Next To Second Metal-compound-containing Layer Patents (Class 428/699)
  • Publication number: 20140308511
    Abstract: A physical configuration of multiple-layer coatings formed with at least one layer of coating containing cubic born nitride (cBN) particles with one or more layers in composite form containing cBN particles may have a thickness of each individual layer as thin as in the nanometer range, or as thick as in the range of a few microns and even up to tens of microns. The chemistry of the composite layer consists of any individual phase of (a) nitrides such as titanium nitride (TiN), titanium carbonitride (TiCN), and hafnium nitride (HfN); (b) carbides such as titanium carbide (TiC); and (c) oxides such as aluminum oxide (Al2O3) or any combination of the above phases, in addition to cBN particles. The coating or film can be stand-alone or on a substrate.
    Type: Application
    Filed: May 29, 2012
    Publication date: October 16, 2014
    Applicants: NanoMech, Inc., The Board of Trustees of the university of Arkansas
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Patent number: 8858666
    Abstract: A coating for a cutting tool, which includes a plurality of mutually superposed layers, characterized in that the coating has an outer cover layer with a first layer portion of metallic aluminium or an aluminium alloy and a second layer portion arranged thereover of aluminium oxide or a mixed oxide which contains aluminium and at least one further metal.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 8859115
    Abstract: This cemented carbide material for a surface coated gear cutting tool is employed in a substrate for a surface coated gear cutting tool which is obtained by forming a hard coated layer on a surface of the substrate, the cemented carbide material for a surface coated gear cutting tool includes a WC-?t-Co based cemented carbide, wherein a content of Co forming a binder phase of the cemented carbide material is in a range of 12 to 17 wt %, and among components of a ?t solid solution forming a hard phase of the cemented carbide material, a content of components excluding WC is in a range of 15 to 20 wt %, and a total content of Ta carbonitride and Nb caronitride is in a range of 5 to 8 wt %.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventor: Yukio Aoki
  • Patent number: 8859114
    Abstract: In one aspect, coated cutting tools are described herein which, in some embodiments, can demonstrate improved wear resistance in one or more cutting applications. In some embodiments, a coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer deposited by physical vapor deposition and an outer deposited by physical vapor deposition over the inner layer.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: October 14, 2014
    Assignee: Kennametal Inc.
    Inventors: Aharon Inspektor, Nicholas F Waggle, Jr., Michael F Beblo, Mark J Rowe, Zhigang Ban
  • Patent number: 8859117
    Abstract: A light-permeable heat-protection element including at least one support element and at least one protective coating containing a reaction product which includes an aqueous alkali silicate solution and aluminate-modified or borate-modified silicon dioxide.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 14, 2014
    Inventors: Norbert Schwankhaus, Udo Gelderie, Dietrich Pantke, Lothar Puppe, Hartmut Melzer, Peter-Nikolaus Schmitz
  • Patent number: 8852745
    Abstract: An aspect of the present invention relates to an optical glass, which comprises, denoted as weight percent, 2 to 37 percent of SiO2, 0 to 25 percent of B2O3, 0 to 10 percent of GeO2, 18 to 55 percent of a combined content of Li2O, Na2O, K2O, CaO, SrO, and BaO, and 27 to 55 percent of a combined content of TiO2, Nb2O5, and WO3, wherein the weight ratio of SiO2 content relative to a combined content of SiO2 and B2O3 ranges from 0.1 to 1, a weight ratio of the Li2O content to a combined content of Li2O, Na2O, K2O, CaO, SrO, and BaO ranges from 0 to 0.4, and a weight ratio of TiO2 content relative to a combined content of TiO2, Nb2O5, and WO3 ranges from 0.35 to 1, with a refractive index nd of 1.860 to 1.990 and an Abbé number ?d of 21 to 29.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Hoya Corporation
    Inventors: Kosuke Yamaguchi, Naomi Matsumoto
  • Patent number: 8852305
    Abstract: A cutting tool insert for machining by chip removal includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel, onto which a hard and wear resistant coating is deposited by physical vapor deposition. The coating includes a polycrystalline nanolaminated structure of alternating layers A and B where layer A is (Ti,Al,Me1)N and Me1 is optionally one or more of the metal elements from group 3, 4, 5 or 6 in the periodic table, layer B is (Ti,Si,Me2)N and Me2 is optionally one or more of the metal elements from group 3, 4, 5 or 6 in the periodic table including Al with a thickness between 0.5 and 20 ?m and method of making the same. This insert is particularly useful in metal cutting applications generating high temperatures with improved edge integrity, machining of super alloys, stainless and hardened steels.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 7, 2014
    Assignee: Seco Tools AB
    Inventors: Jon Andersson, Rachid M'Saoubi, Hindrik Engstrom, Mats Johansson
  • Patent number: 8846217
    Abstract: Provided is a surface-coated tool, such as a cutting tool, in which a surface of a substrate 2 is coated with a coating layer 6. The coating layer 6 comprises a lower layer 8 and an upper layer 9. The lower layer 8 and the upper layer 9 are both composed of columnar particles 10 extending vertically with respect to the surface of the substrate 2. The mean crystal width of the columnar particles 10b constituting the upper layer 9 is smaller than the mean crystal width of the columnar particles constituting the lower layer. Dispersed particles containing tungsten exist in both the lower layer and the upper layer. The distribution density of the dispersed particles existing in the upper layer is smaller than the distribution density of the dispersed particles existing in the lower layer. The surface-coated tool includes the coating layer to improve wear resistance and fracture resistance.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 30, 2014
    Assignee: Kyocera Corporation
    Inventor: Masahiro Waki
  • Publication number: 20140287264
    Abstract: Provided is a nanostructure including ordered stacked sheets and processes for its preparation and use.
    Type: Application
    Filed: October 18, 2012
    Publication date: September 25, 2014
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: Reshef Tenne, Gal Radovsky, Ronit Popovitz-Biro
  • Patent number: 8840997
    Abstract: A cover glass having a compressive-stress layer on the principal surfaces thereof, and having a glass composition containing 50% to 70% by mole of SiO2, 3% to 20% by mole of Al2O3, 5% to 25% by mole of Na2O, more than 0% by mole and less than or equal to 2.5% by mole of Li2O, 0% to 5.5% by mole of K2O, and 0% to less than 3% by mole of B2O3. Also disclosed is a method for producing a cover glass which includes: (i) preparing molten glass by melting a glass raw material; (ii) forming the prepared molten glass into a plate-like shape by a down-draw process and thereby obtaining a glass substrate; and (iii) forming a compressive-stress layer on the surface of the glass substrate.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 23, 2014
    Assignees: AvanStrate Inc., Hoya Corporation
    Inventors: Akihiro Koyama, Satoshi Ami, Kazuaki Hashimoto, Tetsuo Takano
  • Patent number: 8835023
    Abstract: Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Sandia Corporation
    Inventor: Jon Ihlefeld
  • Patent number: 8834994
    Abstract: To provide a top plate for a cooking device which has low transmittance in a visible wavelength range and high transmittance in an infrared wavelength range of 3500 nm to 4000 nm. A top plate 1 for a cooking device includes: a glass substrate 10; and a layered coating 2 made of a Si film 11 and a silicon nitride film 12 which are formed on the glass substrate 10. Where t1 represents the thickness of the Si film 11 and t2 represents the thickness of the silicon nitride film 12, (t1, t2) in FIG. 1 showing the relation between the thickness t1 of the Si film and the thickness t2 of the silicon nitride film is within the bounds X defined by connecting Points A1 to A36 shown in TABLE 1 in this order with straight lines.
    Type: Grant
    Filed: June 13, 2009
    Date of Patent: September 16, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Koji Ikegami, Toshimasa Kanai
  • Patent number: 8828564
    Abstract: A glazing incorporating a glass substrate includes, on at least one portion of its surface, a stack of layers including a barrier layer to the migration of ions contained in the substrate, especially of Na+ or K+ alkali metal type, the barrier layer being interposed in the stack between the surface of the substrate and at least one upper layer giving the glazing a functionality of the solar-control, low-emissivity, antireflection, photocatalytic, hydrophobic or other type, the barrier layer essentially consisting of a silicon oxide or a silicon oxynitride, wherein the silicon oxide or oxynitride includes one or more elements selected from the group consisting of Al, Ga and B and wherein the Si/X atomic ratio is strictly less than 92/8 in the barrier layer, X being the sum of the atomic contributions of the Al, Ga and B elements.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Saint-Gobain Glass France
    Inventor: Frédéric Clabau
  • Patent number: 8828527
    Abstract: A surface-coated cutting tool includes a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet; and a hard coating layer formed by vapor-depositing in order, a lower layer (a), an intermediate layer (b), and an upper layer (c) on the tool substrate. The lower layer (a) is a Ti layer composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carboxide layer, and a titanium oxycarbonitride layer, and having a thickness of 3 to 20 ?m. The intermediate layer (b) is an aluminum oxide layer having a thickness of 1 to 5 ?m, and having an ?-type crystal structure in a chemically vapor-deposited state. The upper layer (c) is an aluminum oxide layer having a thickness of 2 to 15 ?m, and containing one or more elements of Ti, Y, Zr, Cr, and B.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kohei Tomita, Makoto Igarashi, Akira Osada, Eiji Nakamura
  • Patent number: 8828562
    Abstract: The present invention provides hard coating film which excels conventional surface coating layer in wear resistance, has lower frictional coefficient and better slideability, a material coated with the hard coating film, a die for cold plastic working, and a method for forming the hard coating film. The hard coating film according to the present invention is a hard coating film comprising (NbxM1?x)y(BaCbN1?a?b)1?y, where 0.2?x?1.0??Equation (1) 0?a?0.3??Equation (2) 0?1?a?b?0.5??Equation (3) 0.5?b=1??Equation (4) 0.4?1?y?0.9??Equation (5) [however, M denotes at least one species of elements belonging to Groups 4a, 5a, and 6a and Si and Al; x, 1?x, a, b, and 1?a?b represent respectively the atomic ratio of Nb, M, B, C and N; and y and 1?y represent respectively the ratio of (NbxM1?x) and (BaCbN1?a?b).
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: September 9, 2014
    Assignee: Kobe Steel, Ltd.
    Inventor: Kenji Yamamoto
  • Patent number: 8822027
    Abstract: A mold for plastic forming having excellent seizure resistance controlled by adjusting its surface properties. In addition, a process producing the mold, that includes: roughening a surface of a base material by a shot blast method to adjust its arithmetic averaged roughness Ra: higher than 1 ?m but 2 ?m or lower; polishing the surface of the base material to adjust its skewness Rsk to 0 or lower while retaining Ra: 0.3 ?m or higher; and forming a hard film on the surface of the base material where the surface of the hard film has an arithmetic averaged roughness Ra: 0.3 ?m or higher but 2 ?m or lower and skewness Rsk: 0 or lower. Adjusting the surface of the mold to have a non-concave-biased configuration, limits the capacity for concaves to accumulate lubricant, such that the lubricant is sufficiently deposited on the surfaces of the convexes.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 2, 2014
    Assignee: Kobe Steel, Ltd.
    Inventor: Kenji Yamamoto
  • Patent number: 8815420
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and gallium for lowering the stress of the layer and thus improving durability of the overall coating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 26, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Alexey Krasnov, Richard Blacker
  • Patent number: 8808864
    Abstract: An IG window unit includes a coating supported by a glass substrate. The coating includes at least the following on the glass substrate moving from the glass substrate outwardly: at least one dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver; a layer comprising an oxide of Ni and/or Cr; an overcoat comprising a layer comprising tin oxide located over the oxide of Ni and/or Cr and a layer comprising silicon nitride.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 8808882
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer(s) of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and boron for increasing the hardness of the layer and thus improving durability of the overall coating. The seed layer may further include aluminum and/or gallium, for enhancing the electrical properties and/or reducing the stress in the resulting coating. The seed layer may be deposited by a substantially metallic target in the presence of oxygen in certain examples.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Richard Blacker
  • Patent number: 8802225
    Abstract: An article includes a ceramic matrix composite substrate with a heat-exposure surface and a monocoating disposed directly on the heat-exposure surface. The monocoating includes vitreous glass to seal the ceramic matrix composite from the surrounding environment.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 12, 2014
    Assignee: United Technologies Corporation
    Inventors: Brian K. Flandermeyer, Kathleen E. Sinnamon, Erica Prevost
  • Patent number: 8795430
    Abstract: A method for improving the growth morphology of (Ga,Al,In,B)N thin films on nonpolar or semipolar (Ga,Al,In,B)N substrates, wherein a (Ga,Al,In,B)N thin film is grown directly on a nonpolar or semipolar (Ga,Al,In,B)N substrate or template and a portion of the carrier gas used during growth is comprised of an inert gas. Nonpolar or semipolar nitride LEDs and diode lasers may be grown on the smooth (Ga,Al,In,B)N thin films grown by the present invention.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 5, 2014
    Assignee: The Regents of the University of California
    Inventors: Robert M. Farrell, Michael Iza, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8795854
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: August 5, 2014
    Inventor: Amit Goyal
  • Patent number: 8795839
    Abstract: A method for repairing optical elements having a coating, in which the coating is fully or partially removed or left on the optical element, a polishing layer being provided in the coating or a polishing layer being applied, which allows simple processing of the surface to achieve high geometrical accuracy and lower surface roughness. A new coating is applied onto the corresponding polishing layer. Also addressed are corresponding optical elements, including optical elements recycled according to the method.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: August 5, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Thure Boehm
  • Patent number: 8791389
    Abstract: An electric arc welding wire having an outer cylindrical surface and an electrically conductive layer on the surface wherein the layer comprises an alloy of copper with the copper content being about 60% to about 90% by weight of said alloy. Furthermore, the layer can be made thin with a thickness of less than about 0.50 microns while using essentially pure copper.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: July 29, 2014
    Assignee: Lincoln Global, Inc.
    Inventors: Matthew J. James, Teresa A. Melfi
  • Patent number: 8790783
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Richard Blacker, Marcus Frank, Muhammad Imran
  • Patent number: 8784977
    Abstract: A cubic boron nitride sintered substrate has a coating with lower and upper layers. The upper layer has an average layer thickness of 0.5 to 3.0 ?m and is formed from a compound of a compositional formula M?, where M represents one or more of Ti, V, Zr, Nb, Mo, Al, Si, and ? is one or more of C, N, B and O. The lower layer has an average thickness of 0.5 to 3.0 ?m and has alternated first and second thin layers. The first thin layer is formed from a compound with compositional formula (Ti(1-x)Lx)?, where L is one or more of Al, B and Si, and ? is C or N, or both. The second thin layer is formed with compositional formula (Al(1-y)Jy)?, where J represents one or more of Ti, V, Cr, Zr, Nb and Mo, and ? is C or N, or both.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 22, 2014
    Assignee: Tungaloy Corporation
    Inventor: Hiroyuki Miura
  • Patent number: 8778502
    Abstract: A glass ceramic composition includes a SrZrO3 ceramic, a Li2O—MgO—ZnO—B2O3—SiO2-based glass, Mg2SiO4 in an amount of about 5 to 40 weight percent, and a SrTiO3 ceramic in an amount in the range of about 0 to about 6 weight percent of the total. The Li2O—MgO—ZnO—B2O3—SiO2-based glass accounts for about 1 to about 12 weight percent of the total.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Sugimoto, Sadaaki Sakamoto, Hiroshige Adachi
  • Patent number: 8778491
    Abstract: A coated article is described. The coated article includes a substrate, a titanium bonding layer, a titanium-chromium alloy transition layer, and a titanium-chromium-nitrogen hard layer formed thereon, and in that order. The titanium bonding layer is a titanium layer. The titanium-chromium alloy transition layer is a titanium-chromium alloy layer. The titanium-chromium-nitrogen hard layer is a titanium-chromium-nitrogen layer. The titanium bonding layer, titanium-chromium alloy transition layer, and the titanium-chromium-nitrogen hard layer are formed by ion beam assisted sputtering.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Chwan-Hwa Chiang, Jia-Lin Chen, Yi-Jun Huang, Hai-Bo Pan, Xu Li
  • Patent number: 8778075
    Abstract: Lithium silicate glass ceramics and glasses are described which can advantageously be applied to zirconium oxide ceramics in particular by pressing-on in the viscous state and form a solid bond with these.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: July 15, 2014
    Assignee: Ivoclar Vivadent AG
    Inventors: Christian Ritzberger, Ricardo Dellagiacomo, Marcel Schweiger, Harald Bürke, Wolfram Höland, Volker Rheinberger
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Patent number: 8763883
    Abstract: A method for assembling at least two parts made of silicon carbide-based materials by non-reactive brazing is disclosed. The two parts are contacted with a non-reactive brazing composition. The assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition. The parts and the brazing composition are cooled so that, after solidification of the brazing composition, a moderately refractory joint is formed. The non-reactive brazing composition is a binary alloy composed, in mass percentages, of about 46% to 99% silicon and 54% to 1% neodymium.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 1, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Valérie Chaumat, Jean-François Henne
  • Patent number: 8753758
    Abstract: A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 17, 2014
    Assignee: CPFilms Inc.
    Inventors: Charles Nicholas Van Nutt, James Peyton Enniss, Jaime Antonio Li, Anthony Brian Port, Scott Evan Pickett, Jeremy B. Stegall, Coby Lee Hubbard, Rita Maxine Phillips, Steven Allen Barth
  • Patent number: 8748016
    Abstract: The invention relates to coated bodies made of metal, hard metal, cermet or ceramic material, coated with a single- or multi-layer coating system containing at least one hard material composite coating, and to a method for coating such bodies. The aim of the invention is to develop a coating system for such bodies, which is single- or multi-layered and comprises at least one hard material composite coating, which contains cubic TiAlCN and hexagonal AlN as the main phases and is characterized by a composite structure having a smooth, homogeneous surface, high oxidation resistance and high hardness. The aim includes the development of a method for cost-effectively producing such coatings. The hard material composite coating according to the invention contains cubic TiAlCN and hexagonal AlN as main phases, wherein the cubic TiAlCN is microcrystalline fcc-Ti1-xAlxCyNz where x>0.75, y=0 to 0.25 and z=0.75 to 1 having a crystallite size of ?=0.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ingolf Endler, Mandy Hoehn
  • Patent number: 8741437
    Abstract: Substrate with Antimicrobial Properties An antimicrobial substrate (glass, ceramic or metallic) coated on at least one of its surface with at least one mixed layer deposited by a sputtering under vacuum magnetically enhanced process is described. The layer comprising at least one antimicrobial agent mixed to binder material chosen amongst the metal oxides, oxynitrides, oxycarbides or nitrides. This substrate present antimicrobial properties, in particular bactericidal activity even when no thermal treatment has been applied. If a tempered and antimicrobial glass is required, the same co-sputtering process can be used, optionally an underlayer can be added. Antimicrobial properties are maintained even after a tempering process.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 3, 2014
    Assignee: AGC Glass Europe
    Inventors: Georges Pilloy, Andre Hecq, Kadosa Hevesi, Nadia Jacobs
  • Patent number: 8741011
    Abstract: The present invention relates to a cutting tool insert comprising a body of cemented carbide, cermet, ceramics, high speed steel (HSS), polycrystalline diamond (PCD) or polycrystalline cubic boron nitride (PCBN), a hard and wear resistant coating is applied, grown by physical vapour deposition (PVD) such as cathodic arc evaporation or magnetron sputtering. Said coating comprises at least one layer of (ZrxAl1-x)N with of 0.45<x<0.85 and 0.90?y<1.30 with a thickness between 0.5 and 10 ?m. Said layer has a nanocrystalline microstructure consisting of a single cubic phase or a mixture of hexagonal and cubic phases. The insert is particularly useful in metal cutting applications generating high temperatures with improved crater wear resistance.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: June 3, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mats Johansson, Lina Rogström, Lars Johnson, Magnus Odén, Lars Hultman
  • Patent number: 8741451
    Abstract: A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventors: Etsuo Morita, Yousuke Murakami, Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 8740007
    Abstract: A cooking utensil and a manufacturing method thereof are provided. The cooking utensil includes a cooking body, a first metal-ceramic composite layer having an electromagnetic property and a second metal-ceramic composite layer having a heat conductive property. The cooking body has an external bottom surface. The first metal-ceramic composite layer is disposed on the external bottom surface of the cooking body. The second metal-ceramic composite layer is disposed on the first metal-ceramic composite layer. The cooking utensil is suitable for both an induction cooker and a gas burner.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 3, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Sheng Leu, Wu-Han Liu, Wei-Tien Hsiao, Chang-Chih Hsu, Mao-Shin Liu, Zhong-Ren Wu
  • Patent number: 8734965
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Ramón R. Collazo, Zlatko Sitar
  • Patent number: 8728636
    Abstract: A low-e insulating glass unit has a suspended, coated IR reflecting polymer sheet under tension, e.g. from heat shrinkage. The polymer sheet is coated with a multilayer stack of dielectric and metallic layers, including at least one silver layer deposited upon a zinc oxide seed layer that is at most 15 nm thickness. The use of zinc oxide ensures good seeding for high quality silver layer growth, thereby providing low emissivity. The thinness of the zinc oxide ensures that it resists cracking when the polymer sheet is tensioned.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 20, 2014
    Assignee: Southwall Technologies Inc.
    Inventors: Ronny Kleinhempel, Julius G. Kozak, Roland C. Thielsch, Richard T. Wipfler, Christian H. Stoessel, Lee C. Boman
  • Patent number: 8728635
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8728634
    Abstract: A transparency includes a substrate having a first major surface and a second major surface. A first coating is provided over at least a portion of the first major surface, the first coating including one or more metal oxide layers. A second coating is provided over at least a portion of the second major surface, the second coating including one or more metallic layers.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: May 20, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Paul A. Medwick, James P. Thiel, Andrew V. Wagner
  • Patent number: 8722210
    Abstract: The present invention relates to low emissivity glass and to a method for manufacturing the same. The low emissivity glass comprises: a low emissivity layer; and a dielectric layer formed on the low emissivity layer, wherein the glass has an emissivity of 0.01 to 0.3 and a visible transmittance of 70% or more. According to the present invention, low emissivity glass having good emissive performance while also exhibiting high visible transmittance can be provided. Further, according to the present invention, the manufacturing process for the above-described low emissivity glass can be simplified, and initial investment amount can be reduced.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 13, 2014
    Assignee: LG Hausys, Ltd.
    Inventors: Youn-Ki Jun, Keum-Shil Cho, Il Joon Bae, Sung Seock Hwang
  • Publication number: 20140127468
    Abstract: An optical information recording medium includes a recording film, which contains germanium, bismuth, and at least 50 at % tellurium, and has a first recording film component formed in the planar direction and having a bismuth content of at least 15 at %, a second recording film component formed in the planar direction on the side to be irradiated with a light beam and having a bismuth content that is at least 10 at % lower than that of the first recording film component, and an intermediate recording film component provided between the first and second recording film component to moderate the change in the bismuth content in the film thickness direction between the first and second recording film component, and having a bismuth content greater than the bismuth content of the second recording film component and less than the bismuth content of the first recording film component.
    Type: Application
    Filed: August 10, 2012
    Publication date: May 8, 2014
    Applicant: PANASONIC CORPORATION
    Inventor: Hideki Kitaura
  • Patent number: 8715839
    Abstract: An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 6, 2014
    Inventor: L. Pierre de Rochemont
  • Patent number: 8709593
    Abstract: A coated article is described. The coated article includes an aluminum or aluminum alloy substrate and a corrosion resistant layer formed on the substrate. The corrosion resistant layer is a compound silicon-titanium-nitrogen layer. A method for making the coated article is also described.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Nan Ma
  • Patent number: 8709582
    Abstract: An optical article comprising a substrate and on at least one face of the substrate a multilayered antireflecting coating functioning in an interferential manner having antifog properties, said antireflecting coating including a last layer with a refractive index n?1.55 and a physical thickness of 120 nm or less directly deposited on a high refractive index layer (HI layer) having a refractive index n>1.55, and a thickness of less than 500 nm.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 29, 2014
    Assignee: Essilor International
    Inventors: Haipeng Zheng, Michael Rubner, Nuerxiati Nueraji, Robert E. Cohen
  • Patent number: 8709583
    Abstract: The invention concerns a cutting tool comprising a main body and a multi-layer coating applied thereto. To provide improved cutting tools which have increased resistance to comb cracking, tribochemical wear and cratering caused thereby the main body comprises a hard metal which includes 5 to 8% by weight of Co, 0 to 2% by weight of TaC, 0 to 1% by weight of NbC and 89 to 95% by weight of WC with a mean grain size of 1 to 5 ?m, and the coating has a first layer of TiAlN having a layer thickness of 1 to 5 ?m, and a second layer of aluminum oxide having a layer thickness of 1 to 4 ?m, wherein the coating further additionally includes on the second layer of aluminum oxide n alternately mutually superposedly applied layers of TiAlN and layers of aluminum oxide respectively having a layer thickness of 0.1 to 0.5 ?m, wherein n relates to each individual layer and is an even number of 0 to 10, and wherein the total layer thickness of the coating is 2 to 16 ?m and the coating is produced in the PVD process.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 29, 2014
    Assignee: Walter AG
    Inventors: Veit Schier, Jörg Drobniewski
  • Patent number: 8709962
    Abstract: Provided is an anti-reductive high-frequency ceramic dielectric material sintered at low temperature and matched with copper internal electrode, which can be used for producing multi-layer ceramic capacitor with a copper internal electrode. The ceramic dielectric material consists of main crystalline phase, modifying additive and sintering flux. The formula of the main crystalline phase is MgxBa(1-x)ZrySi(1-y)O3, wherein 0.8?x?0.95, 0.05?y?0.2. The modifying additive is one or more of MnO2, CaO, Li2O, Bi2O3 and TiO2, and the sintering flux is one or more of B2O3, SiO2, ZnO, CuO, K2O and BaO. The ceramic dielectric material meets the requirements of COG characteristics by EIA standard, has such characteristics as uniform particle size distribution, high dispersiveness, optimized molding process, eco-friendliness and excellent dielectric properties.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 29, 2014
    Assignee: Guangdong Fenghua Advanced Technology Holding Co., Ltd.
    Inventors: Beibei Song, Yongsheng Song, Fangce Mo, Juan Li, Xiaoguo Wang, Jinghua Guo
  • Patent number: RE44870
    Abstract: A body such as a cutting tool coated with refractory single- or multilayers, wherein specific layers are characterized by a controlled microstructure and phase composition with crystal planes preferably grown in a preferential direction with respect to the surface of the coated body. The coating includes one or several refractory layers of which at least one layer is a dense, fine-grained layer of ?-Al2O3 preferably textured in the (104) direction. The coated tool exhibits excellent surface finish and shows much improved wear and toughness properties compared to prior art objects when used for machining steel, cast iron and, particularly, when machining nodular cast iron. REEXAMINATION RESULTS The questions raised in reexamination proceedings Nos. 90/009,410 and 90/009,666, filed May 5, 2009 and Feb. 24, 2010 respectively, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 29, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventor: Bjorn Ljungberg
  • Patent number: RE45154
    Abstract: A tool for machining is made from a hard-metal, cermet or ceramic base material and a single-layer or multi-layer hard material coating on the base material. An additional coating of one or more metals from the group of aluminum, copper, zinc, titanium, nickel, tin or base alloys of these metals is applied to the hard material coating.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Ceratizit Austria Gesellschaft mbH
    Inventors: Wolfgang Wallgram, Uwe Schleinkofer, Karl Gigl, Josef Thurner, Wilfried Schintlmeister