a metal layer on a surface of a framework of a porous base material comprising a foamed sheet and the like, by plating the porous base material and/or applying fine metal powders thereto; passing the porous metal material through a pair of rolls having a plurality of projections formed thereon to compress the porous metal material against the projections and reduce or eliminate pores so as to form one or more recesses extending; and forming solid metal portions by applying fine metal powders to the entire recesses.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: April 16, 1996
    Assignee: Katayama Special Industries, Inc.
    Inventor: Hirofumi Sugikawa
  • Patent number: 5494635
    Abstract: Processes are disclosed in which cemented carbide parts, having a wide range of initial carbon levels, and a wide range of sizes, can be carburized to a critical carbon level, and then slow cooled at various rates, to yield stratified enriched zones in the near-surface region of said parts. The enriched zones are characterized by the cobalt content decreasing, and the microhardness increasing, continuously through the enriched zones, and approaching values characteristic of the interior. The combination of stratified enriched zones in the near surface region and the 6% binder interior provide the toughness and deformation resistance required for heavy roughing applications.A wide variety of cemented carbides, having different compositions and WC grain sizes, can also be carburized and slow cooled using the same techniques to yield stratified binder enriched zones having the same hardness profiles and cobalt content profiles as described above.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: February 27, 1996
    Assignee: Valenite Inc.
    Inventor: Stephen L. Bennett
  • Patent number: 5492770
    Abstract: A diamond film is formed on a surface of a substrate. The diamond film is attached securely to the substrate by forming a first layer on the surface comprising a mixture of a main component of the substrate and a sintering reinforcement agent for diamond, then forming a second layer comprising a mixture of said agent and diamond on said first layer, and finally forming the diamond film on the second layer.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: February 20, 1996
    Assignee: Fujitsu Limited
    Inventors: Motonobu Kawarada, Kazuaki Kurihara
  • Patent number: 5470821
    Abstract: Composite bulk superconducting materials having desirable physical, measured transport current density and high T.sub.c superconducting characteristics are provided which comprise a first matrix of superconducting ceramic oxide crystalline grains with a second matrix of elemental metal (gold, silver, palladium and tin) situated within the interstices between the crystalline grains. Preferably, each matrix is a continuous phase within the composite material, with the ceramic oxide preferably being present at a level of at least about 80% by weight, whereas the elemental metal is present at a level of up to about 20% by weight. In fabrication procedures, a precursor superconducting ceramic oxide is first prepared and reduced to a fine powder size; this is mixed with powdered elemental metal, and the mixture is compressed using high compaction pressures on the order of 14 tons/cm.sup.2 or greater to form a body, which is then sintered to yield the composite.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: November 28, 1995
    Assignees: The University of Kansas, Midwest Superconductivity, Inc.
    Inventors: Kai W. Wong, Xin Fei, Ying Xin, Yi-Han Kao
  • Patent number: 5458984
    Abstract: A journal bearing assembly includes a steel bearing body and a Babbitt metal liner which defines an internal bearing surface and provides a sliding bearing for a rotating journal. A porous metal bonding layer of NiAl 80/20 or AlSi 12 is applied between the bearing body and the liner. The bonding layer is spray deposited onto the bearing body and the liner is spray deposited onto the bonding layer. The liner is most porous at the bonding layer interface with decreasing porosity toward the bearing surface. The bonding layer may be flame sprayed or applied in powder form and fused. Similarly, the liner may be flame sprayed or applied in powder form and fused.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: October 17, 1995
    Assignee: Renk Aktiengesellschaft
    Inventor: Bernd Negwer
  • Patent number: 5451469
    Abstract: There is disclosed a new process for binder phase enrichment. The process combines binder phase enrichment by dissolution of cubic phase with the requirements that cause formation of stratified layers, resulting in a unique structure. The new structure is characterized by, in comparison with the ones previously known, deeper stratified layers and less maximum binder phase enrichment. The possibility of combining dissolution of the cubic phase with formation of stratified layers offers new possibilities to optimize the properties of tungsten carbide based cemented carbides for cutting tools.The new process offers possibilities to combine the two types of gradients. The dissolution of cubic phase moves the zone with maximum amount of stratified binder phase from the surface to a zone close to and below the dissolution front.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: September 19, 1995
    Assignee: Sandvik AB
    Inventors: Per Gustafson, Leif Akesson, Ake Ostlund
  • Patent number: 5443917
    Abstract: A densified ceramic or cermet armor material comprises greater than fifty percent by weight titanium nitride or greater than eight percent by weight of a mixture of titanium nitride and aluminum nitride to impart low compressive strength to said armor material and may additionally comprise components suitable for densification with said titanium nitride or titanium nitride-aluminum nitride mixture where the resulting armor material has high density and low porosity with a Young's modulus greater than 200 GPa and a compressive strength of less than 5.5 GPa.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: August 22, 1995
    Assignee: GTE Products Corporation
    Inventor: Christopher A. Tarry
  • Patent number: 5429875
    Abstract: A mounting object comprises a combination of a body wherein elements of a metallic heat-resistant two-dimensional fastener in a mounting surface, and their engaging portions projecting therefrom have their base portions embedded and integrally molded, and a mating base object wherein integrally molded mating fastener elements project for detachable engagement with said fastener elements. The mounting object body is formed as a heat-resistant material integral with a metallic two-dimensional fastener by covering and fixing part of the fastener elements of the metallic two-dimensional fastener with a carbon powder having a high melting temperature and covering bases thereof with a metallic powder, a ceramics powder, or a mixture thereof which is molded and sintered.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: July 4, 1995
    Assignee: National Aerospace Laboratory of Science & Technology Agency
    Inventors: Osamu Okamoto, Teruomi Nakaya
  • Patent number: 5426000
    Abstract: Fiber-reinforced titanium alloy and intermetallic matrix composites having improved stability and tensile strength properties at elevated temperatures. The base reinforced fibers are pre-coated with a tailorable tri-layer coating, such as Ti--TiN--Ti. Preferably the TiN layer is graded so as to have metal-rich outer surfaces, such as titanium-rich TiN, providing excellent bonding affinity for the base titanium layer, bonded to the surface of the fibers, such as silicon carbide, and for the outer titanium layer, bonded to the titanium aluminum matrix, and a compound core, such as stoichiometric TiN, providing a stable interfacial barrier against chemical reactions, whereby the tensile strength and resistance to cracking of the composite is preserved even at elevated temperatures of 900.degree. C. or higher.
    Type: Grant
    Filed: August 5, 1992
    Date of Patent: June 20, 1995
    Assignee: AlliedSignal Inc.
    Inventors: Mohamed E. Labib, Bawa Singh
  • Patent number: 5411571
    Abstract: Disclosed are a hard sintered alloy having fine pores which comprises a sintered alloy comprising 2 to 30% by volume of a dispersed phase of at least one of oxide, carbide and sulfide of Ca, Sr or Ba and mutual solid solutions of these, and the balance of a binder phase comprising at least one metal of Co, Ni and Fe or an alloy containing said metal as a main component and a hard phase of at least one of carbide, nitride and boride of the 4a (Ti, Zr, Hf), 5a (V, Nb, Ta) or 6a (Cr, Mo, W) group metal of the periodic table and mutual solid solutions of these, with a volume ratio of said binder phase to said hard phase being 2:98 to 95:5, wherein fine pores are formed by removing said dispersed phase from a surface portion of said sintered alloy, and a process for preparing the same.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: May 2, 1995
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Tatuya Sato
  • Patent number: 5409781
    Abstract: A turbine blade including a blade and blade foot. The blade foot is formed by a ductile material and the blade comprises a material which is brittle compared to the ductile material but resistant to high temperature. The two materials are alloys of the same base compositions but differ as to presence and/or quantity of at least one doping element. The alloys can be hot-compacted with the formation of a transition zone joining the blade and blade root wherein fine crystallites of the blade root interpenetrate coarse crystallites of the blade. The two materials can comprise a gamma-titanium aluminide containing 0.5 to 8 atomic percent of a dopant. The turbine blade exhibits outstanding mechanical properties at high temperatures, good ductility at room temperature and a long service life.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: April 25, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Joachim Rosler, Manfred Thumann, Christoph Tonnes
  • Patent number: 5405706
    Abstract: Coatings which protect the skin of hypersonic flight vehicles are disclosed. Silicide coatings, such as R512E, is used to minimize catalytic recombination of dissociated species, such as atomic oxygen and atomic nitrogen, thus, decreasing thermal and oxidative degradation. Prehydrated, polymerized sol of tetraethylorthosilicate is applied to a coating, and is fired, to produce an integral protective coating.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: April 11, 1995
    Assignee: The Boeing Company
    Inventors: Brad L. Kirkwood, Elizabeth M. W. Pincha
  • Patent number: 5399438
    Abstract: Disclosed is a stainless steel member with a high corrosion resistance suitable for a structural member used in highly corrosive environments, such as an edge seal plate of a molten carbonate fuel cell. This stainless steel member includes a base material consisting of stainless steel containing chromium, and a corrosion-protective layer formed on the surface of the base material. In this corrosion-protective layer, a granular heterophase containing chromium is precipitated in an ordered alloy consisting of aluminum and the constituent elements of the base material.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: March 21, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Tateishi, Kiyoshi Imai, Hideyuki Ohzu, Kazuaki Nakagawa, Yoshihiro Akasaka
  • Patent number: 5395699
    Abstract: A turbine blade including a blade foot and a blade. The blade foot is formed by a ductile material and the blade comprises a material which is brittle compared to the ductile material but resistant to high temperature. The two materials are alloys of different chemical compositions and are hot-compacted with the formation of a boundary layer joining the blade foot and blade to produce a bimetallic composite material. The blade foot predominantly comprises a titanium-base alloy and the blade comprises a gamma-titanium aluminide containing 0.5 to 8 atomic percent of a dopant. The turbine blade exhibits outstanding mechanical properties at high temperatures, good ductility at room temperature and a long service life.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: March 7, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Peter Ernst, Manfred Thumann, Christoph Tonnes
  • Patent number: 5387471
    Abstract: A coating for a part made of a nickel alloy of the following type: Cr: 15% to 20%, Co: 8% to 20%, Mo: 1.5% to 4%, Ti: 3% to 5%, Al: 3% to 3.5%, W: .ltoreq.3.8%, Fe: .ltoreq.1.2%, Nb: .ltoreq.0.9%, C: .ltoreq.0.1%, B: .ltoreq.0.01%, and Ta: .ltoreq.2.8%, the remainder being Ni, the coating having hardness of about 400 HV and including a plurality of layers (5', 5") of a wear-resistant cobalt-containing material of the following type: C: <1%, Cr: 26% to 30%, W: 18% to 21%, Ni: 4% to 6%, V: 0.75% to 1.15%, Fe: .ltoreq.3%, Mn .ltoreq.1%, Si: .ltoreq.1%, and B: .ltoreq.0.05%, the remainder being Co, said coating being characterized in that a buffer layer (5) is disposed between the part and the cobalt-containing layers (5', 5"), which buffer layer is made from a pre-alloyed powder having the following composition: Si: 0.7% to 2.9%, Cr: 11% to 26%, Fe: 0.5% to 3%, C: 0.35% to 0.85%, B: 0.3% to 1.35%, Ni: 20% to 69%, W: 3.6% to 16.8%, Mn .ltoreq.0.8%, and Co: 7% to 41.5%.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: February 7, 1995
    Assignee: European Gas Turbines SA
    Inventors: Emmanuel Kerrand, Vincent Le Castrec, Didier Boucachard
  • Patent number: 5376463
    Abstract: A grating (22) of narrow parallel ridges (24) is formed in the surface (26) of a substrate (20) made of a hard material such as silicon dioxide. Metal (40) is deposited onto the grating (22) perpendicular to the ridges (24) at an angle of approximately 45.degree. to the surface (26) of the grating such that the metal (40) is deposited onto the top (24a) and one of the sides (24b) of the each of the ridges (24) to form generally L-shaped metal strips (12') thereon. The metal strips (12') are cut at periodic intervals along the ridges (24) to produce anisometric metal needles (12). The substrate (20) is immersed in a dielectric fluid (14), and ultrasonic energy is applied to cause the needles (12) to release from the substrate (20) into suspension in the fluid (14). The L-shape of the needles (12) makes them resistant to bending. The suspension (10) has birefringent properties similar to liquid crystals, but may be electrically switched at much higher speed.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: December 27, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Chan S. Bak, Leroy J. Miller, Camille I. Van Ast
  • Patent number: 5370944
    Abstract: This invention relates to a diamond-coated hard material and a process for the production of the same. The feature of the diamond-coated hard material consists in that in a diamond-coated hard material comprising a substrate of a tungsten carbide-based cemented carbide having a diamond-coated layer provided on the surface of the substrate, a surface-modified layer containing no binder phase or containing a binder phase in a proportion of less than in the interior part of the substrate is present on the outermost surface of the substrate. This hard material can be produced by converting the substrate material into a sintered or heat treated surface or skin and then coating with diamond. The diamond-coated hard material of the present invention has such a high wear resistance and excellent bonding strength to the substrate that it can favorably be applied to various tools, parts, grinding wheels, etc.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: December 6, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naoya Omori, Mitsunori Kobayashi, Toshio Nomura
  • Patent number: 5360673
    Abstract: A semifinished product for electric contact made from a composite material based on silver-tin oxide is described as well as a powder-metallurgical process of making said product. The structure of the semifinished products contains regions which contain no metal oxide or very little metal oxide in alternation with regions which contain the entire metal oxide component or a greatly predominating/share thereof in a fine division.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: November 1, 1994
    Assignee: Doduco GmbH + Co. Dr. Eugen Durrwachter
    Inventors: Ursula Mayer, Roland Michal, Karl E. Saeger
  • Patent number: 5342697
    Abstract: An article and method of making it of powdered metal, the article being in the nature of a bushing having a main body portion of usual density and outer protrusions of lesser density for a squeezed interference fit in the part to which the article is to be combined.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: August 30, 1994
    Inventor: Richard D. Helle
  • Patent number: 5340656
    Abstract: A process for making a component by depositing a first layer of a powder material in a confined region and then depositing a binder material to selected regions of the layer of powder material to produce a layer of bonded powder material at the selected regions. Such steps are repeated a selected number of times to produce successive layers of selected regions of bonded powder material so as to form the desired component. The unbonded powder material is then removed. In some cases the component may be further processed as, for example, by heating it to further strengthen the bonding thereof.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: August 23, 1994
    Assignee: Massachusetts Institute of Technology
    Inventors: Emanuel M. Sachs, John S. Haggerty, Michael J. Cima, Paul A. Williams
  • Patent number: 5336292
    Abstract: A sintered body of titanium-based carbonitride alloy according to the invention comprises carbonitride hard constituents in 5-25% binder phase where the hard constituents contain, in addition to Ti, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, Mo and/or W and the binder phase is based on cobalt and/or nickel. The sintered body has at least one outer surface with a <50 .mu.m thick surface layer of a titanium-rich cubic carbonitride. Below this layer there is a <100 .mu.m thick binder phase enrichment zone. The binder phase content can be >1.2 of that in the inner part of the body D. Under the binder phase enrichment zone, there is a <250 .mu.m thick binder phase depleted zone C. The binder phase content in this zone has a lowest level <0.9 of the binder phase content in the inner part of the body D.Such sintered bodies are manufactured by heat treatment in an atmosphere of N.sub.2 and/or NH.sub.3 possibly in combination with at least one of CH.sub.4, CO and CO.sub.2 at 1100.degree.-1350.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: August 9, 1994
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Marian Mikus
  • Patent number: 5330700
    Abstract: A porous electrode for pacemakers is comprised of a plurality of platinum globules sintered together to form a porous mass of semi-hemispherical shape at the end of a platinum electrode stem. The globules, which are themselves made by sintering together spherically-shaped particles of approximately one micron diameter, provide the globules with an irregular outer surface of high total surface area. The globules have diameters within a critical range of 40-200 microns. The large total surface area of the globules improves the sensing function of an electrode configuration of given size and surface area, while the globule diameters of 40-200 microns have been found to beneficially accommodate tissue ingrowth within the electrode. In a preferred method of making the electrode, the platinum globules, which are formed by sintering together platinum particles of much smaller size, are mixed with organic solvent and organic binder to form a paste.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: July 19, 1994
    Assignee: Siemens Pacesetter, Inc.
    Inventors: Thomas M. Soukup, Paul E. Kreyenhagen
  • Patent number: 5326646
    Abstract: A synchronizer ring comprises a ring body having a sliding portion, and a directly spray-coated wear-resistant film formed on a surface of the sliding portion. The film is made of a wear-resistant brass alloy which comprises Cu, Zn and at least one element selected from the group consisting of Al, Mn, Fe, Ni, Si, Co, Cr, Ti, Nb, V, Zr and Mo. The spray-coated film exhibits good wear resistance and good bonding strength.
    Type: Grant
    Filed: December 4, 1992
    Date of Patent: July 5, 1994
    Assignee: Chuetsu Metal Works Co., Ltd.
    Inventors: Kunio Nakashima, Masao Hosoda, Wataru Yago, Kazuyuki Inagaki
  • Patent number: 5306326
    Abstract: A sintered body of titanium based carbonitride alloy containing hard constituents based on, in addition to titanium, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, No or W in 5-30% binder phase based on Co and/or Ni is disclosed. The body has a binder phase enriched surface zone with a higher binder phase content than in the inner portion of the body in combination with an enrichment of simple hard constituents, i.e., the share of grains with core-rim structure is lower in the surface zone than in the inner of the body.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: April 26, 1994
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Gerold Weinl
  • Patent number: 5296016
    Abstract: There is disclosed a surface coated cermet blade member which includes a cermet substrate and a hard coating of an average thickness of 0.5 to 20 .mu.m formed thereon. The substrate contains, apart from unavoidable impurities, a binder phase of 5 to 30% by weight of at least one of cobalt, nickel, iron and aluminum, and a hard dispersed phase of a balance carbo-nitride of metals. The metals are titanium, tungsten and at least one of tantalum, niobium, vanadium, zirconium, molybdenum and chromium. The substrate includes a surface portion having a hardness greater than an interior portion. The hard coating may be composed of one or more coating layers. Each coating layer is formed of TiX or Al.sub.2 O.sub.3, where X denotes at least one element of carbon, nitrogen, oxygen and boron.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: March 22, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hironori Yoshimura, Seiichirou Nakamura, Niro Odani
  • Patent number: 5286549
    Abstract: The present invention relates to cemented carbide bodies preferably for wear demanding rock drilling and mineral cutting. The bodies are built up of a core of eta-phase-containing cemented carbide surrounded by a surface zone free of eta-phase where the binder phase content in the outer part of said zone is lower than the nominal and, in addition, constant or near constant, and the binder phase content in the inner part of the eta-phase free zone closer to the eta-phase core is higher than the nominal. According to the method of the invention, bodies comprising evenly distributed eta-phase are subjected to a partly carburizing treatment with a carbon activity, a.sub.c, close to 1.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: February 15, 1994
    Assignee: Sandvik AB
    Inventors: E. Torbjorn Hartzell, Jan Akerman, Udo K. R. Fischer
  • Patent number: 5244510
    Abstract: This invention relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in a passivating gas at a temperature from ambient temperature to a temperature below the phase transformation temperature of the material.Additionally, this invention relates to a process for producing a rare earth-containing powder compact comprising crushing a rare earth-containing alloy in water, compacting the crushed alloy material, drying the compacted alloy material at a temperature below the phase transformation temperature of the material, and treating the compacted alloy material with a passivating gas at a temperature from ambient temperature to a temperature below the phase transformation temperature of the material.Rare earth-containing alloys suitable for use in producing magnets utilizing the powder metallurgy technique, such as Nd-Fe-B and Sm-Co alloys, can be used.
    Type: Grant
    Filed: July 18, 1991
    Date of Patent: September 14, 1993
    Inventor: Yakov Bogatin
  • Patent number: 5242758
    Abstract: A gear having good fatigue strength and corrosion resistance has a body with gear teeth formed of a hot isostatically pressed alloy powder. The alloy is cobalt based and consists of 10 to 35 wt % Cr, 0-22 wt % Ni, 0-20 wt % W, 0-20 wt % Fe, 0-10 wt % V, 0-10 wt % Mo, 0-6 wt % Nb, 0-3 wt % Si, 0-3 wt % C, 0-3 wt % B and 0-1 wt % Mn, the balance, apart from impurities, being cobalt.
    Type: Grant
    Filed: July 9, 1991
    Date of Patent: September 7, 1993
    Assignee: Lucas Industries PLC
    Inventors: Keith N. Hitchcock, Geoffrey R. Armstrong, Bernard A. Rickinson
  • Patent number: 5227247
    Abstract: This invention relates to a process for producing a rare earth-containing material capable of being formed into a permanent magnet comprising crushing a rare earth-containing alloy and treating the alloy with a passivating gas at a temperature below the phase transformation temperature of the alloy. This invention further relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in a passivating gas at a temperature from ambient temperature to a temperature below the phase transformation temperature of the material. This invention also relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in water, drying the crushed alloy material at a temperature below the phase transformation temperature of the material, and treating the crushed alloy material with a passivating gas at a temperature from the ambient temperature to a temperature below the phase transformation temperature of the material.
    Type: Grant
    Filed: July 18, 1991
    Date of Patent: July 13, 1993
    Assignee: SPS Technologies, Inc.
    Inventor: Yakov Bogatin
  • Patent number: 5226947
    Abstract: Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire.
    Type: Grant
    Filed: February 17, 1992
    Date of Patent: July 13, 1993
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Paul D. Jablonski, David C. Larbalestier
  • Patent number: 5198154
    Abstract: A composition, which comprises copper alloy powder represented by a general formula Ag.sub.x Cu.sub.y M.sub.z (where M represents one or more metals selected from Pb, Bi and Zn; x, y and z are atomic ratio values, respectively; and 0.001.ltoreq.x.ltoreq.0.4, 0.6.ltoreq.y.ltoreq.0.999, 0.ltoreq.z.ltoreq.0.05 and x+y+z=1) having particle surface silver concentration higher than the average silver concentration thereof and a region in which a silver concentration increases toward the particle surface, glass frit and an organic vehicle, is useful for pastes for screen printing, electroconductive circuits, electrodes, electromagnetic wave shields and an electroconductive pastes for a resistance contacts.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: March 30, 1993
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Akinori Yokoyama, Tsutomu Katsumata, Hitoshi Nakajima
  • Patent number: 5129961
    Abstract: A cylindrical, iron-based sintered slug comprising an iron-based sintered alloy having a surface hardness represented by an HRB of 40-90 is formed such that its interior porosity is 5% or less but greater than 0%, the porosities of both its surface layer regions lying at most 1 mm below its outer and inner surfaces are fixed at at least 3% or less but greater than 0% and the distribution of pores in each of the surface layers is decreased gradually toward the surface.
    Type: Grant
    Filed: August 24, 1990
    Date of Patent: July 14, 1992
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventor: Yoshiki Hirai
  • Patent number: 5126102
    Abstract: The present invention is directed to a method of preparing a composite material excellent in joint strength and heat conductivity, and more specifically to a method of preparing a composite material composed of a high-melting material W and low-melting material Cu. The method comprising a first step of forming pores in the high-melting material W, to obtain a substrate material having a porosity distribution, with a high porosity at at least one region of the surface of the substrate material and the porosity gradually decreasing outward from the region; and a second step of impregnating the low melting material Cu to the substrate material obtained in the first step from the region of the highest porosity gradually downward. The substrate material being formed to have a gradient distribution of a composite ratio of the high-melting material and the low-melting material.
    Type: Grant
    Filed: March 12, 1991
    Date of Patent: June 30, 1992
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masashi Takahashi, Yoshiyasu Itoh
  • Patent number: 5126212
    Abstract: Disclosed herein is a (1) A multi-layered sintered sliding member comprising a back metal composed of a steel plate having (i) a plurality of independent protrusions formed at a surface thereof or (ii) a continuous protrusion and a plurality of independent recesses defined with said protrusions at the surface thereof and a sintered alloy layer formed integrally by securing on the surface of said back metal covering the surface of said protrusions, in which said sintered alloy layer is composed of a low density alloy region and a high density alloy region.
    Type: Grant
    Filed: June 27, 1991
    Date of Patent: June 30, 1992
    Assignee: Oiles Corporation
    Inventors: Shinji Yamada, Hideo Ozawa, Mitsuaki Andoh, Yasuhiro Shirasaka, Hideyuki Morioka
  • Patent number: 5122203
    Abstract: This invention relates to a process for producing a rare earth-containing material capable of being formed into a permanent magnet comprising crushing a rare earth-containing alloy and treating the alloy with a passivating gas at a temperature below the phase transformation temperature of the alloy. This invention further relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in a passivating gas at a temperature from ambient temperature to a temperature below the phase transformation temperature of the material. This invention also relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in water, drying the crushed alloy material at a temperature below the phase transformation temperature of the material, and treating the crushed alloy material with a passivating gas at a temperature from the ambient temperature to a temperature below the phase transformation temperature of the material.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: June 16, 1992
    Assignee: SPS Technologies, Inc.
    Inventor: Yakov Bogatin
  • Patent number: 5114502
    Abstract: This invention relates to a process for producing a rare earth-containing powder comprising crushing a rare earth-containing alloy in water, drying the crushed alloy material at a temperature below the phase transformation temperature of the material, and treating the crushed alloy material with a passivating gas at a temperature from the ambient temperature to a temperature below the phase transformation temperature of the material. Rare earth-containing alloys suitable for use in producing magnets utilizing the powder metallurgy technique, such as Nd-Fe-B and Sm-Co alloys, can be used. The passivating gas can be nitrogen, carbon dioxide or a combination of nitrogen and carbon dioxide. If nitrogen is used as the passivating gas, the resultant powder has a nitrogen surface concentration of from about 0.4 to about 26.8 atomic percent. Moreover, if carbon dioxide is used as the passivating gas, the resultant powder has a carbon surface concentration of from about 0.02 to about 15 atomic percent.
    Type: Grant
    Filed: June 13, 1989
    Date of Patent: May 19, 1992
    Assignee: SPS Technologies, Inc.
    Inventor: Yakov Bogatin
  • Patent number: 5089047
    Abstract: A dense cermet article including about 80-95% by volume of a granular hard phase and about 5-20% by volume of a metal phase. The granular hard phase consists essentially of a ceramic material selected from the hard refractory carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, carboxynitrides, and borides of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, boron, and mixtures thereof. The metal phase consists essentially of a combination of nickel and aluminum having a weight ratio of nickel to aluminum of from about 90:10 to about 70:30 and 0-5% by weight of an additive selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, boron, or carbon, or combinations thereof. In the preferred metal phase, an amount of about 15-80% by volume of the metal phase component exhibits a Ni.sub.3 Al ordered crystal structure.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: February 18, 1992
    Assignee: GTE Laboratories Incorporated
    Inventors: Sergej T. Buljan, Helmut Lingertat, Steven F. Wayne
  • Patent number: 5084357
    Abstract: A resin-sandwiched metal laminate, a process and apparatus for producing the same and a process for producing a resin film for the resin-sandwiched metal laminate are disclosed. The laminate comprises a pair of face and back metal sheets and a resin layer and is capable of passing electricity between the face and back metal sheets, the resin layer being composed of electroconductive filler-containing resin regions at the side edges of the resin layer in the width direction of the metal sheets and an electroconductive filler-free resin center region provided between the electroconductive filler-containing resin regions at the side edges.
    Type: Grant
    Filed: January 4, 1990
    Date of Patent: January 28, 1992
    Assignee: Nippon Steel Corporation
    Inventors: Ryuusuke Imai, Michio Nashiwa, Yasuhiro Oomura, Ryouichi Matsuda, Michio Satou, Tamayuki Takeuchi
  • Patent number: 5030518
    Abstract: A high temperature multi-layer thermal insulation is constructed especially for insulating spacecraft. For this purpose the insulation is formed of a plurality of porous material layers, such as ceramic fiber layers, separated from each other by highly reflective gas permeable foils. The insulation has an outer hot side and an inner cold side. The ceramic fibers are so arranged that the layer density increases from the outer side toward the inner side while the fiber diameter decreases from the outer side to the inner side. Compared to conventional heat shield type insulations of spacecraft, the present insulation is relatively lightweight and is able to better discharge again at lower flight altitudes any heat stored in the insulation at higher transient re-entry altitudes.
    Type: Grant
    Filed: December 8, 1988
    Date of Patent: July 9, 1991
    Assignee: Messerschmitt-Boelkow-Blohm GmbH
    Inventor: Karl Keller
  • Patent number: 4990410
    Abstract: A surface refined sintered alloy with a burnt surface, comprising 75 to 95% by weight of a hard phase containing Ti, C and N as the essential components and otherwise comprising at least one of Zr, Hf, V, Nb, Ta, Cr, Mo and W and the balance of the alloy comprising a binder phase composed mainly of Co and/or Ni and inevitable impurities, wherein the sintered alloy satisfies at least two conditions selected from the group consisting of the following (1) to (3):(1) the average grain size of the hard phase in a surface layer to the inner portion of 0.05 mm from the burnt surface of the sintered alloy is 0.8 to 1.2-fold of the average grain size of the hard phase in the inner portion of the sintered alloy excluding the surface layer;(2) the average content of the binder phase in the surface layer to the inner portion of 0.05 mm from the burnt surface of the sintered alloy is 0.7 to 1.
    Type: Grant
    Filed: March 7, 1989
    Date of Patent: February 5, 1991
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Takeshi Saitoh, Tuyoshi Saito, Mitsuo Ueki, Hisashi Suzuki, Keiichi Kobori
  • Patent number: 4971624
    Abstract: Erosion and abrasion resistant refractory metal carbide articles are provided having multiphase alloy of borides including titanium boride, binder metal boride, and titanium-binder metal-refractory metal borides by diffusion of titanium initially to convert the refractory metal carbide to its constitutents which are then reacted with boron, forming a new added surface in replacement of the original article surface, and bridging the original surface locus.
    Type: Grant
    Filed: December 22, 1988
    Date of Patent: November 20, 1990
    Inventors: Eugene V. Clark, George K. Sievers
  • Patent number: 4957819
    Abstract: A frameless and coreless porous endosseous implant comprising a porous sintered metal layer (2) having a range of relatively large pores and porous sintered metal layers having a range of relatively small pores and laminated into one body by sintering integrally with the layer on either side thereof, or a porous singered metal layer having a range of relatively small pores and porous sintered metal layers having a range of relatively large pores and laminated into one body by sintering integrally with the layer on either side thereof, whereby the three layers each permit the ingrowth and penetration out of two or more kinds out of fibrous tissue, osteoid tissue and bone tissue in the pores thereof.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: September 18, 1990
    Assignees: Haruyuki Kawahara, Toho Titanium Co., Ltd.
    Inventors: Haruyuki Kawahara, Seiichi Tsukamoto, Yutaka Nomura, Katsumi Tanaka, Yasuyuki Ashiura, Motonobu Yoshimura
  • Patent number: 4939038
    Abstract: A light metallic composite material containing therein fine granular additives dispersed in a matrix of a light metallic material, which composite material has a light weight, high mechanical strength, and excellent characteristics such as high damping ability. The additives each have a density less than that of the matrix and heat resistance enough to withstand a heating temperature at which they are composited with the matrix. Preferably, the additives are each formed with a coating which increases mechanical strength and provides an electromagnetic characteristic different from that of the matrix. Preferably, the composite material is produced by heating a mixture of matrix powders and additives up to a temperature where only part of the mixture including no microspheres is softened but the mixture is adequately composited, an amount of additives being equal to 10% to 70% by volume of the matrix, and by forming the composited mixture into a desired shape and solidifying same.
    Type: Grant
    Filed: November 30, 1987
    Date of Patent: July 3, 1990
    Assignee: Inabata Techno Loop Corporation
    Inventor: Tadao Inabata
  • Patent number: 4925740
    Abstract: A high strength, light weight stabilized skin structure having spaced skin sheets and a plurality of hollow metal spheres filling the space between the skins. The spheres and skins are bonded together, resulting in a unitary structure. The spheres typically have outside diameters of from about 0.005 to 0.5 inch, with tall thicknesses of about 0.0005 to 0.005 inch. Spheres of different sizes may be used, with smaller or heavier wall thickness spheres in high load areas, such as insert attachment points, and larger spheres in lightly loaded areas. The spheres preferably have a surface coating of a brazing material and are bonded together and to the skins by furnace brazing.
    Type: Grant
    Filed: July 28, 1989
    Date of Patent: May 15, 1990
    Assignee: Rohr Industries, Inc.
    Inventors: Brian Norris, Francis J. Gojny
  • Patent number: 4911625
    Abstract: This case relates to tough, wear resistant graded structure composites, to a process for preparing the same and to tools and products fabricated therefrom. The composites have a surface layer e.g. of WC and a binder, an interface layer, e.g. which is a stepwise transition from the surface layer whereby the binder content thereof gradually increases, a substrate layer which is a combination of e.g. an initial high carbon steel layer and finally a base layer of bainitic steel. The composites are substantially non-porous and can be used to fabricate components such as drill bits, wear plates, pump components machine tools, seals, washers, bearings and the like.
    Type: Grant
    Filed: May 17, 1989
    Date of Patent: March 27, 1990
    Assignee: The British Petroleum Company, p.l.c.
    Inventors: Alan R. Begg, Colin W. Brown, Neil E. S. Charman
  • Patent number: 4911989
    Abstract: A coated cemented carbide alloy having jointly a high toughness and high wear resistance is produced by specifying the cooling rate during sintering in efficient manner, which alloy comprises a cemented carbide substrate consisting of a hard phase of at least one member selected from the group consisting of carbides, nitrides and carbonitrides of Group IVa, Va and VIa metals of Periodic Table and a binder phase consisting of at least one member selected from the iron group metals, and a monolayer or multilayer, provided thereon, consisting of at least one member selected from the group consisting of carbides, nitrides, oxides and borides of Group IVa, Va and VIa metals of Periodic Table, solid solutions thereof and aluminum oxide, in which the hardness of the cemented carbide substrate in the range of 2 to 5 .mu.m from the interface between the coating layer and substrate is 800 to 1300 kg/mm.sup.
    Type: Grant
    Filed: April 10, 1989
    Date of Patent: March 27, 1990
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nakano Minoru, Tobioka Masaaki, Nomura Toshio
  • Patent number: 4901908
    Abstract: An aluminum material for brazing, comprising a core made of aluminum or an aluminum alloy, and a layer coated on the surface of the core. The layer is made of zinc or an alloy of zinc-and-aluminum and a brazing alloy having a melting point which is lower than that of the core by a predetermined value. The zinc or the alloy of zinc-and-aluminum and the brazing alloy have different melting points. Also disclosed are a method of manufacturing an aluminum material for brazing and a method of manufacturing an aluminum alloy heat exchanger by use of the Al material for brazing.
    Type: Grant
    Filed: September 6, 1988
    Date of Patent: February 20, 1990
    Assignee: Nippondenso Co., Ltd.
    Inventors: Kengi Negura, Ken Yamamoto, Shigeo Ito, Masahiro Shimoya
  • Patent number: 4900635
    Abstract: The disclosure relates to a turbine disk and a method of making the turbine disk comprising the steps of rotating a mold, adding a first powdered metal to the rotating mold at a first rate, reducing the rate of addition of the first metal to a second rate, and adding a second powdered metal to the mold at a third rate substantially equal to the difference between the first and second rates.
    Type: Grant
    Filed: February 9, 1989
    Date of Patent: February 13, 1990
    Assignee: Williams International Corporation
    Inventors: Kim E. Bowen, Steven M. Foster, Said Izadi
  • Patent number: 4897117
    Abstract: Hardened penetrators (armor penetrating projectiles) of tungsten alloy can be work hardened such that they are hard at the surface, tough in the center to resist bending, and with hardness gradient such that the surface hardness is materially harder than the center or the core thereof.
    Type: Grant
    Filed: September 13, 1988
    Date of Patent: January 30, 1990
    Assignee: Teledyne Industries, Inc.
    Inventor: Thomas W. Penrice
  • Patent number: RE34180
    Abstract: Cemented carbide substrates having substantially A or B type porosity and a binder enriched layer near its surface are described. A refractory oxide, nitride, boride, and/or carbide coating is deposited on the binder enriched surface of the substrate. Binder enrichment is achieved by incorporating Group IVB or VB transition elements. These elements can be added as the metal, the metal hydride, nitride or carbonitride.
    Type: Grant
    Filed: September 9, 1988
    Date of Patent: February 16, 1993
    Assignee: Kennametal Inc.
    Inventors: Bela J. Nemeth, deceased, George P. Grab