Porous (e.g., Foamed, Spongy, Cracked, Etc.) Patents (Class 428/613)
  • Publication number: 20140011045
    Abstract: Power generation and transmission components and methods of manufacture are described in which a component is custom designed and produced in discrete layers using computer numerical controlled machining. The design is separated into layers, and the layers are individually machined to impart design features. The layers are then prepared for, and undergo a brazing process in order to build a functionally unitary mechanical component. Components according to the invention include, but are not limited to, engine blocks, cylinder heads, transmission housings, centrifugal pump housings, cylinder blocks, monoblocs (engines in which the cylinder block and cylinder head are formed as one unit), engine crank cases, automotive power train housings and many other large unit or unitary structure components. A commercial method of producing custom components is also described.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 9, 2014
    Applicant: Aeres Motors
    Inventors: David A. Slemp, Darren Baurn
  • Patent number: 8608049
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 17, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Publication number: 20130330569
    Abstract: A thermally insulative component is a thermal barrier panel attached to a rigid structural member with means for attaching the insulative component to an external structure. The connection between the structural member and the thermal barrier panel is mechanically compliant to minimize intercomponent stress build up during operation. The thermal barrier panel is a fiber wrapped ceramic oxide foam insulating structure.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Donald W. Peters, George J. Kramer
  • Patent number: 8602290
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
  • Publication number: 20130323528
    Abstract: The invention relates to a bearing part as well as to a spray method for manufacturing a layer system on a bearing part, in particular a connecting rod eye of a connecting rod for a reciprocating piston combustion engine, with a layer system containing at least tin being provided on a surface of the bearing part. In accordance with the invention, an outer, thermally sprayed top layer of the layer system is composed only of tin with the exception of contaminants.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Peter Ernst, Bernd Distler
  • Publication number: 20130323529
    Abstract: There is provided a bonding material capable of forming a bonding body under an inert gas atmosphere such as a nitrogen atmosphere, and capable of exhibiting a bonding strength that endures a practical use even if not a heat treatment is applied thereto at a high temperature, which is the bonding material containing silver nanoparticles coated with a fatty acid having a carbon number of 8 or less and having an average primary particle size of 1 nm or more and 200 nm or less, and silver particles having an average particle size of 0.5 ?m or more and 10 ?m or less, and an organic material having two or more carboxyl groups.
    Type: Application
    Filed: May 13, 2011
    Publication date: December 5, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Satoru Kurita, Keiichi Endoh, Yu Saito, Yutaka Hisaeda, Toshihiko Ueyama
  • Patent number: 8586194
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat
  • Publication number: 20130302636
    Abstract: A porous metal article includes a substrate, a metal layer formed on the substrate, and a porous metal layer formed on the metal layer. The metal layer is a noble metal layer doped with M, M comprising an element selected from the group consisting of magnesium and calcium, the content of M in the metal layer is between about 30 wt % and about 70 wt %.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Hsin-Pei CHANG, Wen-Rong CHEN, Huann-Wu CHIANG, Cheng-Shi CHEN, Lone-Wen TAI, Shun-Mao LIN
  • Publication number: 20130295408
    Abstract: The invention provides a polycrystalline silicon rod having a total diameter of at least 150 mm, including a core A having a porosity of 0 to less than 0.01 around a thin rod, and at least two subsequent regions B and C which differ in porosity by a factor of 1.7 to 23, the outer region C being less porous than region B.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 7, 2013
    Applicant: Wacker Chemie AG
    Inventors: Martin WEBER, Erich DORNBERGER, Michael KERSCHER, Heinz KRAUS, Reiner PECH
  • Publication number: 20130236502
    Abstract: This disclosure provides implantable devices coated with microporous surface layers with macrotopographic features that improve bio-integration at the interface of the implantable devices and the surrounding tissue.
    Type: Application
    Filed: December 18, 2012
    Publication date: September 12, 2013
    Applicant: HEALIONICS CORPORATION
    Inventors: Andrew J. Marshall, Michel Alvarez, Max Maginness
  • Publication number: 20130230738
    Abstract: Providing porous implant material having a strength property approximate to human bone, without arising stress shielding, and which is possible to maintain sufficient bound strength with human bone. Porous implant material according to the present invention has a plurality of porous metal bodies 4 which are bonded with each other at bonded-boundary surface F parallel to a first direction, wherein each the porous metal body has a three-dimensional network structure formed from a continuous skeleton 2 in which a plurality of pores 3 are interconnected, a porosity rate is 50% to 92%, and a compressive strength compressing in a direction parallel to the bonded-boundary surface F is 1.4 times to 5 times of a compressive strength compressing in a direction orthogonal to the bonded-boundary surface F.
    Type: Application
    Filed: November 10, 2011
    Publication date: September 5, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuzo Daigo, Shinichi Ohmori, Komei Kato
  • Publication number: 20130209350
    Abstract: There is provided an oxygen absorbing agent that can have a capability of absorbing oxygen in an atmosphere even when the atmosphere is free or substantially free from moisture. The oxygen absorbing agent comprises a metal, the metal having been obtained by subjecting an alloy comprising (A) at least one transition metal selected from the group consisting of manganese, iron, platinum, and copper group metals and (B) at least one metal selected from the group consisting of aluminum, zinc, tin, lead, magnesium, and silicon to treatment with an acidic or alkaline aqueous solution to elute and remove at least a part of the component (B).
    Type: Application
    Filed: January 27, 2012
    Publication date: August 15, 2013
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Emi Ishihara, Tomoharu Himeshima, Tatsuo Iwai
  • Publication number: 20130196169
    Abstract: A system and method of forming a wear resistant composite material includes placing a porous wear resistant filler material in a mold cavity and infiltrating the filler material with a matrix material by heating to a temperature sufficient to melt the matrix material, then cooling the assembly to form a wear resistant composite material. The system and method can be used to form the wear resistant composite material on the surface of a substrate, such as a part for excavating equipment or other mechanical part. One suitable matrix material may be any of a variety of ductile iron alloys.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 1, 2013
    Applicant: ESCO Corporation
    Inventor: ESCO Corporation
  • Patent number: 8497026
    Abstract: A porous metal foil of the present invention comprises a two-dimensional network structure composed of metal fibers. This porous metal foil has superior properties and can be obtained in a highly productive and cost effective manner.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 30, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuhiro Matsunaga, Hajime Watanabe, Joe Nishikawa, Tetsuro Sato
  • Publication number: 20130168071
    Abstract: 3D porous material comprises at least one machined side. The machined side has a solid percentage Ps being (1?Po), said Po is the porosity of the bulk of said 3D porous material and said Ps is within the 99.5% confidence interval. The present invention provides the method of manufacturing such 3D porous material. Preferably, the 3D porous material is open cell metal foam. The present invention also provides use of such open cell metal foam in a heat exchanger. The present invention further provides a heat exchanger comprising open cell metal foam.
    Type: Application
    Filed: April 26, 2011
    Publication date: July 4, 2013
    Inventors: Johan Hugelier, Peter De Jaeger, Johan Priem
  • Publication number: 20130167965
    Abstract: Disclosed herein is an article having a surface modified to alter its surface tension property and increase resistance to sand abrasion as characterized by a material volume loss of less than 75 mm3 according to ASTM G65-04 Procedure B. In one embodiment of the method, an intermediate layer is first deposited onto a substrate of the article. At least a substrate on the article is protected by a coating layer, which comprises: an intermediate layer adjacent to the substrate with a thickness of at least 2 mils containing a plurality of pores with a total pore volume of 5 to 50% within a depth of at least 2 mils; and a surface layer comprising a lubricant material deposited onto the intermediate layer. The lubricant material infiltrates at least a portion of the pores for the coating to have the desired surface tension depending on the application.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: Justin Lee Cheney, Grzegorz Jan Kusinski
  • Publication number: 20130171466
    Abstract: In one aspect, there are provided methods for producing porous metallic structures, wherein the methods involve the use of collagen fibrils on the nanometer scale as a “sacrificial” scaffold upon which metal particles are deposited. Also disclosed are structures comprising a porous metallic matrix having favorable strength, porosity, and density characteristics. Structures produced in accordance with the present disclosure are useful for, inter alia, the fabrication of devices such as filters, heat exchangers, sound absorbers, electrochemical cathodes, fuel cells, catalyst supports, fluid treatment units, lightweight structures and biomaterials.
    Type: Application
    Filed: December 10, 2012
    Publication date: July 4, 2013
    Inventor: GENNARO J. MAFFIA
  • Patent number: 8470111
    Abstract: A composite component comprising at least one first and one second sheet metal plate with at least one layer of a polymer arranged between the first and the second sheet metal plates provides for a component optimized with respect to the weight thereof, and which is at the same time simple to manufacture. The polymer layer of the composite component according to the invention comprises at least one foamed polymer layer of a thermoplastic polymer, wherein the foamed polymer layer comprises gas bubbles with a volume percentage of 1% to 80%, in particular 5% to 70%.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: June 25, 2013
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Thorsten Böger, Peter Klauke, Oliver Kleinschmidt, Christoph Filthaut, Ingo Rogner, Oliver Thöle
  • Publication number: 20130157074
    Abstract: Hollow superelastic shape memory alloy particles are disclosed herein. An example of the hollow superelastic shape memory particle includes an outer shell of a shape memory alloy having an Austenite finish temperature (Af) that is lower than a temperature encountered in an application in which the particle is used so that the shape memory alloy exhibits stress-induced superelasticity. The hollow superelastic shape memory particle also includes an interior hollow portion at least partially surrounded by the outer shell.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 20, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: GM GLOBAL TECHNOLOGY OPERATIONS LLC
  • Publication number: 20130149549
    Abstract: Compositions made by metallothermal reduction from aerogels and phase separated glasses and glass ceramics formed and methods of producing such compositions are provided. The compositions have novel structures that incorporate nanoporous silicon and other metal, metalloid, or metal-oxide nanowires in form of three-dimensional scaffolds. Additional compositions possess unusual photoluminescence properties that indicate possible applications in lighting and electronics.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 13, 2013
    Inventors: Nicholas Francis Borrelli, Shawn Michael O'Malley, Vitor Marino Schneider
  • Publication number: 20130134591
    Abstract: A semiconductor device is provided which has internal bonds which do not melt at the time of mounting on a substrate. A bonding material is used for internal bonding of the semiconductor device. The bonding material is obtained by filling the pores of a porous metal body having a mesh-like structure and covering the surface thereof with Sn or an Sn-based solder alloy.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 30, 2013
    Inventors: Yoshitsugu Sakamoto, Hiroyuki Yamada, Yoshie Yamanaka, Tsukasa Ohnishi, Shunsaku Yoshikawa, Kenzo Tadokoro
  • Publication number: 20130136941
    Abstract: In one aspect, composite articles are described comprising multifunctional coatings. A composite article described herein, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer and an outer layer, the inner layer comprising a presintered metal or alloy and the outer layer comprising particles disposed in a metal or alloy matrix.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Kennametal Inc.
    Inventors: Qingjun Zheng, Piyamanee Komolwit, Yixiong Liu, Jim Faust, Jonathan Bitler, Srinivasarao Boddapati
  • Patent number: 8449991
    Abstract: Polycrystalline diamond compacts for use in artificial joints achieve reduced corrosion and improved biocompatibility through the use of solvent metal formulations containing tin and through the control of solvent metal pore size, particularly in inner layers of the compact. Solvent metal formulations containing tin have been discovered which provide sintering ability, part strength, and grind resistance comparable to levels achieved by using CoCrMo solvent metals. It has been discovered that limiting the solvent metal pore size in the diamond layers minimizes or eliminates the occurrence of micro cracks in the solvent metal and significantly reduces the corrosion of the compact as manifested by the release of heavy metal ions from the compact. Polycrystalline diamond compacts which utilize both the solvent metal formulations containing tin and the control of pore sizes achieve significantly reduced corrosion and improved biocompatibility compared to prior art polycrystalline diamond compacts.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 28, 2013
    Assignee: Dimicron, Inc.
    Inventors: Clayton F. Gardinier, Alfred S. Despres, Troy J. Medford, Tim Bunton
  • Publication number: 20130130052
    Abstract: The invention relates to a method for manufacturing a thermal barrier protection covering a superalloy metal substrate and comprising at least one metal sublayer (13) and a ceramic layer (14) based on zirconia stabilized with yttrium having a column structure defining pores. The following steps are applied: impregnation of a portion of the pores of the ceramic layer (14) with a sol based on zirconia is achieved via a sol-gel route and this in order to form an anchoring sublayer (22), on said ceramic layer topped with said anchoring sub-layer (22), a continuous protective layer (20) based on oxide, is formed via a sol-gel route, and a heat treatment is carried out, whereby an outer protection layer is formed against the attack of the thermal barrier (11) by CMASes. Application to the protection of aeronautical protection parts.
    Type: Application
    Filed: March 11, 2011
    Publication date: May 23, 2013
    Applicants: SNECMA, UNIVERSITE PAUL SABATIER-TOULOUSE III, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Justine Menuey, Florence Ansart, Jean-Pierre Bonino, Justine Fenech, Celine Viazzi
  • Patent number: 8440323
    Abstract: The invention relates to a process for making a hot stamped coated steel sheet product, comprising the steps of pre-coating a steel strip or sheet with aluminum- or aluminum alloy, cutting said pre-coated steel strip or sheet to obtain a pre-coated steel blank, heating the blank in a furnace preheated to a temperature and during a time defined by diagram according to thickness, at a heating rate Vc between 20 and 700° C. comprised between 4 and 12° C./s and at a heating rate Vc? between 500 and 700° C. comprised between 1.5 and 6° C./s, to obtain a heated blank; then transferring said heated blank to a die, hot stamping the heated blank in the die obtain a hot stamped steel sheet product, cooling at a mean rate Vr between the exit of the heated blank from the furnace, down to 400° C., of at least 30° C./s.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: May 14, 2013
    Assignee: Arcelormittal France
    Inventors: Dominique Spehner, Ronald Kefferstein, Pascal Drillet
  • Publication number: 20130115479
    Abstract: A coating system having two layers of porous coatings is provided. The layers include a tightly controlled and matched porosity. The layer system also includes a substrate with a bonding layer. The inner ceramic layer and the outer ceramic layer are formed on the bonding layer. The bonding layer may comprise a MCrAlX alloy.
    Type: Application
    Filed: July 5, 2011
    Publication date: May 9, 2013
    Inventor: Werner Stamm
  • Patent number: 8435644
    Abstract: A metal molding (10) comprises a metal foam region (12) composed of a metal foam consisting of a metal, a further region (14) in which the metal has fewer or smaller cavities than in the metal foam region, and an essentially sheet-like one-part or multipart insert element (16) with orifices or interspaces. The insert element (16) is arranged in a fringe region between the metal foam region (12) and the further region (14). The metal in the further region (14) is connected metallically to the metal in the metal foam region (12) in orifices or interspaces of the insert element (16).
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: May 7, 2013
    Assignee: Huette Klein-Reichenbach Gesellschaft m.b.H
    Inventors: Franz Dobesberger, Herbert J. Flankl, Dietmar Leitlmeier
  • Patent number: 8431254
    Abstract: The invention relates to a composite material element (1), the composite material comprising a microfissured matrix (7) in the form of a three-dimensional interconnected network (4) of microfissures exposed on the surface of the ceramic matrix, an additive material (6) consisting of a flux or glass being dispersed in the matrix, the additive material (6) being a material which, when the composite material is brought to a predetermined temperature, softens and migrates by capillarity in the network (4) of microfissures (4) to said surface of the element. The quantity of additive material dispersed initially in the matrix is in a sufficient proportion compared to the matrix intended to coat a surface (5) of the composite material element left exposed so as to create a gas-tight barrier.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: April 30, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Luc Bianchi, Joel Toulc'Hoat, Charles Bories
  • Patent number: 8404356
    Abstract: A contact material which provides improved wear resistance as well as reduced adhesion utilizing the features of an intermetallic compound having an ordered phase, with the intention of (i) improving the seizure resistance and/or wear resistance of an implement bearing which slides under low-speed, high-surface-pressure conditions and is susceptible to lubricant starvation; (ii) preventing abnormal noises; and (iii) achieving prolonged greasing intervals. The contact material contains 10% by volume or more a metallic alloy phase having such a composition range that causes an order-disorder transition. The metallic alloy phase is a Fe base alloy phase containing one or more elements selected from the group consisting of Al, Si, Co and Ni.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: March 26, 2013
    Assignee: Komatsu, Ltd.
    Inventors: Takemori Takayama, Yoshikiyo Tanaka, Tetsuo Onishi
  • Patent number: 8404280
    Abstract: The present invention provides solution to the problem involved in preparation of metal nanosponges using templates and polymers. The instant invention is successful in providing a simple, template free single step process for the preparation of metal nanosponges having porous low density and high surface area. These metal nanosponges were found to be good self-supported substrates for surface-enhanced Raman spectroscopy (SERS) and have shown significant anti-bacterial activity.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: March 26, 2013
    Assignee: Jawaharlal Nehru Centre for Advanced Scientific Research
    Inventors: Eswaramoorthy Muthusamy, Sai Krishna Katla
  • Patent number: 8383248
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of titanium dioxide layers and a plurality of copper-zinc alloy layers formed on the combining layer. The combining layer is a titanium layer. Each titanium dioxide layer interleaves with one copper-zinc alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: February 26, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZehen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20130045425
    Abstract: It is an object of the present invention to provide a three-dimensional network aluminum porous body which can be used for a process continuously producing an electrode and enables to produce a current collector having small electric resistance in the current collecting direction, and an electrode using the aluminum porous body, and a production method thereof. In a sheet-shaped three-dimensional network aluminum porous body for a current collector, when one of two directions orthogonal to each other is taken as an X-direction and the other is taken as a Y-direction, a cell diameter in the X-direction of the three-dimensional network aluminum porous body differs from a cell diameter in the Y-direction thereof.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 21, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Patent number: 8377567
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 19, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Hidetoshi Saito, Keiji Shiraishi, Hitoshi Tsuchida, Junichi Nishimura
  • Publication number: 20130040163
    Abstract: A stainless steel-and-amorphous alloy composite includes a stainless steel part and an amorphous alloy part. The stainless steel part has nano-pores defined in a surface thereof. The amorphous alloy part is integrally bonded to the surface having the nano-pores. A method for manufacturing the composite is also described.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 14, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen)CO., LTD.
    Inventors: HUANN-WU CHIANG, CHENG-SHI CHEN, SHUN-MAO LIN
  • Publication number: 20130029170
    Abstract: Articles of manufacture comprise a body. A porous material is plated on the body, the porous material comprising nickel having a plurality of pores disposed in a generally ordered array extending into the nickel. Methods of forming a porous material on a body comprise disposing an anode and a cathode in an electrolyte comprising nickel ions. An electrical signal is pulsed to at least one of the anode and the cathode. A porous material comprising nickel having a plurality of pores generally disposed in an ordered array extending into the nickel is deposited on the cathode.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Hendrik John, Sven Hartwig, Claus-Peter Klages
  • Patent number: 8361635
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of chromium nitride layers and a plurality of copper-zinc alloy layers formed on the combining layer. The combining layer is a chromium layer. Each chromium nitride layer interleaves with one copper-zinc alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20130022834
    Abstract: The invention relates to a method for manufacturing an aluminum/metal assembly consisting of a metal layer made of a first metal on the surface of a metal object made of a second metal, the first or second metal being aluminum, wherein said method includes the following steps: placing a metal foam having an open porosity on a surface of the metal object, and applying mechanical sress to the metal foam in such a manner that said foam becomes embedded in the surface of the object.
    Type: Application
    Filed: March 11, 2011
    Publication date: January 24, 2013
    Applicants: Centre National de la Recherche Scientifique (CNRS), Ecole Normale Superieure De Cachan, CNAM - Conservatoire National Des Arts Et Metiers
    Inventors: Laurent Prevond, Nicolas Collard, Renaud Caplain, Pierre Francois
  • Patent number: 8353975
    Abstract: A process for producing a fleece having metallic wire filaments, includes at least the following steps: a) forming a layer including wire filaments; b) producing first cohesive connections between at least some of the metallic wire filaments in a first joining process; and c) producing second cohesive connections between metallic wire filaments in a second joining process. A process for producing a honeycomb body having at least one fleece, a fleece, a honeycomb body, an apparatus and a vehicle using fleeces in the treatment of exhaust gas from motor vehicles, are also provided.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: January 15, 2013
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brück, Peter Hirth
  • Publication number: 20130010401
    Abstract: A three-dimensional network aluminum porous body in which the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode each using the aluminum porous body, and a manufacturing method thereof. In such a sheet-shaped three-dimensional network aluminum porous body for a current collector, the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction. For example, in the case where a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, each region is configured so that the average of the amounts of aluminum in the region 1 and the region 3 differs from the amount of aluminum in the region 2.
    Type: Application
    Filed: May 30, 2012
    Publication date: January 10, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Publication number: 20130004844
    Abstract: The present invention provides a three-dimensional network aluminum porous body in which the cell diameter of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode respectively using the aluminum porous body, and a production method thereof. That is, such a sheet-shaped three-dimensional network aluminum porous body for a current collector has a cell diameter uneven in the thickness direction. Particularly, it is preferred that when a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, the average of the cell diameter in the region 1 and the cell diameter in the region 3 differs from the cell diameter in the region 2.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 3, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Publication number: 20120328957
    Abstract: It is an object of the present invention to provide a three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode. The present invention provides a long sheet-shaped three-dimensional network aluminum porous body to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
    Type: Application
    Filed: July 2, 2012
    Publication date: December 27, 2012
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Junichi NISHIMURA, Hideaki SAKAIDA
  • Publication number: 20120321952
    Abstract: A porous metal body containing continuous pores and having a low oxygen content is provided by decomposing a porous resin body that contains continuous pores and has a layer of a metal thereon by heating the porous resin body at a temperature equal to or less than the melting point of the metal while the porous resin body is immersed in a first molten salt and a negative potential is applied to the metal layer; and a method for producing the porous metal body is provided.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Inventors: Koutarou KIMURA, Koji Nitta, Akihisa Hosoe, Shinji Inazawa, Kazuki Okuno, Masatoshi Majima, Hajime Ota, Shoichiro Sakai, Kengo Goto, Tomoyuki Awazu
  • Publication number: 20120321951
    Abstract: A porous metal body containing continuous pores and having a low oxygen content is provided by decomposing a porous resin body that contains continuous pores and has a layer of a metal thereon by heating the porous resin body at a temperature equal to or less than the melting point of the metal while the porous resin body is immersed in a first molten salt and a negative potential is applied to the metal layer; and a method for producing the porous metal body is provided.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Inventors: Koutarou KIMURA, Koji NITTA, Akihisa HOSOE, Shinji INAZAWA, Kazuki OKUNO, Masatoshi MAJIMA, Hajime OTA, Shoichiro SAKAI, Kengo GOTO, Tomoyuki AWAZU
  • Publication number: 20120321905
    Abstract: A layer system is provided. The layer system includes a substrate and a two layered ceramic layer with an inner ceramic layer and an outer ceramic layer. The ductility of the ceramic layer is improved by an inner ceramic layer with a nano structure. The layer system also may include a metallic bond coat.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 20, 2012
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20120321906
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 20, 2012
    Inventors: Jonathan McCrea, Fracisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Publication number: 20120315540
    Abstract: It is an object of the present invention to provide an aluminum porous body for a current collector in which electric resistivity is reduced to enhance current collecting performance, and an electrode, a nonaqueous electrolyte battery, a capacitor and a lithium-ion capacitor each using the aluminum porous body for a current collector. Such a sheet-shaped three-dimensional network aluminum porous body of the present invention is a three-dimensional network aluminum porous body for a current collector including an electric resistivity in an in-plane direction and in a thickness direction of 0.5 m?cm or less. An electrode can be configured by using the three-dimensional network aluminum porous body for a current collector, and further a nonaqueous electrolyte battery, a capacitor and a lithium-ion capacitor can be configured by using the electrode.
    Type: Application
    Filed: May 14, 2012
    Publication date: December 13, 2012
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Publication number: 20120306040
    Abstract: An insulating metal substrate is used for a semiconductor device such as a solar cell. The substrate includes a metal base made of steel, iron-based alloy steel or titanium, an aluminum layer and an insulating layer obtained by anodizing aluminum. An alloy layer primarily made of an alloy of a composition expressed by Al3X (where X is at least one kind of element selected from Fe, Cr, and Ti) exists in an interface between the metal base and the aluminum layer, and has a thickness of 0.01 to 10 micrometers. The aluminum layer has a thickness of 1 micrometer or more and equal to or less than a thickness of the metal base.
    Type: Application
    Filed: January 26, 2011
    Publication date: December 6, 2012
    Applicant: FUJIFILM CORPORATION
    Inventor: Shigenori Yuya
  • Publication number: 20120295129
    Abstract: A metallic material containing both a second constituent and a third constituent having positive and negative heats of mixing relative to a first constituent, respectively, and including a compound, an alloy or a nonequilibrium alloy having a melting point that is higher than the solidifying point of a metal bath made of the first constituent is placed in the metal bath. The metal bath is controlled to a temperature lower than a minimum value of a liquidus temperature within a range of compositional variations in which the amount of the third constituent in the metallic material decreases down to a point where the metallic material becomes substantially the second constituent so that the third constituent is selectively dissolved into the metal bath.
    Type: Application
    Filed: October 22, 2010
    Publication date: November 22, 2012
    Applicant: TOHOKU UNIVERSITY
    Inventors: Hidemi Kato, Takeshi Wada, Kunio Yubuta, Akihisa Inoue
  • Patent number: 8313817
    Abstract: A foam mount of an aircraft window has a groove to receive an electro chromic window. The foam mount is painted by placing a blank in the groove to divide the foam mount into a first section designated to face the exterior of the aircraft and an opposite second section. The groove and the first section are coated with an electric conductive paint, and the second section is covered with a decorative paint. The conductive coating on the foam mount and the conductive coating of the electrodes of the electro chromic window provide an RF shielding to prevent electronic signals from personal electronic equipment from passing through the cabin and door windows of the aircraft. A mask is also provided to coat one section of the foam mount while covering the other section.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: November 20, 2012
    Assignee: PPG Industries Ohio, Inc
    Inventors: Mitchell V. Bruce, Brian L. Smith, Thomas R. Scarniac
  • Publication number: 20120273034
    Abstract: A metal substrate with an insulation layer includes a metal substrate having at least an aluminum base and an insulation layer formed on said aluminum base of said metal substrate. The insulation layer is a porous type anodized film of aluminum. The anodized film includes a barrier layer portion and a porous layer portion, and at least the porous layer portion has compressive strain at room temperature. a magnitude of the strain ranges from 0.005% to 0.25%. The anodized film has a thickness of 3 micrometers to 20 micrometers.
    Type: Application
    Filed: February 2, 2011
    Publication date: November 1, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Keigo Sato, Ryuichi Nakayama, Shigenori Yuya, Atsushi Mukai, Shinya Suzuki, Youta Miyashita