O-containing Metal Compound Patents (Class 428/701)
  • Patent number: 8900729
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including zinc oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: December 2, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Brent Boyce, Jean-Marc Lemmer, Marcus Frank, Yongli Xu
  • Publication number: 20140349092
    Abstract: A surface-tensioned sapphire plate and a corresponding manufacturing process. The plate may include a planar sapphire substrate and at least one layer disposed on the surface of the substrate for tensing the substrate. The layer may include at least 50 wt.-% of aluminum oxide (Al2O3). The manufacturing process for producing of a sapphire plate may include providing a planar sapphire substrate, and coating at least one surface of the substrate with a layer tensing the substrate. The layer may include at least 50 wt.-% of aluminum oxide (Al2O3).
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: Rudolf Beckmann, Markus Kress
  • Patent number: 8895158
    Abstract: An article includes a substrate with a plurality of independent taggant layers that each include metal oxide nanocrystals doped with at least one Lanthanide element. Each taggant layer includes metal oxide nanocrystals doped with a different Lanthanide element than each other taggant layer.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 25, 2014
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Dajie Zhang, Lisa A. Kelly, Jennifer L. Sample, John M. Brupbacher
  • Patent number: 8895150
    Abstract: A substrate having a coating is disclosed. The coating is formed of a plurality of layers. At least one of the layers includes a super alloy and at least two additional layers including silver. A coating for a substrate is also disclosed. A method of applying a coating to a substrate is further disclosed.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 25, 2014
    Assignee: Apogee Enterprises, Inc.
    Inventor: Randy Leland Stull
  • Patent number: 8895149
    Abstract: Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 25, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Bernd Disteldorf, Marcus Frank, Richard Blacker
  • Publication number: 20140339550
    Abstract: Provided is a ferroelectric gate thin film transistor which includes: a channel layer; a gate electrode layer which controls a conductive state of the channel layer; and a gate insulation layer which is arranged between the channel layer and the gate electrode layer and is formed of a ferroelectric layer. The gate insulation layer (ferroelectric layer) has the structure where a PZT layer and a BLT layer (Pb diffusion preventing layer) are laminated to each other. The channel layer (oxide conductor layer) is arranged on a surface of the gate insulation layer (ferroelectric layer) on a BLT layer (Pb diffusion preventing layer) side. The ferroelectric gate thin film transistor can overcome various drawbacks which may be caused due to the diffusion of Pb atoms into an oxide conductor layer from a PZT layer including a drawback that a transmission characteristic of a ferroelectric gate thin film transistor is liable to be deteriorated (for example, a width of a memory window is liable to become narrow).
    Type: Application
    Filed: October 23, 2012
    Publication date: November 20, 2014
    Inventors: Tatsuya Shimoda, Takaaki Miyasako, Eisuke Tokumitsu, Bui Nguyen Quoc Trinh
  • Patent number: 8889272
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 18, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Brent Boyce, Jean-Marc Lemmer, Marcus Frank, Yongli Xu
  • Patent number: 8889251
    Abstract: In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Thomas F. Soules, Raymond J. Beach, Scott C. Mitchell
  • Patent number: 8882870
    Abstract: A coated tool has a substrate and a coating film coated on the surface thereof. The coating film includes an intermediate film coated on the surface of the substrate, and an oxide film coated on the surface of the intermediate film. A crack coefficient R obtained by measuring a crack length dc (?m) which is generated on the surface of the coated tool by pushing a Vickers indenter into the surface of the coating film with an applied load P=196(N), and a fracture toughness KIC (MPa·m0.5) of the substrate, and by calculating from the following numerical formula: R=P/(dc·KIC), is 0.07 to 0.12 m0.5.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 11, 2014
    Assignee: Tungaloy Corporation
    Inventor: Lu Chen
  • Patent number: 8878322
    Abstract: A perovskite manganese oxide thin film formed on a substrate that allows a first order phase transition and has A-site ordering. The thin film contains Ba and a rare earth element in the A sites of a perovskite crystal lattice and has an (m10) orientation for which m=2n, and 9?n?1. A method for manufacturing the film includes forming in a controlled atmosphere using laser ablation an atomic layer or thin film that assumes a pyramidal structure having oxygen-deficient sites in a plane containing the rare earth element and oxygen; and filling the oxygen-deficient sites with oxygen. The controlled atmosphere has an oxygen partial pressure controlled to a thermodynamically required value for creating oxygen deficiencies and contains a gas other than oxygen, and has a total pressure that is controlled to a value at which the A sites have a fixed compositional ratio.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Yasushi Ogimoto
  • Patent number: 8871362
    Abstract: The present invention relates to a cutting tool having a base body and a multilayered coating applied thereto, wherein at least two layers of the multilayered coating arranged one on top of the other contain, or consist of, metal oxide of the same metal or of different metals. In order to create cutting tools which are better than those of the prior art, it is proposed according to the invention that the at least two metal oxide layers arranged one on top of the other be produced successively by different PVD-processes, selected from i) reactive magnetron sputtering (RMS), ii) arc vapour deposition (arc-PVD), iii) ion plating, iv) electron beam vapour deposition and v) laser deposition, wherein modifications of the respective processes i) to v) do not constitute different PVD-processes.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: October 28, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Publication number: 20140315006
    Abstract: At least two ply layers of ceramic on a substrate which is applied to protect a surface in a heated hot environment. Each of the outer and bottom layers including zirconium oxide and stabilizers of yttrium oxide in different respective proportions of the yttrium oxide; the outer layer has fully stabilized zirconium oxide and the bottom layer has partially stabilized zirconium oxide.
    Type: Application
    Filed: August 7, 2012
    Publication date: October 23, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Patent number: 8865325
    Abstract: Temperable and non-temperable coatings are provided which have similar optical characteristics. The non-temperable coating is placed on glass that is not to be tempered and provides certain optical characteristics. The temperable coating is placed on a glass substrate and the coated substrate is then tempered. After tempering, the coated tempered glass sheet and the coated non-tempered glass sheet have similar optical characteristics. Both coatings have a plurality of metal layers, with at least one of the metallic layers being a discontinuous layer with a primer layer over the discontinuous metal layer. For the non-temperable coating, the discontinuous metal layer has an effective thickness in the range of 1.5 nm to 1.7 nm. For the temperable coating, the discontinuous metal layer has an effective thickness in the range of 1.7 nm to 1.8 nm. The primer layer of the temperable coating is thinner than the primer layer of the non-temperable coating.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 21, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Martin Cunningham, David L. Szypulski
  • Publication number: 20140308511
    Abstract: A physical configuration of multiple-layer coatings formed with at least one layer of coating containing cubic born nitride (cBN) particles with one or more layers in composite form containing cBN particles may have a thickness of each individual layer as thin as in the nanometer range, or as thick as in the range of a few microns and even up to tens of microns. The chemistry of the composite layer consists of any individual phase of (a) nitrides such as titanium nitride (TiN), titanium carbonitride (TiCN), and hafnium nitride (HfN); (b) carbides such as titanium carbide (TiC); and (c) oxides such as aluminum oxide (Al2O3) or any combination of the above phases, in addition to cBN particles. The coating or film can be stand-alone or on a substrate.
    Type: Application
    Filed: May 29, 2012
    Publication date: October 16, 2014
    Applicants: NanoMech, Inc., The Board of Trustees of the university of Arkansas
    Inventors: Wenping Jiang, Ajay P. Malshe
  • Patent number: 8858666
    Abstract: A coating for a cutting tool, which includes a plurality of mutually superposed layers, characterized in that the coating has an outer cover layer with a first layer portion of metallic aluminium or an aluminium alloy and a second layer portion arranged thereover of aluminium oxide or a mixed oxide which contains aluminium and at least one further metal.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: October 14, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 8859117
    Abstract: A light-permeable heat-protection element including at least one support element and at least one protective coating containing a reaction product which includes an aqueous alkali silicate solution and aluminate-modified or borate-modified silicon dioxide.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 14, 2014
    Inventors: Norbert Schwankhaus, Udo Gelderie, Dietrich Pantke, Lothar Puppe, Hartmut Melzer, Peter-Nikolaus Schmitz
  • Patent number: 8859116
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) and the second layer (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: ? ln ? ? p ? ( O 2 ) in ln ? ? p ? ( O 2 ) ex ? ( D O + m 2 ? D M ) ? ? ? ln ? ? p ? ( O 2 ) < 5 · 10 - 13 ? ? cm 2 / s wherein p(O2)in, p(O2)ex, DM and DO are as defined herein.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 14, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen
  • Patent number: 8852745
    Abstract: An aspect of the present invention relates to an optical glass, which comprises, denoted as weight percent, 2 to 37 percent of SiO2, 0 to 25 percent of B2O3, 0 to 10 percent of GeO2, 18 to 55 percent of a combined content of Li2O, Na2O, K2O, CaO, SrO, and BaO, and 27 to 55 percent of a combined content of TiO2, Nb2O5, and WO3, wherein the weight ratio of SiO2 content relative to a combined content of SiO2 and B2O3 ranges from 0.1 to 1, a weight ratio of the Li2O content to a combined content of Li2O, Na2O, K2O, CaO, SrO, and BaO ranges from 0 to 0.4, and a weight ratio of TiO2 content relative to a combined content of TiO2, Nb2O5, and WO3 ranges from 0.35 to 1, with a refractive index nd of 1.860 to 1.990 and an Abbé number ?d of 21 to 29.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Hoya Corporation
    Inventors: Kosuke Yamaguchi, Naomi Matsumoto
  • Patent number: 8846210
    Abstract: A ceramic electronic component includes a first dielectric layer, a second dielectric layer, and a boundary reaction layer. The first dielectric layer is a layer containing BaO, Nd2O3, and TiO2, the second dielectric layer is a layer containing a material different from the material of the first dielectric layer, and the boundary reaction layer is a layer formed between the first dielectric layer and the second dielectric layer and containing at least one of Zn, Ti, Cu, and Mg.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 30, 2014
    Assignee: TDK Corporation
    Inventors: Toshio Sakurai, Hisashi Kobuke, Tomohiro Arashi, Kiyoshi Hatanaka, Yasuharu Miyauchi
  • Patent number: 8846218
    Abstract: A method of smoothing the surface of a ceramic matrix composite material part that presents a surface that is undulating and rough. The method includes depositing a refractory vitreous coating on the surface of the part, the vitreous coating essentially containing silica, alumina, baryte, and lime.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 30, 2014
    Assignees: Herakles, SNECMA
    Inventors: Eric Bouillon, Nicolas Eberling-Fux, Serge Chateigner
  • Publication number: 20140287227
    Abstract: Disclosed is a jointed body wherein multiple base members are jointed to each other through a jointing layer, and at least one of the base members is a base member of a ceramic material, semiconductor or glass. The joint material layer contains a metal and an oxide. The oxide contains V and Te, and is present between the metal and the base members. Disclosed is also a joint material in the form of a paste containing an oxide glass containing V and Te, metal particles, and a solvent; in the form of a foil piece or plate in which particles of an oxide glass containing V and Te are embedded; or in the form of a foil piece or plate containing a layer of an oxide glass containing V and Te, and a layer of a metal.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 25, 2014
    Applicant: HITACHI, LTD.
    Inventors: Motomune KODAMA, Takashi NAITO, Tadashi FUJIEDA, Yuichi SAWAI, Takuya AOYAGI, Masanori MIYAGI
  • Patent number: 8841225
    Abstract: A dielectric ceramic that includes a sintered body of BaTiO3 based ceramic grains, in which the ceramic grains each include a shell part as a surface layer part and a core part inside the shell part. The ceramic grains contain, as accessory constituents, R (R, which is a rare-earth element, is at least one selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Y) and M (M is at least one selected from the group consisting of Mg, Mn, Ni, Co, Fe, Cr, Cu, Al, Mo, W, and V). R and M are present in the shell part of the ceramic grain, and concentrations of R and M contained in the shell part are increased from a grain boundary toward the core part.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: September 23, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tomomi Koga, Koichi Banno
  • Patent number: 8840997
    Abstract: A cover glass having a compressive-stress layer on the principal surfaces thereof, and having a glass composition containing 50% to 70% by mole of SiO2, 3% to 20% by mole of Al2O3, 5% to 25% by mole of Na2O, more than 0% by mole and less than or equal to 2.5% by mole of Li2O, 0% to 5.5% by mole of K2O, and 0% to less than 3% by mole of B2O3. Also disclosed is a method for producing a cover glass which includes: (i) preparing molten glass by melting a glass raw material; (ii) forming the prepared molten glass into a plate-like shape by a down-draw process and thereby obtaining a glass substrate; and (iii) forming a compressive-stress layer on the surface of the glass substrate.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 23, 2014
    Assignees: AvanStrate Inc., Hoya Corporation
    Inventors: Akihiro Koyama, Satoshi Ami, Kazuaki Hashimoto, Tetsuo Takano
  • Patent number: 8840800
    Abstract: A magnetic material is disclosed, which includes magnetic particles containing at least one magnetic metal selected from the group including Fe, Co and Ni, and at least one non-magnetic metal selected from Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare earth elements, Ba and Sr; a first coating layer of a first oxide that covers at least a portion of the magnetic particles; oxide particles of a second oxide that is present between the magnetic particles and constitutes an eutectic reaction system with the first oxide; and an oxide phase that is present between the magnetic particles and has an eutectic structure of the first oxide and the second oxide.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: September 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Seiichi Suenaga, Toshihide Takahashi, Tomoko Eguchi, Koichi Harada, Yasuyuki Hotta
  • Publication number: 20140272345
    Abstract: A system and process for inter alia coating a substrate such as glass substrate with a layer of aluminum oxide to create a scratch-resistant and shatter-resistant matrix comprised of a thin scratch-resistant aluminum oxide film deposited on one or more sides of a transparent and shatter-resistant substrate for use in consumer and mobile devices such as watch crystals, cell phones, tablet computers, personal computers and the like. The system and process may include a sputtering technique. The system and process may produce a thin window that has a thickness of about 2 mm or less, and the matrix (i.e., the combination of the aluminum oxide film and transparent substrate) may have a shatter resistance with a Young's Modulus value that is less than that of sapphire, i.e., less than about 350 gigapascals (GPa). The thin window has superior shatter-resistant characteristics.
    Type: Application
    Filed: December 10, 2013
    Publication date: September 18, 2014
    Applicant: Rubicon Technology, Inc.
    Inventors: Jonathan LEVINE, John P. Ciraldo
  • Publication number: 20140272346
    Abstract: A system and process for inter alia coating a substrate such as glass with a layer of aluminum oxide to create a scratch-resistant and shatter-resistant matrix comprised of a thin scratch-resistant aluminum oxide film deposited on one or more sides of a transparent and shatter-resistant substrate for use in consumer and mobile devices such as watch crystals, cell phones, tablet computers, personal computers and the like. The system and process may include a reactive thermal evaporation technique. An advantage of the reactive thermal evaporation technique includes using arbitrarily high oxygen pressures, allowing for higher growth rates of aluminum oxide at the surface of the substrate and, ultimately, a less expensive process. Another advantage of this reactive thermal evaporation process is that it does not utilize electrical fields typically found in traditional reactive sputtering techniques.
    Type: Application
    Filed: December 10, 2013
    Publication date: September 18, 2014
    Applicant: Rubicon Technology, Inc.
    Inventors: Jonathan LEVINE, John P. CIRALDO
  • Patent number: 8835011
    Abstract: A cover assembly for a display device, such as a three-dimensional liquid crystal (3-D LCD) display. The cover assembly includes an aluminosilicate glass substrate that is substantially free of retardance-induced visual defects and has a thickness of less than 2 mm, a retardance of less than or equal to 5 nm over an area of at least 170 in2 (20 in diagonal), a 4-point bend strength of greater than 150 MPa.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 16, 2014
    Assignee: Corning Incorporated
    Inventors: Kevin Thomas Gahagan, Raymond G Greene, Katherine Rose Rossington
  • Patent number: 8835023
    Abstract: Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Sandia Corporation
    Inventor: Jon Ihlefeld
  • Patent number: 8828563
    Abstract: A cutting tool for metal material processing has a hard metal body and a multi-layer coating applied to the hard metal body in at least one surface area. The multi-layer coating includes the following, sequentially in direction from the hard metal body to the surface of the cutting tool: at least one layer TiCx1Ny1, where x1+y1=1, x1?0, y1>0; at least one layer TiCx2Ny2Oz2, where x2+y2+z2=1, 0?z2?0.03 and 0.5?x2?0.85; at least one layer TiN, or TiCx31Ny31, where 0.2?x31?0.8 and x31+y31=1, or TiNy32Bv32, where 0.0001?v32?0.05 and y32+v32=1; at least one layer: TiNy41Bv41Oz41, where y41+v41+z41=1 and 0.0001?v41?0.05 and 0.01?z41?0.6, or TiCx42Ny42Oz42, where x42+y42+z42=1 and 0?y42?0.5 and 0.01?z42?0.6; and at least one outer layer ?-Al2O3. The at least one layer TiCx2Ny2Oz2 has a texture in the direction having a texture coefficient TC(311)=1.3.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 9, 2014
    Assignee: Ceratizit Austria Gesellschaft mbH
    Inventors: Martin Kathrein, Werner Bürgin, Christoph Czettl, Peter Lechleitner, Josef Thurner
  • Patent number: 8828528
    Abstract: A barrier film includes a base which is formed of a plastic film having a first surface and a second surface opposed to the first surface, a first barrier layer which is formed on the first surface by an atomic layer deposition method and is made of an inorganic material having a water vapor barrier property; and a second barrier layer which is formed on the second surface by an atomic layer deposition method and is made of an inorganic material having a water vapor barrier property.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventors: Andrew Chakchung Yu, Hiroaki Ono, Takahiro Kawana
  • Patent number: 8828527
    Abstract: A surface-coated cutting tool includes a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet; and a hard coating layer formed by vapor-depositing in order, a lower layer (a), an intermediate layer (b), and an upper layer (c) on the tool substrate. The lower layer (a) is a Ti layer composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carboxide layer, and a titanium oxycarbonitride layer, and having a thickness of 3 to 20 ?m. The intermediate layer (b) is an aluminum oxide layer having a thickness of 1 to 5 ?m, and having an ?-type crystal structure in a chemically vapor-deposited state. The upper layer (c) is an aluminum oxide layer having a thickness of 2 to 15 ?m, and containing one or more elements of Ti, Y, Zr, Cr, and B.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kohei Tomita, Makoto Igarashi, Akira Osada, Eiji Nakamura
  • Patent number: 8828564
    Abstract: A glazing incorporating a glass substrate includes, on at least one portion of its surface, a stack of layers including a barrier layer to the migration of ions contained in the substrate, especially of Na+ or K+ alkali metal type, the barrier layer being interposed in the stack between the surface of the substrate and at least one upper layer giving the glazing a functionality of the solar-control, low-emissivity, antireflection, photocatalytic, hydrophobic or other type, the barrier layer essentially consisting of a silicon oxide or a silicon oxynitride, wherein the silicon oxide or oxynitride includes one or more elements selected from the group consisting of Al, Ga and B and wherein the Si/X atomic ratio is strictly less than 92/8 in the barrier layer, X being the sum of the atomic contributions of the Al, Ga and B elements.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Saint-Gobain Glass France
    Inventor: Frédéric Clabau
  • Patent number: 8822044
    Abstract: Ceramic material of the general formula: [SE1-xMIIx][Cr1-y-zRyLz]O3, wherein SE stands for one or more rare earth metals, MII stands for one or more metals of the oxidation state +II, L stands for Al and/or Ga, R stands for one or more metals selected from Fe, Zn, Ge, Sn, and it holds that: 0<x<1; 0<y<1; 0.5<z<1; y+z<1.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 2, 2014
    Assignee: EPCOS AG
    Inventors: Danilo Neuber, Adalbert Feltz
  • Patent number: 8815420
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and gallium for lowering the stress of the layer and thus improving durability of the overall coating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 26, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Alexey Krasnov, Richard Blacker
  • Patent number: 8815378
    Abstract: The invention relates to a transparent or semi-transparent substrate having, over at least a portion of at least one of its surfaces, a photocatalytic coating based on titanium oxide and characterized in that the coated surface has a luminous reflectance less than that of a non-coated surface of the substrate. The invention also relates to methods for obtaining a substrate of this type and to uses for this substrate.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: August 26, 2014
    Assignee: Saint Gobain Glass France
    Inventors: Lethicia Gueneau, Mauricette Rondet, Eric Mattmann
  • Patent number: 8808882
    Abstract: A coated article is provided with at least one functional layer, such as an infrared (IR) reflecting layer(s) of or including silver and/or gold. A dielectric and substantially transparent seed layer is provided under and directly contacting the functional layer. In certain example embodiments, the seed layer includes an oxide of zinc and boron for increasing the hardness of the layer and thus improving durability of the overall coating. The seed layer may further include aluminum and/or gallium, for enhancing the electrical properties and/or reducing the stress in the resulting coating. The seed layer may be deposited by a substantially metallic target in the presence of oxygen in certain examples.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Richard Blacker
  • Patent number: 8808864
    Abstract: An IG window unit includes a coating supported by a glass substrate. The coating includes at least the following on the glass substrate moving from the glass substrate outwardly: at least one dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver; a layer comprising an oxide of Ni and/or Cr; an overcoat comprising a layer comprising tin oxide located over the oxide of Ni and/or Cr and a layer comprising silicon nitride.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 8801817
    Abstract: A surface-coated cutting tool according to the present invention includes a base material and a coating film formed on the base material. The coating film includes at least one TiCN layer. The TiCN layer has a columnar crystal region. The columnar crystal region is characterized by having a composition of TiCxNy (in which 0.65?x/(x+y)?0.90) and having a (422) plane having a plane spacing of 0.8765 ? to 0.8790 ?.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Anongsack Paseuth, Yoshio Okada, Hideaki Kanaoka, Chikako Kojima, Erika Iwai
  • Patent number: 8795854
    Abstract: Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: August 5, 2014
    Inventor: Amit Goyal
  • Patent number: 8790783
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Richard Blacker, Marcus Frank, Muhammad Imran
  • Patent number: 8790782
    Abstract: The invention relates to a corrosion resistant reactor tube, method for providing a passivating or corrosion resistant coating to the inside of the reactor tube, and a method of making high bismuth glass powders using the corrosion resistant reactor tube.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: July 29, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Michael F. Barker, John James Barnes, Rob Cockerill, Howard David Glicksman, Warren Harrell, James J. Krajewski, Michele L. Ostraat, Jay Scott Schickling, Barry Edward Taylor
  • Publication number: 20140205860
    Abstract: A radio-opaque film with a laminate structure includes one or more layers of radio-opaque material between a pair of containment layers. Each radio-opaque layer may comprise particles of radio-opaque material and a binder, which holds the particles of radio-opaque material together. One or both of the containment layers may impart the radio-opaque film with paper-like or cloth-like characteristics. Alternatively, a sheet of paper-like or cloth-like material may be adhered to one or both of the containment layers. Methods for manufacturing radio-opaque films are also disclosed, as are systems in which radio-opaque films are used.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Applicant: BLOXR Corporation
    Inventor: Ashok C. Khandkar
  • Patent number: 8784981
    Abstract: A stainless steel-and-resin composite includes a stainless steel part and a resin part bonded to the stainless steel part. The stainless steel part has a porous film resulted from anodizing formed thereon. The porous film defines pores with an average diameter of about 100 nm-500 nm. The resin part is integrally bonded to the surface of the stainless steel part having the porous film, with portions of the resin part penetrating in the pores. The resin part mainly comprises crystalline thermoplastic synthetic resin.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 22, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Dai-Yu Sun, Yuan-Yuan Feng, Yu-Qiang Wang
  • Patent number: 8785008
    Abstract: The invention relates to the use of a sintered body obtained by subjecting a primary sintered body having a relative density of 95% or higher produced from a fine yttria-containing zirconia powder to HIP sintering at a temperature of 1,200-1,600° C. and a pressure of 50 MPa or higher. This sintered body is either a sintered body which has a total light transmittance, as measured at a thickness of 0.5 mm, of 43% or higher and a three-point bending strength of 1,700 MPa or higher or a zirconia sintered body which has a total light transmittance, as measured at a thickness of 1 mm, of 40% or higher and a three-point bending strength of 500 MPa or higher and which combines high strength and total light transmission.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 22, 2014
    Assignee: Tosoh Corporation
    Inventors: Isao Yamashita, Koji Tsukuma, Toru Tsuyoshi
  • Patent number: 8778502
    Abstract: A glass ceramic composition includes a SrZrO3 ceramic, a Li2O—MgO—ZnO—B2O3—SiO2-based glass, Mg2SiO4 in an amount of about 5 to 40 weight percent, and a SrTiO3 ceramic in an amount in the range of about 0 to about 6 weight percent of the total. The Li2O—MgO—ZnO—B2O3—SiO2-based glass accounts for about 1 to about 12 weight percent of the total.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Sugimoto, Sadaaki Sakamoto, Hiroshige Adachi
  • Patent number: 8778513
    Abstract: An article including a perovskite manganese (Mn) oxide thin film, includes a substrate having an oriented perovskite structure that is (m10) oriented, where 19?m?2, and having an [100] axis direction; and a perovskite manganese (Mn) oxide thin film having a perovskite crystal lattice containing barium Ba and a rare earth element Ln in A sites of the perovskite crystal lattice, the perovskite manganese (Mn) oxide thin film being formed on the substrate so as to cover at least part of a surface of the substrate, and having atomic planes stacked in a pattern of LnO—MnO2—BaO—MnO2-LnO . . . in the [100] axis direction of the substrate. The perovskite manganese (Mn) oxide thin film provided thoroughly exploits the resistance changes caused by charge and orbital ordering in the perovskite manganese oxide.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: July 15, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Yasushi Ogimoto
  • Patent number: 8778109
    Abstract: A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 15, 2014
    Assignee: CPFilms Inc.
    Inventors: Charles N. Van Nutt, James P. Enniss, Jaime A. Li, Anthony B. Port, Scott E. Pickett, Jeremy B. Stegall, Coby L. Hubbard, Rita M. Phillips, Steven A. Barth
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Patent number: 8765272
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Tungaloy Corporation
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Patent number: RE45154
    Abstract: A tool for machining is made from a hard-metal, cermet or ceramic base material and a single-layer or multi-layer hard material coating on the base material. An additional coating of one or more metals from the group of aluminum, copper, zinc, titanium, nickel, tin or base alloys of these metals is applied to the hard material coating.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Ceratizit Austria Gesellschaft mbH
    Inventors: Wolfgang Wallgram, Uwe Schleinkofer, Karl Gigl, Josef Thurner, Wilfried Schintlmeister