O-containing Metal Compound Patents (Class 428/701)
  • Patent number: 8658291
    Abstract: Calcium magnesium aluminosilicate (CMAS) mitigation compositions selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof when the CMAS mitigation composition is included as a separate CMAS mitigation layer in an environmental barrier coating for a high temperature substrate component.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8652645
    Abstract: The present invention relates generally to an antibacterial coating which is composed of silver, to medical tools and to implants comprising such a coating and to a method as well to an apparatus for the production of such a coating. The medical tools or the dental or orthopaedic implant comprises a metal or metal alloy having a treated surface wherein the treated surface is at least partially converted to an oxide film by plasma electrolytic oxidation using a colloid-dispersed system and wherein the converted surface is partially covered by islands formed by colloid-dispersed silver-particles of the colloid-dispersed system. An Ag—TiO2 coating shows excellent properties in terms of antibacterial efficacy (even against multi-resistant strains), adhesion and biocompatibility. The life-time of an implant in a human body is increased. The antibacterial coating can be used in the field of traumatology, orthopaedic, osteosynthesis and/or endoprothesis, especially where high infection risk exists.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 18, 2014
    Assignee: aap Biomaterials GmbH
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Frank Witte, Amir Eliezer
  • Patent number: 8652614
    Abstract: The present invention relates to an optical element comprising: a optical glass made of a phosphate glass or a fluorophosphate glass; and an optically functional film formed on a surface of the optical glass, wherein the optically functional film comprises two or more layers made of different materials, and the outermost surface layer thereof is made of a material(s) having low reactivity with phosphoric acid.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 18, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Michito Takahashi, Sunao Miyazaki
  • Patent number: 8652638
    Abstract: The present disclosure relates to cutting tool edges that include on a rake face a superabrasive layer and a HPHT sintered or HPHT bonded cap layer. The cap layer improves adhesion between the superabrasive layer and an optional coating system for the cutting insert and acts as a thick anti-friction layer and/or a thermal barrier coating.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 18, 2014
    Assignee: Diamond Innovations, Inc.
    Inventors: Steven W. Webb, Törbjorn Selinder
  • Patent number: 8652625
    Abstract: A transparent gas barrier film comprising a substrate having thereon a gas barrier layer comprising at least a low density layer and a high density layer, wherein one or more intermediate density layers are sandwiched between the low density layer and the high density layer.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 18, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kazuhiro Fukuda, Toshio Tsuji, Chikao Mamiya, Hiroaki Arita
  • Patent number: 8652984
    Abstract: A dielectric ceramic composition comprising a main component and at least one or more subcomponent elements has a dielectric particle and a grain boundary. The dielectric particle has a main component phase substantially composed of the main component, and a diffusive phase around the main component phase where at least one selected from the subcomponent elements is diffused, a local minimal value of Cs is located at an outside edge side with respect to a position of the local maximum value of Cs, and Cs is increased from a position of the local minimal value of Cs toward the outside edge, when the dielectric particle is cut on an arbitrary cutting plane including the main component phase, and Cs is defined as a concentration of one or more elements selected from the subcomponent elements in an arbitrary position in the dielectric particle.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 18, 2014
    Assignee: TDK Corporation
    Inventors: Makoto Endo, Osamu Kido, Hirobumi Tanaka, Taisuke Masuko, Yusuke Sato
  • Patent number: 8652639
    Abstract: A method for strengthening glass and a glass using the same are provided. The method for strengthening glass includes the following steps. Firstly, a glass substrate, which has a first surface and a second surface opposite to the first surface, is provided. Next, a barrier film is formed on at least one of the first surface and the second surface. Then, the glass substrate with the barrier film is immersed in a strengthening solution. The strengthening solution includes first ions, and the barrier film can limit the first ions in the quantity entering the glass substrate.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 18, 2014
    Assignees: Dongguan Masstop Liquid Crystal Display Co., Ltd., Wintek Corporation
    Inventors: Guan-Yeu Chu, Chin-Hsun Ho, Ming-Wu Chen, Yu-Ching Wang, Cheng-Ying Lin, Chin-Chu Hung
  • Patent number: 8642166
    Abstract: A transparent conductive thin film comprises at least one stack layer of Ag—Ag3Sn—SnOx, or at least one stack layer of Ag—Ag4Sn—SnOx.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 4, 2014
    Assignee: MKE Technology Co., Ltd.
    Inventors: Chien-Tung Teng, Wei-Lun Hsu
  • Patent number: 8642187
    Abstract: A structural member for a manufacturing apparatus has a metal base member mainly composed of aluminum, a high-purity aluminum film formed on the surface of the metal base member, and a nonporous amorphous aluminum oxide passivation film which is formed by anodizing the high-purity aluminum film. A method for producing a structural member for a manufacturing apparatus, includes forming a high-purity aluminum film on the surface of a metal base member mainly composed of aluminum, and anodizing the high-purity aluminum film in a chemical conversion liquid having a pH of 4-10 and containing a nonaqueous solvent, which has a dielectric constant lower than that of water and dissolves water, thereby converting at least a surface portion of the high-purity aluminum film into a nonporous amorphous aluminum oxide passivation film.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 4, 2014
    Assignees: National University Corporation Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Tadahiro Ohmi, Minoru Tahara, Yasuhiro Kawase
  • Publication number: 20140030533
    Abstract: To manufacture a coating for an article for a semiconductor processing chamber, the coating is applied to the article by a method including applying a sol-gel coating of Y2O3 over the article, and curing the sol-gel coating on the article by heating the article with the sol-gel coating and exposing the article with the sol-gel coating to plasma in a semiconductor manufacturing chamber.
    Type: Application
    Filed: February 5, 2013
    Publication date: January 30, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo, Dmirty Lubomirsky, Vahid Fioruzdor
  • Patent number: 8637169
    Abstract: A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 28, 2014
    Assignee: CPFilms Inc.
    Inventors: Charles N. Van Nutt, James P. Enniss, Jaime A. Li, Anthony B. Port, Scott E. Pickett, Jeremy B. Stegall, Coby L. Hubbard, Rita M. Phillips, Steven A. Barth
  • Patent number: 8633137
    Abstract: Disclosed herein is a high-temperature superconducting tape, including: a substrate; a buffer layer formed on the substrate; and a high-temperature superconducting layer formed on the buffer layer, wherein the substrate is made of SUS310s or stainless steel containing 0.01-1% of silicon (Si) and 1-5% of molybdenum (Mo) and has an average metal crystal grain size of 12 ?m or less, and the high-temperature superconducting layer is made of a ReBCO (ReBa2Cu3O7, Re=Nd, Sm, Eu, Gd, Dy, Ho, Y)-based superconductive material. The high-temperature superconducting tape is advantageous with the result that a high-grade superconducting layer can be deposited on the thin buffer layer and thus the critical current density of the high-temperature superconducting tape can be improved, thereby remarkably improving the characteristics of the high-temperature superconducting tape.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 21, 2014
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Ho Sup Kim
  • Patent number: 8632895
    Abstract: Coated articles comprising a decorative metal substrate and a transparent cured coating thereon containing inorganic particles in which the concentration of particles in the exposed surface region of the cured coating is greater than the bulk region of the coating. Preferably, the transparent coating is applied by electrodeposition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 21, 2014
    Assignee: PPG Industries Ohio, Inc
    Inventors: James E. Poole, Anthony D. Kulfan, Raphael O. Kollah
  • Patent number: 8632886
    Abstract: A vehicle glazing comprises a pane of tinted glass, tinted by at least 1.0 to 1.8% wt. of total iron, having a low emissivity coating on its interior surface. The coating has an emissivity from 0.05 to 0.4 and may include a transparent conductive oxide (and optionally a dopant), or a metal layer and at least one dielectric layer. The glass is preferably toughened glass. According to another aspect, a laminated glazing includes two plies of glass, with a sheet of interlayer material laminated between the two glass plies, and wherein at least one ply of glass or the sheet of interlayer material is body tinted. The glazing has a low emissivity coating on its interior surface, the inner ply may be clear glass or tinted glass, and the interlayer material may be clear PVB or tinted PVB, and may further be infra-red reflecting. Either of the glazings may be used as a roof or other vehicle glazing.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 21, 2014
    Assignees: Pilkington PLC, Pilkington Automotive Limited
    Inventors: Neil Barton, Ashley Carl Torr
  • Publication number: 20140011051
    Abstract: Provided is an NBT-BT lead-free piezoelectric film having a high crystalline orientation and a high piezoelectric constant. The present invention is a piezoelectric film comprising a NaxM1-x layer and a (Bi, Na)TiO3—BaTiO3 layer. The (Bi, Na) TiO3—BaTiO3 layer is formed on the NaxM1-x layer, where M represents Pt, Ir, or PtIr and x represents a value of not less than 0.002 and not more than 0.02. Both of the NaxM1-x layer and the (Bi, Na) TiO3—BaTiO3 layer have a (001) orientation only, a (110) orientation only, or a (111) orientation only.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Takakiyo HARIGAI, Yoshiaki TANAKA, Hideaki ADACHI, Eiji FUJII
  • Patent number: 8623527
    Abstract: A ceramic coated article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The ceramic coated article includes an aluminum substrate coated with a solid solution coating formed from a combination of yttrium oxide and zirconium oxide. The ceramic coating is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 7, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Patent number: 8623526
    Abstract: Disclosed are a gradient bioceramic coating comprising a rare earth oxide, a broadband laser method for preparing the bioceramic coating, and the use of the bioceramic coating in the field of medical materials.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 7, 2014
    Assignee: Guizhou University
    Inventors: Qibin Liu, Wenfei Li, Ling Wu
  • Publication number: 20140002884
    Abstract: An all-solid electrochromic device with controlled infrared reflection or emission, in particular of electro-controllable type, comprising a stack successively comprising from a back face (3) as far as a front face (1) exposed to infrared radiation (2): a substrate (4) made of an electron-conducting material, or a substrate made of a non-electron-conducting material coated with a layer made of an electron-conducting material, forming a first electrode; a layer made of a first proton storage electrochromic material (5); a layer of a proton-conducting and electron-insulating electrolyte (6); a bilayer comprising a layer of a non-electrochromic, sub-stoichiometric tungsten oxide WO3-y forming a second electrode; said tungsten oxide WO3-y layer being arranged underneath a layer with variable infrared reflection of a second electrochromic material with variable proton intercalation rate, chosen from among crystallized tungsten oxide HxWO3-c and hydrated crystallized tungsten oxide HxWO3.
    Type: Application
    Filed: December 14, 2011
    Publication date: January 2, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Corinne Marcel, Frédéric Sabary, Daniel Marteau, Julien Demeaux
  • Publication number: 20140004316
    Abstract: An abrasive article includes a body having an abrasive portion. The abrasive portion includes a bond material and abrasive particles located within the bond material. The body also comprises a coating coupled to and overlying at least a portion of an exterior surface of the abrasive portion. The coating has a water vapor transmission rate of not greater than about 2 g/m2-day.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 2, 2014
    Inventor: Han ZHANG
  • Patent number: 8617697
    Abstract: Provided is a protective film including two or more transparent plastic substrates having a functional coating layer formed thereon and laminated successively by way of an adhesive layer.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 31, 2013
    Assignee: Kolon Industries, Inc.
    Inventors: Chong Won Kim, Suk Won Choi, Si Min Kim, Jung-Seok Kim, Sang-Hyun Baek
  • Patent number: 8614001
    Abstract: A sintered particle has the following chemical analysis, as percentages by weight: ZrO2 partially stabilized with CeO2 and Y2O3: complement to 100%; Al2 10%-60%; additive selected from CaO, a manganese oxide, La2O3, SrO, BaO, and mixtures thereof: 0.2%-6; the quantity of CaO being less than 2%; impurities: <2%; the zirconia being stabilized with CeO2 and Y2O3 present in quantities such that, as molar percentages based on the sum of ZrO2, CeO2 and Y2O3: CeO2: 6 mol %-11 mol %; and Y2O3: 0.5 mol %-2 mol %; the particle being obtained by sintering at a sintering temperature higher than 1300° C., the sintering temperature being higher than 1400° C. if the additive is CaO or if the molar CeO2 content is in the range 10% to 11%.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Emmanuel P. M. Nonnet, Yves M. L. Boussant Roux
  • Patent number: 8613807
    Abstract: A conductive film comprises a phosphide particle coated film formed by attaching raw material particles including phosphide particles comprising a compound of Ti and/or Fe, and P to a surface of a substrate material. This conductive film exhibits good corrosion resistant conductivity, and can be easily formed at low costs because of comprising the phosphide particle coated film. A corrosion-resistant conduction film comprises an iron-containing titanium phosphide layer containing Ti, Fe and P as essential basic elements. A corrosion-resistant conduction material having this corrosion-resistant conduction film on a surface of a substrate exhibits good corrosion resistance or conductivity. This corrosion-resistant conduction material can be obtained, for example, by a process comprising a plating step of forming an Ni plating layer on a surface of a Ti-based material substrate and a nitriding step of applying nitriding treatment to the Ti-based material substrate after the plating step at not more than 880 deg.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Fumio Shimizu, Takao Kobayashi, Ken-ichi Suzuki, Shigeki Oshima
  • Patent number: 8609253
    Abstract: A coated article includes a substrate and a thermochromic coating formed on the substrate. The thermochromic coating is a vanadium dioxide layer co-doped M and R, where M is two or more elements selected from a group consisting of titanium, niobium, molybdenum and tungsten, R is one or more elements selected from a group consisting of rhodium, palladium and ruthenium.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 17, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Jia Huang
  • Patent number: 8609260
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 17, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourg de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jose Nunez-Regueiro, Anton Dietrich, Philip J. Lingle, Scott V. Thomsen, Hong Wang, Jean-Marc Lemmer, Nancy Bassett, Bryce Corsner
  • Patent number: 8603648
    Abstract: A reflective film laminate is provided with high productivity and at low cost in which a protective film with minimized pinholes is provided to improve the alkali resistance and warm water resistance of the reflective film laminate including a pure Al film or an Al-based alloy film so that a reflectivity reduction resulting from the elution or oxidization of the Al film in an alkaline or warm water environment is less likely to occur. The reflective film laminate of the present invention includes, over a substrate, a pure Al film or an Al-based alloy film as a first layer, and an oxide film of a metal containing one or more elements selected from the group consisting of Zr, Cr, Y, Nb, Hf, Ta, W, Ti, Si, and Mo as a second layer over the first layer. The thickness of the second layer is 0.1 to 10 nm.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 10, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Sho Katsura, Nobuhiro Kobayashi, Jun Suzuki, Toshiki Sato
  • Patent number: 8603627
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O layer. Then, Gd ions are implanted in the Al—O layer by ion implantation process. The atomic percentages of O in the Al—O gradient layer gradually increase from the side of Al—O gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—O gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 10, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Yi-Chi Chan, Xiao-Qiang Chen
  • Patent number: 8603625
    Abstract: A manufacturing method of a sintered ceramic body mixes barium silicate with aluminum oxide, a glass material, and an additive oxide to prepare a material mixture, molds the material mixture and fires the molded object. The barium silicate is monoclinic and has an average particle diameter in a range of 0.3 ?m to 1 ?m and a specific surface area in a range of 5 m2/g to 20 m2/g. The aluminum oxide has an average particle diameter in a range of 0.4 ?m to 10 ?m, a specific surface area in a range of 0.8 m2/g to 8 m2/g. A volume ratio of the aluminum oxide to the barium silicate is in a range of 10% by volume to 25% by volume.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 10, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Yunie Izumi, Yoshimasa Kobayashi, Yuji Katsuda
  • Patent number: 8603930
    Abstract: The present invention provides a high-purity fused and crushed stabilized zirconia powder. The powder—with or without further processing, such as plasma spheroidization—is used in thermal spray applications of thermal barrier coatings (TBCs) and high-temperature abradables. The resulting coatings have a significantly improved high temperature sintering resistance, which will enhance the durability and thermal insulation effect of the coating.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 10, 2013
    Assignee: Sulzer Metco (US), Inc.
    Inventors: Jacobus C. Doesburg, Mitchell R. Dorfman, Liangde Xie
  • Patent number: 8603617
    Abstract: The invention concerns a cutting tool comprising a base body and a multi-layer coating applied thereto, which, possibly besides further layers, includes a plurality of main layers A and intermediate layers B applied alternately directly one upon the other, wherein the main layers A and the intermediate layers B are respectively metal oxide layers produced by the PVD process, the thickness of the main layers A is in the range of 4 nm to 1 ?m, and the thickness of the intermediate layers B is in the range of 2 nm to 50 nm, wherein the ratio of the thicknesses of the intermediate layers B to the thicknesses of the main layers A is in the range of 1:2 to 1:100.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: December 10, 2013
    Assignee: Walter AG
    Inventors: Veit Schier, Wolfgang Engelhart
  • Patent number: 8597782
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O layer. Then, Nd ions are implanted in the Al—O layer by ion implantation process. The atomic percentages of O in the Al—O gradient layer gradually increases from the side of Al—O gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—O gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 3, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Yi-Chi Chan, Xiao-Qiang Chen
  • Patent number: 8597791
    Abstract: A sensor of an apparatus for determining and/or monitoring at least one process variable. The sensor includes: at least one substrate, which is composed of a substrate material; at least one sensitive layer, which is applied on the substrate and which produces at least one measured variable dependent on the process variable and/or on a change of the process variable; and at least one passivating layer, which is applied on the sensitive layer. The invention provides that the passivating layer consists at least partially of the substrate material.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: December 3, 2013
    Assignee: Innovative Sensor Technology IST AG
    Inventor: Jiri Polak
  • Patent number: 8597774
    Abstract: To provide a laser-marking film having a laser-marking ink layer capable of forming vivid images when it is irradiated with a laser beam for forming laser markings. A laser-marking film comprising a base film 1, a white underlying layer 3 formed on the base film 1, and an ink layer 5 for laser marking formed on the underlying layer 3, wherein the ink layer 5 contains, dispersed therein, an iron oxide as a laser beam-absorbing agent in an amount of 0.1 to 30 parts by weight per 100 parts by weight of a resin binder.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Keiji Fukue, Atsushi Fukahori, Machiko Sugiyama, Shinji Tanaka, Jun Matsushima
  • Patent number: 8598057
    Abstract: A monolithic, unitary, seamless and physically continuous ceramic armor plate having first regions of one mechanical property and one chemical composition and one microstructural composition isolated from one another by a network of second regions of another mechanical property different from the one mechanical property and another chemical composition different from the one chemical composition and another microstructural composition different from the one microstructural composition, the one mechanical property and the another mechanical property being the propensity to crack.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 3, 2013
    Assignee: Verco Materials, LLC
    Inventor: Robert F. Speyer
  • Patent number: 8597783
    Abstract: A housing is provided which includes an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order. The corrosion resistant layer is an Al—O layer. Then, La ions are implanted in the Al—O layer by ion implantation process. The atomic percentages of O in the Al—O gradient layer gradually increase from the side of Al—O gradient layer near the aluminum or aluminum alloy substrate to the other side of Al—O gradient layer, away from aluminum or aluminum alloy substrate. Therefore the housing has a high corrosion resistance. A method for making the housing is also provided.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 3, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Yi-Chi Chan, Xiao-Qiang Chen
  • Publication number: 20130316140
    Abstract: A silicon thin film solar cell includes a substrate and an undercoating formed over the substrate. The undercoating includes first layer of tin oxide or titania and a second layer having a mixture of oxides of at least two of Sn, P, Si, Ti, Al, and Zr. A conductive coating is over the first coating. The conductive coating includes oxides of one or more of Zn, Fe, Mn, Al, Ce, Sn, Sb, Hf, Zr, Ni, Zn, Bi, Ti, Co, Cr, Si, or In or an alloy of two or more of these materials. A coated article has a substrate and an anti-iridescent layer formed over the substrate. The anti-iridescent layer has a metal oxide film and a homogeneous mixed oxide film. A functional film is over the anti-iridescent layer.
    Type: Application
    Filed: November 16, 2012
    Publication date: November 28, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventor: Songwei Lu
  • Patent number: 8592058
    Abstract: Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: November 26, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Laura M. Matz, Xiangxin Rui, Xinjian Lei, Sunil Shanker, Moo-Sung Kim, Iain Buchanan
  • Patent number: 8592059
    Abstract: A plasma display panel (PDP) includes a frameless EMI filter supported by a glass substrate for blocking/shielding substantial amounts of electromagnetic waves, with the filter being supported by a side of the substrate opposite a viewer. In certain example embodiments, the PDP filter includes a transparent conductive coating (TCC) for electromagnetic interference (EMI) and near infrared (NIR) blocking without the need for a conductive, peripheral buss bar. Additionally, in certain example embodiments, the need for a conductive frame is reduced or eliminated. The filter has high visible transmission, and is capable of blocking/shielding electromagnetic waves.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 26, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Philip J. Lingle, Willem Den Boer
  • Patent number: 8592041
    Abstract: Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshige Adachi, Sadaaki Sakamoto
  • Patent number: 8592334
    Abstract: A dielectric ceramic composition comprises, a main component including barium titanate, a first subcomponent including MgO, a second subcomponent including sintering aids of SiO2 compound, a third subcomponent including at least one of V2O5, Nb2O5 and WO3, a fourth A subcomponent including RA oxide (note that, RA is at least one selected from Tb, Gd and Dy), a fourth B subcomponent including RB oxide (note that, RB is at least one selected from Ho, Y and Yb), and a fifth subcomponent including MnO or Cr2O3.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 26, 2013
    Assignee: TDK Corporation
    Inventors: Kosuke Takano, Mari Miyauchi, Nobuto Morigasaki, Hideaki Seki, Makoto Maeda, Takahiro Yamada
  • Publication number: 20130309467
    Abstract: It is provided a hard laminar coating consisting of a plurality of films including two kinds of films in the form of a first film and a second film having respective different compositions and alternately laminated on a surface of a base structure, wherein the first film is an oxide or an oxynitride of (Ti1aBa), while the second film is TiB2.
    Type: Application
    Filed: February 1, 2011
    Publication date: November 21, 2013
    Applicant: OSG CORPORATION
    Inventor: Takaomi Toihara
  • Patent number: 8586506
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: November 19, 2013
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Raghu N. Bhattacharya, Sovannary Phok, Priscila Spagnol, Tapas Chaudhuri
  • Patent number: 8586215
    Abstract: Disclosed is a coated transparent pane that is part of a multiple-pane insulating glazing unit. The unit has a between-pane space to which the second major surface of the coated pane is exposed. The second major surface bears a low-emissivity coating, which includes in sequence a first dielectric film region, a first infrared-reflection film region, a second dielectric film region, a second infrared-reflection film region, a third dielectric film region, a third infrared-reflection film region, and a fourth dielectric film region.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: November 19, 2013
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Patent number: 8575052
    Abstract: Provided is a dielectric ceramic that includes a main component which contains Mg2SiO4 and additives which contain a zinc oxide and a glass component, in which, in X-ray diffraction. The peak intensity ratio, IB/IA, of the X-ray diffraction peak intensity IB of zinc oxide remaining unreacted, for which 2? is between 31.0° and 32.0° and between 33.0° and 34.0°, with respect to the peak intensity IA of Mg2SiO4 as the main phase, for which 2? is between 36.0° and 37.0°, is 10% or less. The dielectric ceramic has a relative density of 96% or greater.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 5, 2013
    Assignee: TDK Corporation
    Inventors: Toshio Sakurai, Tomohiro Arashi, Hisashi Kobuke, Takahiro Nakano, Tomoko Nakamura, Yasuharu Miyauchi
  • Patent number: 8574718
    Abstract: A substrate having a coating is disclosed. The coating is formed of a plurality of layers. At least one of the layers includes a super alloy and at least two additional layers including silver. A coating for a substrate is also disclosed. A method of applying a coating to a substrate is further disclosed.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 5, 2013
    Assignee: Apogee Enterprises, Inc.
    Inventor: Randy Leland Stull
  • Patent number: 8574721
    Abstract: A multilayer coating includes a bond coat layer, a first barrier layer applied on the bond coat layer, and a second barrier layer applied on the first barrier layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different. The second barrier layer has a compositional gradient comprising a majority of the second rare earth stabilized zirconia material to 100 wt % of a third rare earth stabilized zirconia material away from the first barrier layer.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Peter F. Gero, Kevin W. Schlichting, James W. Neal
  • Patent number: 8568904
    Abstract: A housing is provided which includes an aluminum or aluminum alloys substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloys substrate in that order. The corrosion resistant layer is an Al—O—N layer. Then, La ions is implanted in the Al—O—N layer by ion implantation process. The atomic percentages of N and O in the Al—O—N gradient layer gradually increase from the bottom of the layer near the aluminum or aluminum alloys substrate to the top of the layer away from aluminum or aluminum alloys substrate by physical vapor deposition. The housing has a higher corrosion resistance. A method for making the housing is also provided.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: October 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Yi-Chi Chan, Xiao-Qiang Chen
  • Patent number: 8568890
    Abstract: A watch cover glass having high hardness and excellent abrasion, and also having flaw resistance and antireflection function even after being used for a long period of time. The watch cover glass comprises a transparent substrate and, provided on at least one surface of the substrate, an antireflection film having a lamination structure that a SiON film (SiO2 and Si3N4 mixed film) and a Si3N4 film are laminated and the outermost layer is the SiON film. Accordingly, the proper antireflection effect can be obtained, the hardness of the antireflection film is increased and the abrasion resistance is remarkably increased. As a result, even after being used for a long period of time, the surface of the antireflection film is not finely flawed and is not peeled off, and it hardly occurs that the hands or dial plate are invisible due to surface mist and the antireflection function can be maintained.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 29, 2013
    Assignee: Citizen Holdings Co., Ltd.
    Inventors: Yasushi Murata, Koutarou Takazaki
  • Patent number: 8557404
    Abstract: A transparent conductive film for lamination on a substrate and comprising an ITO film and an FTO film, wherein a part or all of the crystal structure of a surface of the FTO film is orthorhombic, and a transparent conductive film for lamination on a substrate and comprising an ITO film and an FTO film, wherein the thickness of the FTO film is within a range from 5 nm to 20 nm and the FTO film is a continuous film. A method of producing the transparent conductive films includes depositing the ITO film on a substrate using a pyrosol process, and subsequently depositing the FTO film continuously on top of the ITO film.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 15, 2013
    Assignee: Nippon Soda Co., Ltd.
    Inventors: Shigeo Yamada, Tatsuya Ooashi
  • Patent number: 8557390
    Abstract: The present invention relates to a glass product, comprising a glass substrate with a transparent and conductive indium tin oxide layer having a covering layer, which forms a redox barrier for the indium tin oxide layer, wherein the indium tin oxide layer is obtained by pulsed, highly ionizing high-power magnetron sputtering (HPPMS) in which—the pulses of the magnetron have a peak power density greater than 1.5 kW/cm2,—the pulses of the magnetron have a time duration that is ?200 ?s, and—the mean current flow density rise upon ignition of the plasma within a time interval that is ?0.025 ms is at least 106 ?(ms cm2), and the indium tin oxide layer has a crystalline structure, in such a way that the (222)-reflection of an X-ray diffraction spectrum after the production of the indium tin oxide layer is shifted relative to the powder spectrum of indium tin oxide by a maximum of 1 degree, preferably by 0.3 degrees to 0.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: October 15, 2013
    Assignee: Audi AG
    Inventors: Thomas Drescher, Bernd Hangleiter, Joachim Schuetz, Annegret Matthai, Heike Walter, Felix Horstmann, Bernd Szyszka, Volker Sittinger, Wolfgang Werner, Tjhay Weyna Boentoro
  • Patent number: 8557406
    Abstract: A coated polycrystalline cubic boron nitride cutting insert useful in a cutting tool for removing material from a workpiece, and a method for making the same. The cutting insert including a polycrystalline cubic boron nitride substrate with a rake surface and at least one flank surface, and a cutting edge formed at the juncture between the rake surface and the flank surface. A wear-resistant coating scheme is on the polycrystalline cubic boron nitride substrate. The wear-resistant coating scheme includes the following coating layers. An inner coating layer region is on at least some of the rake surface and at least some of the flank surface of the polycrystalline cubic boron nitride substrate. An alumina-containing coating layer region, which has at least one exposed alumina coating layer, is on the inner coating layer region.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 15, 2013
    Assignee: Kennametal Inc.
    Inventors: Zhigang Ban, Yixiong Liu