Layer Contains Compound(s) Of Plural Metals Patents (Class 428/697)
  • Publication number: 20140242379
    Abstract: To produce a ferroelectric film formed of a lead-free material. The ferroelectric film according to an aspect of the present invention includes a (K1-XNaX)NbO3 film or a BiFeO3 film having a perovskite structure and a crystalline oxide preferentially oriented to (001) formed on at least one of the upper side and lower side of the (K1-XNaX)NbO3 film or BiFeO3 film, and X satisfies the formula below 0.3?X?0.7.
    Type: Application
    Filed: July 29, 2011
    Publication date: August 28, 2014
    Applicant: YOUTEC CO., LTD.
    Inventors: Takeshi Kijima, Yuuji Honda
  • Publication number: 20140220357
    Abstract: A p-type transparent conductive material can comprise a thin film of BCSF on a substrate where the film has a conductivity of at least 1 S/cm. The substrate may be a plastic substrate, such as a polyethersulfone, polyethylene terephthalate, polyimide, or some other suitable plastic or polymeric substrate.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Vinh Q. Nguyen, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20140212689
    Abstract: Disclosed are a film with high strength which does not easily deteriorate, and a method for manufacturing the film. A step for manufacturing a film formed on the molding surface of a die, includes an initial film-forming step for forming, on the molding surface of the die, an initial film having a carbon film which has a plurality of nano-carbons, and to which a plurality of fullerenes are applied, and a nitrogen compound layer and a sulfurized layer which are situated between the carbon film and the die, and an intermittent heating step for intermittently heating the initial film formed in the initial film-forming step under a non-oxidizing atmosphere.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 31, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Furukawa, Shuji Sotozaki
  • Patent number: 8791389
    Abstract: An electric arc welding wire having an outer cylindrical surface and an electrically conductive layer on the surface wherein the layer comprises an alloy of copper with the copper content being about 60% to about 90% by weight of said alloy. Furthermore, the layer can be made thin with a thickness of less than about 0.50 microns while using essentially pure copper.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: July 29, 2014
    Assignee: Lincoln Global, Inc.
    Inventors: Matthew J. James, Teresa A. Melfi
  • Publication number: 20140204445
    Abstract: Multi-layer devices comprising a layer of an electrochromic lithium nickel oxide composition on a first substrate, the lithium nickel oxide composition comprising lithium, nickel and a Group 5 metal selected from niobium, tantalum and a combination thereof.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 24, 2014
    Applicant: Kinestral Technologies, Inc.
    Inventors: Hye Jin CHOI, Mark BAILEY, John David BASS, Stephen Winthrop von KUGELGEN, Eric LACHMAN, Howard W. TURNER
  • Publication number: 20140204444
    Abstract: Multi-layer devices comprising a layer of an electrochromic lithium nickel oxide composition on a first substrate, the lithium nickel oxide composition comprising lithium, nickel and a Group 4 metal selected from titanium, zirconium, hafnium and a combination thereof.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 24, 2014
    Applicant: Kinestral Technologies, Inc.
    Inventors: Hye Jin CHOI, Mark BAILEY, John David BASS, Stephen Winthrop von KUGELGEN, Eric LACHMAN, Howard W. TURNER, Julian P. BIGI
  • Patent number: 8784977
    Abstract: A cubic boron nitride sintered substrate has a coating with lower and upper layers. The upper layer has an average layer thickness of 0.5 to 3.0 ?m and is formed from a compound of a compositional formula M?, where M represents one or more of Ti, V, Zr, Nb, Mo, Al, Si, and ? is one or more of C, N, B and O. The lower layer has an average thickness of 0.5 to 3.0 ?m and has alternated first and second thin layers. The first thin layer is formed from a compound with compositional formula (Ti(1-x)Lx)?, where L is one or more of Al, B and Si, and ? is C or N, or both. The second thin layer is formed with compositional formula (Al(1-y)Jy)?, where J represents one or more of Ti, V, Cr, Zr, Nb and Mo, and ? is C or N, or both.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 22, 2014
    Assignee: Tungaloy Corporation
    Inventor: Hiroyuki Miura
  • Patent number: 8778513
    Abstract: An article including a perovskite manganese (Mn) oxide thin film, includes a substrate having an oriented perovskite structure that is (m10) oriented, where 19?m?2, and having an [100] axis direction; and a perovskite manganese (Mn) oxide thin film having a perovskite crystal lattice containing barium Ba and a rare earth element Ln in A sites of the perovskite crystal lattice, the perovskite manganese (Mn) oxide thin film being formed on the substrate so as to cover at least part of a surface of the substrate, and having atomic planes stacked in a pattern of LnO—MnO2—BaO—MnO2-LnO . . . in the [100] axis direction of the substrate. The perovskite manganese (Mn) oxide thin film provided thoroughly exploits the resistance changes caused by charge and orbital ordering in the perovskite manganese oxide.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: July 15, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Yasushi Ogimoto
  • Patent number: 8778491
    Abstract: A coated article is described. The coated article includes a substrate, a titanium bonding layer, a titanium-chromium alloy transition layer, and a titanium-chromium-nitrogen hard layer formed thereon, and in that order. The titanium bonding layer is a titanium layer. The titanium-chromium alloy transition layer is a titanium-chromium alloy layer. The titanium-chromium-nitrogen hard layer is a titanium-chromium-nitrogen layer. The titanium bonding layer, titanium-chromium alloy transition layer, and the titanium-chromium-nitrogen hard layer are formed by ion beam assisted sputtering.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Chwan-Hwa Chiang, Jia-Lin Chen, Yi-Jun Huang, Hai-Bo Pan, Xu Li
  • Patent number: 8778502
    Abstract: A glass ceramic composition includes a SrZrO3 ceramic, a Li2O—MgO—ZnO—B2O3—SiO2-based glass, Mg2SiO4 in an amount of about 5 to 40 weight percent, and a SrTiO3 ceramic in an amount in the range of about 0 to about 6 weight percent of the total. The Li2O—MgO—ZnO—B2O3—SiO2-based glass accounts for about 1 to about 12 weight percent of the total.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Sugimoto, Sadaaki Sakamoto, Hiroshige Adachi
  • Patent number: 8763883
    Abstract: A method for assembling at least two parts made of silicon carbide-based materials by non-reactive brazing is disclosed. The two parts are contacted with a non-reactive brazing composition. The assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition. The parts and the brazing composition are cooled so that, after solidification of the brazing composition, a moderately refractory joint is formed. The non-reactive brazing composition is a binary alloy composed, in mass percentages, of about 46% to 99% silicon and 54% to 1% neodymium.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 1, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Valérie Chaumat, Jean-François Henne
  • Patent number: 8758908
    Abstract: Aqueous precursor solutions are described that comprise at least one monazite-based material precursor, at least one xenotime-based material precursor or a combination thereof; and a plurality of fine suspended particles of an oxide material. Contemplated oxide composites, as described herein, comprise a plurality of fibers surrounded by at least one monazite or xenotime-based material, wherein the oxide composite has nearly a fully dense matrix. Contemplated embodiments disclosed herein provides a method for producing an oxide composite with nearly fully dense matrix and with all fibers surrounded by a monazite- or xenotime-based material that prevents embrittlement at temperatures at least as high as 1200° C.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 24, 2014
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: David B. Marshall, Janet B. Davis, Peter E. D. Morgan
  • Patent number: 8758890
    Abstract: A coated cutting tool includes a substrate and a PVD coating having an outermost zone C being a nitride, carbide, boride, or mixtures thereof, of Si and at least two additional elements selected from Al, Y, and groups 4, 5 or 6 of the periodic table and zone C is free from a compositional gradient of an average content of Si. Zone C has a laminar, aperiodic, multilayered structure with alternating individual layers X and Y having different compositions from each other. The coating further includes a zone A closest to the substrate, a transitional zone B, where zone A is essentially free from Si, zone B includes a compositional gradient of the average content of Si, and where the average content of Si is increasing towards zone C.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 24, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Johan Böhlmark, Helen Blomqvist
  • Patent number: 8748016
    Abstract: The invention relates to coated bodies made of metal, hard metal, cermet or ceramic material, coated with a single- or multi-layer coating system containing at least one hard material composite coating, and to a method for coating such bodies. The aim of the invention is to develop a coating system for such bodies, which is single- or multi-layered and comprises at least one hard material composite coating, which contains cubic TiAlCN and hexagonal AlN as the main phases and is characterized by a composite structure having a smooth, homogeneous surface, high oxidation resistance and high hardness. The aim includes the development of a method for cost-effectively producing such coatings. The hard material composite coating according to the invention contains cubic TiAlCN and hexagonal AlN as main phases, wherein the cubic TiAlCN is microcrystalline fcc-Ti1-xAlxCyNz where x>0.75, y=0 to 0.25 and z=0.75 to 1 having a crystallite size of ?=0.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ingolf Endler, Mandy Hoehn
  • Publication number: 20140154465
    Abstract: A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer covering an upper surface of the ceramic body, wherein the protective layer comprises at least one of yttrium aluminum garnet (YAG) or a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Biraja P. Kanungo, Vahid Firouzdor
  • Patent number: 8741011
    Abstract: The present invention relates to a cutting tool insert comprising a body of cemented carbide, cermet, ceramics, high speed steel (HSS), polycrystalline diamond (PCD) or polycrystalline cubic boron nitride (PCBN), a hard and wear resistant coating is applied, grown by physical vapour deposition (PVD) such as cathodic arc evaporation or magnetron sputtering. Said coating comprises at least one layer of (ZrxAl1-x)N with of 0.45<x<0.85 and 0.90?y<1.30 with a thickness between 0.5 and 10 ?m. Said layer has a nanocrystalline microstructure consisting of a single cubic phase or a mixture of hexagonal and cubic phases. The insert is particularly useful in metal cutting applications generating high temperatures with improved crater wear resistance.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: June 3, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mats Johansson, Lina Rogström, Lars Johnson, Magnus Odén, Lars Hultman
  • Patent number: 8741437
    Abstract: Substrate with Antimicrobial Properties An antimicrobial substrate (glass, ceramic or metallic) coated on at least one of its surface with at least one mixed layer deposited by a sputtering under vacuum magnetically enhanced process is described. The layer comprising at least one antimicrobial agent mixed to binder material chosen amongst the metal oxides, oxynitrides, oxycarbides or nitrides. This substrate present antimicrobial properties, in particular bactericidal activity even when no thermal treatment has been applied. If a tempered and antimicrobial glass is required, the same co-sputtering process can be used, optionally an underlayer can be added. Antimicrobial properties are maintained even after a tempering process.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 3, 2014
    Assignee: AGC Glass Europe
    Inventors: Georges Pilloy, Andre Hecq, Kadosa Hevesi, Nadia Jacobs
  • Patent number: 8740007
    Abstract: A cooking utensil and a manufacturing method thereof are provided. The cooking utensil includes a cooking body, a first metal-ceramic composite layer having an electromagnetic property and a second metal-ceramic composite layer having a heat conductive property. The cooking body has an external bottom surface. The first metal-ceramic composite layer is disposed on the external bottom surface of the cooking body. The second metal-ceramic composite layer is disposed on the first metal-ceramic composite layer. The cooking utensil is suitable for both an induction cooker and a gas burner.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 3, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Sheng Leu, Wu-Han Liu, Wei-Tien Hsiao, Chang-Chih Hsu, Mao-Shin Liu, Zhong-Ren Wu
  • Publication number: 20140147615
    Abstract: A multilayer thermal insulation composite for fire protection applications. The composite includes a fibrous insulation layer, at least one inorganic heat absorbing layer disposed on one side of the fibrous insulation layer, and at least one superinsulation layer disposed on at least one side of the composite adjacent the heat absorbing layer or the fibrous insulation layer. The composite may further include a scrim layer comprising a high temperature resistant, flexible, woven or non-woven scrim or scrim and high temperature resistant material disposed around the multilayer thermal insulation composite partially or substantially totally encapsulating the composite. The composite is lightweight and flexible, exhibits reduced heat transfer to the cold-face, with improved thermal insulation capability.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: UNIFRAX I LLC
    Inventors: Joseph A. FERNANDO, Kennth B. MILLER
  • Patent number: 8728615
    Abstract: A new transparent conductive laminated thin film is provided which not only has a high transmittance of light in the visible region and a low surface resistance (6-500?/?), but also combines high transmittances of light in the visible region of short wavelengths of 380-400 nm and the near-ultraviolet region of shorter wavelengths of 300-380 nm. The transparent conductive film has a lamination structure that the surfaces of the metallic thin film 11 are coated with the transparent oxide thin films 10 and 12. Each of the transparent oxide thin film 10 and 12 is an amorphous oxide thin film chiefly composed of gallium, indium, and oxygen or composed of gallium and oxygen, and the gallium content of each transparent oxide thin film ranges from 35 at. % to 100 at. % with respect to all metallic atoms.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8728635
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8721336
    Abstract: The present invention relates to a multi-colored shaped body having layers arranged on top of one another for producing dental restorations, a process for its production and its use for the manufacture of dental restorations.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Ivoclar Vivadent AG
    Inventors: Volker M. Rheinberger, Marcel Schweiger, Robert Kruse, Harald Kerschbaumer
  • Patent number: 8715839
    Abstract: An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 6, 2014
    Inventor: L. Pierre de Rochemont
  • Patent number: 8715537
    Abstract: This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers and thin films thereof.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 6, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Patent number: 8715817
    Abstract: A low-expansion glass ceramic plate, in which a black coating is applied directly or indirectly to at least some areas of at least one side of the plate and the coating contains precious metal. In order to produce a glass ceramic plate of this type that is opaque, while simultaneously retaining a sufficient degree of its thermal stability, according to this invention, the precious metal content in the coating is ?50 wt. %, the bismuth oxide content in the coating is at most 20 wt. %, and the layer thickness of the coating is at least 200 nm.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 6, 2014
    Assignee: Schott AG
    Inventors: Harald Striegler, Otmar Becker
  • Patent number: 8709583
    Abstract: The invention concerns a cutting tool comprising a main body and a multi-layer coating applied thereto. To provide improved cutting tools which have increased resistance to comb cracking, tribochemical wear and cratering caused thereby the main body comprises a hard metal which includes 5 to 8% by weight of Co, 0 to 2% by weight of TaC, 0 to 1% by weight of NbC and 89 to 95% by weight of WC with a mean grain size of 1 to 5 ?m, and the coating has a first layer of TiAlN having a layer thickness of 1 to 5 ?m, and a second layer of aluminum oxide having a layer thickness of 1 to 4 ?m, wherein the coating further additionally includes on the second layer of aluminum oxide n alternately mutually superposedly applied layers of TiAlN and layers of aluminum oxide respectively having a layer thickness of 0.1 to 0.5 ?m, wherein n relates to each individual layer and is an even number of 0 to 10, and wherein the total layer thickness of the coating is 2 to 16 ?m and the coating is produced in the PVD process.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 29, 2014
    Assignee: Walter AG
    Inventors: Veit Schier, Jörg Drobniewski
  • Patent number: 8709593
    Abstract: A coated article is described. The coated article includes an aluminum or aluminum alloy substrate and a corrosion resistant layer formed on the substrate. The corrosion resistant layer is a compound silicon-titanium-nitrogen layer. A method for making the coated article is also described.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Nan Ma
  • Patent number: 8703294
    Abstract: The present invention provides a functionally graded bioactive glass/ceramic composite structure or bioactive glass/ceramic/bioactive glass sandwich structure for use in such applications as damage resistant, ceramic dental implants, immediate tooth replacement, endodontic posts, orthopedic prostheses, orthopedic stems, bone substitutes, bone screws, plates, and anchors, nonunion defects repair, alveolar ridge augmentation, missing small bone parts (e.g. fingers, toes, etc), maxilla facial reconstruction, spinal fusion, and scaffolds for bone regeneration, comprising a residual bioactive glass or glass-ceramic layer at all accessible surfaces, followed by an underlying graded glass-ceramic layer, and then an dense interior ceramic. Further, the invention provides methods for making the same structure.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 22, 2014
    Assignee: New York University
    Inventors: Yu Zhang, Racquel Legeros, Jae-Won Kim
  • Patent number: 8703295
    Abstract: A glass material for mold pressing, comprised of a core portion and a covering portion. In one embodiment, the core portion comprises a multicomponent optical glass containing at least one readily reducible component selected from among W, Ti, Bi, and Nb and the covering portion comprises a multicomponent glass containing none or a lower quantity of the readily reducible component than is contained in the core portion. In another embodiment, the core portion comprises a fluorine-containing multicomponent optical glass, and the covering portion comprises a multicomponent glass containing none or a lower quantity of fluorine than is contained in the core portion. A method for manufacturing an optical glass element employing the above glass material that comprises heat softening a glass material that has been preformed into a prescribed shape, and conducting press molding with a pressing mold.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: April 22, 2014
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Hiroshi Kohno, Kohichiro Shiraishi
  • Patent number: 8697242
    Abstract: The invention provides a glass member provided with a sealing material layer, which suppresses generation of failures such as cracks or breakage of glass substrates or a sealing layer even when the distance between two glass substrates is narrowed, and thereby makes it possible to improve the sealing property between the glass substrates and its reliability. A glass substrate has a surface provided with a sealing region, on which a sealing material layer having a thickness of at most 15 ?m is formed. The sealing material layer includes a fired material of a glass material for sealing containing a sealing glass, a laser absorbent and optionally a low-expansion filler, wherein the total content of the laser absorbent and the low-expansion filler being the optional component in the glass material for sealing is within the range of from 2 to 44 vol %.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: April 15, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Sohei Kawanami, Atsuo Hiroi
  • Publication number: 20140099267
    Abstract: An ink formulation having a marking component and a reduced indium tin oxide (r-ITO) is disclosed. The r-ITO in powder form exhibits a lightness (L*), according to the 1976 CIE (L*, a*, b*) space, of not more than 50.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 10, 2014
    Applicant: Tetra Laval Holdings & Finance S.A.
    Inventors: Anthony Jarvis, Martin Walker, Chris Wyres
  • Patent number: 8691378
    Abstract: The invention relates to a cutting tool having a substrate base body and a single or multi-layered coating attached thereupon, wherein at least one layer of the coating is a metal oxide layer produced in the PVD process or in the CVD process and the metal oxide layer has a grain structure wherein there is structural disorder within a plurality of the existing grains that are characterized in that in electron diffraction images of the grains, point-shaped reflections occur up to a maximum lattice spacing dGRENZ and for lattice spacing greater than dGRENZ no point-shaped reflections occur, but rather a diffuse intensity distribution typical for amorphous structures.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 8, 2014
    Assignee: Walter AG
    Inventors: Veit Schier, Oliver Eibl, Wolfgang Engelhart
  • Patent number: 8691374
    Abstract: A coated wear-resistant member, as well as a method for making the same, includes a substrate and a coating scheme. The coating scheme has a region of alternating coating sublayers. One coating sublayer is TixAlySi100-x-yN wherein 40 atomic percent?x?80 atomic percent; 15 atomic percent?y?55 atomic percent; 4 atomic percent?100?x?y?15 atomic percent. The other coating sublayer is TipAl100-pN wherein 45 atomic percent?p?100 atomic percent. The method for making a coated wear-resistant member includes the steps of providing the substrate, and depositing the region of alternating coating sublayers.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu
  • Patent number: 8685530
    Abstract: Provided is a surface-coated cutting tool combining superior heat resistance, superior wear resistance, and superior lubricity. A surface-coated cutting tool of the present invention includes a substrate and a coating formed on the substrate, and the coating is characterized in that the coating is formed by physical vapor deposition and includes one or more layers, that at least one of the one or more layers is a first coating layer, and that the first coating layer contains aluminum and nitrogen, has a thermal effusivity of 2,000 to 5,000 J·sec?1/2·m?2·K?1, has a thickness of 0.2 to 5 ?m, and has a crystal structure including a hexagonal structure.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Sachiko Koike, Shinya Imamura, Kazuo Yamagata
  • Patent number: 8685531
    Abstract: Provided is a surface-coated cutting tool combining superior heat resistance, superior wear resistance, and superior lubricity with high adhesion between a substrate and a coating. A surface-coated cutting tool of the present invention includes a substrate and a coating formed on the substrate, and the coating is characterized in that the coating is formed by physical vapor deposition and includes one or more layers, that at least one of the one or more layers is a first coating layer, that the first coating layer contains aluminum and nitrogen, has a thermal effusivity of 2,000 to 5,000J·sec?1/2·m?2·K?1, and has a thickness of 0.2 to 5?m, that the first coating layer includes an amorphous region and a crystalline region in order from the substrate side, that the amorphous region is amorphous and has a thickness of 0.01 to 2?m, and that the crystalline region has a crystal structure including a hexagonal structure.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Sachiko Koike, Shinya Imamura, Kazuo Yamagata
  • Patent number: 8679650
    Abstract: A laminated structure comprises a first layer comprising a crystal with six-fold symmetry, and a second layer comprising a metal oxynitride crystal formed on the first layer The second layer comprises at least one element selected from the group consisting of In, Ga, Si, Ge and Al, N, O and Zn, as main elements, and has in-plane orientation.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naho Itagaki, Tatsuya Iwasaki, Katsuyuki Hoshino
  • Publication number: 20140079942
    Abstract: The present invention relates to a fire-retardant material and products produced therefrom. More specifically, one embodiment of the present invention relates to a fire-retardant coating that shields underlying substrates from thermal insult, and a method for making such fire-retardant composition, as well as the products resulting therefrom. The invented coating and products are especially applicable to cellulose and gypsum based building materials including but not limited to fiberboards, wallboards, roofing materials, particleboards, ceiling tiles, floor tiles, soundproofing boards and hardboards.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 20, 2014
    Inventor: Thomas Jospeh Lally
  • Publication number: 20140079927
    Abstract: A material for a conductive film 1 contains a transparent base material 2, an underlayer 3, a first amorphous layer 4, and a second amorphous layer 5. The first amorphous layer 4 is laminated on the transparent base material 2 and is made of an indium tin oxide containing from 2 to 15 mass % of tin as calculated as its oxide. Further, the second amorphous layer 5 is laminated on the first amorphous layer 4 and is made of an indium tin oxide containing from 2 to 15 mass % of tin as calculated as its oxide. The content of tin as calculated as its oxide in the second amorphous layer 5 is different from the content of tin as calculated as its oxide in the first amorphous layer 4.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuhisa YOSHIOKA, Michihisa Tomida, Masayuki Morino
  • Patent number: 8673461
    Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66%? MgO 3-8% Na2O 7-15%? K2O 0-3% Li2O 0-12%? CaO 0-10%? BaO 0-15%? Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 18, 2014
    Assignee: Eurokera S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Patent number: 8673434
    Abstract: The invention concerns a cutting tool comprising a main body and a multi-layer coating applied thereto. To provide improved cutting tools which have increased resistance to comb cracking, tribochemical wear and cratering caused thereby the main body comprises a hard metal which includes 5 to 8% by weight of Co, 0 to 2% by weight of TaC, 0 to 1% by weight of NbC and 89 to 95% by weight of WC with a mean grain size of 1 to 5 ?m, and the coating has a first layer of TiAlN having a layer thickness of 1 to 5 ?m, and a second layer of aluminum oxide having a layer thickness of 1 to 4 ?m, wherein the coating further additionally includes on the second layer of aluminum oxide n alternately mutually superposedly applied layers of TiAlN and layers of aluminum oxide respectively having a layer thickness of 0.1 to 0.5 ?m, wherein n relates to each individual layer and is an even number of 0 to 10, and wherein the total layer thickness of the coating is 2 to 16 ?m and the coating is produced in the PVD process.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: March 18, 2014
    Assignee: Walter AG
    Inventors: Veit Schier, Jörg Drobniewski
  • Patent number: 8668982
    Abstract: A coated cutting insert for removing material from a workpiece that includes a substrate is disclosed. A wear-resistant coating on the substrate that includes an alumina layer and a Zr- or Hf-carbonitride outer layer deposited on the alumina layer. The Zr- or Hf-carbonitride outer layer is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the exposed alumina coating layer from an initial tensile stress condition to a compressive stress condition.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 11, 2014
    Assignee: Kennametal Inc.
    Inventors: Peter Leicht, Mark Greenfield, Volkmar Sottke, Zhigang Ban, Hartmut Westphal, Yixiong Liu, Michael Frank Beblo
  • Patent number: 8667673
    Abstract: A method for fabricating a laminated structure includes (i) preparing a first substrate having electroconductivity, (ii) forming a first electroconductive film having a prescribed hardness on the first substrate by an electroforming, (iii) forming a second electroconductive film having a hardness that is lower than the prescribed hardness on the first electroconductive film by an electroforming, (iv) patterning the first electroconductive film and the second electroconductive film to a prescribed pattern to form a plurality of electroconductive film patterns, and (v) subjecting the first substrate and a second substrate repeatedly to pressure contact and release to transfer sequentially the plurality of electroconductive film patterns on the first substrate onto the second substrate.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: March 11, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Takayuki Yamada, Kazuaki Tabata
  • Publication number: 20140065394
    Abstract: Disclosed is a multi-layer coating formed by repeatedly and sequentially laminating first coating layers composed of TiN and second coating layers composed of TiAgN on a surface, and a method of forming the same.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 6, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Woong Pyo Hong, Hyuk Kang, In Woong Lyo, Kwang Hoon Choi
  • Publication number: 20140057129
    Abstract: A thermal barrier coating having a reduced high temperature thermal conductivity includes group II germanate constructs. This thermal barrier coating may be applied directly to a substrate, applied to a bond-coated substrate, and/or incorporated into a protective coating including one or more other thermal barrier coating layers. The thermal barrier coating provides improved thermal protection properties over current industry standards and materials considered for thermal protection applications.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: Thermatin Industries, LLC
    Inventor: James CASSUTO
  • Patent number: 8658291
    Abstract: Calcium magnesium aluminosilicate (CMAS) mitigation compositions selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof when the CMAS mitigation composition is included as a separate CMAS mitigation layer in an environmental barrier coating for a high temperature substrate component.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Publication number: 20140050908
    Abstract: A transparent conductive film comprises: a film substrate having two main surfaces; and a transparent conductor layer formed on one main surface of the film substrate. The transparent conductor layer is composed of three layers in which a first indium tin oxide layer, a second indium tin oxide layer, and a third indium tin oxide layer are laminated in this order from the film substrate side. The first indium tin oxide layer has a smaller tin oxide content than the second indium tin oxide layer has. The third indium tin oxide layer has a smaller tin oxide content than the second indium tin oxide layer has.
    Type: Application
    Filed: October 1, 2012
    Publication date: February 20, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Tomotake Nashiki, Tomonori Noguchi, Motoki Haishi, Kuniaki Ishibashi
  • Patent number: 8652638
    Abstract: The present disclosure relates to cutting tool edges that include on a rake face a superabrasive layer and a HPHT sintered or HPHT bonded cap layer. The cap layer improves adhesion between the superabrasive layer and an optional coating system for the cutting insert and acts as a thick anti-friction layer and/or a thermal barrier coating.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 18, 2014
    Assignee: Diamond Innovations, Inc.
    Inventors: Steven W. Webb, Törbjorn Selinder
  • Publication number: 20140044944
    Abstract: Disclosed is a coating material for an aluminum die casting mold and a method of manufacturing the coating material. The coating material includes a CrN bonding layer formed on a surface of a substrate, a TiAlN/CrN nano multi-layer disposed on a surface of the CrN bonding layer, and a TiAlN/CrSi(C)N nano multi-layer disposed on a surface of the TiAlN/CrSiCN nano multi-layer. The coating material for an aluminum die casting mold may maintain the physical properties of a mold under a high temperature environment due to the superior seizure resistance, heat resistance and high-temperature stability of the coating material, thereby extending the lifespan of the mold.
    Type: Application
    Filed: December 18, 2012
    Publication date: February 13, 2014
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Sung-Chul Cha, Dong-Ha Kang
  • Publication number: 20140037926
    Abstract: A coating includes a nano-composite layer including an equal number of films. The films are stacked on top of each other one after another. Each film includes a zirconium-copper carbonitride layer and a zirconium carbonitride layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, CHUANG MA
  • Patent number: 8642166
    Abstract: A transparent conductive thin film comprises at least one stack layer of Ag—Ag3Sn—SnOx, or at least one stack layer of Ag—Ag4Sn—SnOx.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 4, 2014
    Assignee: MKE Technology Co., Ltd.
    Inventors: Chien-Tung Teng, Wei-Lun Hsu