Electric Superconducting Patents (Class 428/930)
  • Patent number: 5401715
    Abstract: A semiconductor substrate having a silicon substrate and a superconducting thin film layer composed of compound oxide such as Ln.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-.delta. (Ln is lanthanide) and stratified on the silicon substrate, characterized in that an intermediate semiconductor layer composed of compound semiconductor material such as GaAs is interposed between the silicon substrate and the superconducting thin film layer.
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: March 28, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideo Itozaki, Keizo Harada, Naoji Fujimori, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5384197
    Abstract: A superconducting magnet coil contains a coil of superconducting wire and a cured product of a curable resin composition with which the coil has been impregnated, the cured product having a thermal shrinkage factor of 1.5-0.3%, preferably 1.0-0.3%, when cooled from the glass transition temperature to 4.2K, a bend-breaking strain of 2.9-3.9%, preferably 3.2-3.9%, at 4.2K and a modulus of 500-1,000 kg/mm.sup.2 at 4.2K, or undergoing a thermal stress of 0-10 kg/mm.sup.2 when cooled from the glass transition temperature to 4.2K and resisting to quench during superconducting operation.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: January 24, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Toru Koyama, Koo Honjo, Masao Suzuki, Akio Takahashi, Akio Mukoh, Keiji Fukushi, Seiji Numata
  • Patent number: 5374610
    Abstract: An insulating composition consisting of Bi, Sr, RE, Cu, O or of Tl, Ba, RE, Cu, O (wherein; RE is an element selected from a group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) aligns properly with a crystal face of an oxide superconductor because its crystal structure is the same as or similar to that of the oxide superconductor. An insulating composition in which a part of Bi is replaced by Pb is further near the oxide superconductor its construction, and the modulation structure in this insulating composition is mitigated or disappears.
    Type: Grant
    Filed: May 8, 1991
    Date of Patent: December 20, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Noburu Fukushima, Shunji Nomura, Hisashi Yoshino, Ken Ando, Hiromi Niu, Tomohisa Yamashita
  • Patent number: 5372992
    Abstract: A superconducting thin film of a compound oxide represented by YBa.sub.2 Cu.sub.3 O.sub.y in which "y" is a number of 6<y<8 and deposited on a substrate, characterized in that a buffer layer of a compound oxide represented by Y.sub.2 BaCuO.sub.x in which "x" is a number of 4<x<6 is interposed between the superconducting thin film and the substrate.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: December 13, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideo Itozaki, Kenjiro Higaki, Shuji Yazu
  • Patent number: 5364709
    Abstract: A superconducting article has a matrix core containing a superconductor, a copper stabilizer layer disposed about the core, and an insulating layer surrounding the copper stabilizer layer. The insulating layer is a metallurgically bonded layer of a refractory metal selected from Nb, Ta, V, and Mo.
    Type: Grant
    Filed: November 24, 1992
    Date of Patent: November 15, 1994
    Assignee: Composite Materials Technology, Inc.
    Inventor: Dingan Yu
  • Patent number: 5362331
    Abstract: An electromagnetically stable Nb.sub.3 Al multifilamentary superconducting wire having a high current density at a high level of magnetic field such as 20 tesla is provided by cold drawing a composite multicore consisting of a large number of Al or Al alloy core and a Nb matrix into a multifilamentary wire, and then dipping the multifilamentary wire into a molten metal bath to coating the periphery of the wire with the molten metal for providing electromagnetically stabilizing the wire. The molten metal bath is provided within an inert gas sealing chamber.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: November 8, 1994
    Assignees: Hitachi Ltd., National Research Institute for Metals, Hitachi Cable Ltd.
    Inventors: Naohumi Tada, Yoshihide Wadayama, Kiyoshi Inoue, Kunihisa Kamata
  • Patent number: 5358926
    Abstract: Novel articles are provided of thin super-conductive thallium-based copper oxide layers on inorganic, usually crystalline substrates. Novel methods are provided for ease of producing such articles, particularly involving sol-gel techniques and laser ablation. The articles have a highly oriented superconductive thallium-based copper oxide film, particularly epitaxial, with high superconductive transition temperatures and desirable electrical properties. The subject articles find use in a wide variety of electronic applications, particularly in microwave and millimeter wave devices.
    Type: Grant
    Filed: July 29, 1993
    Date of Patent: October 25, 1994
    Assignee: Superconductor Technologies Inc.
    Inventors: William L. Olson, Michael M. Eddy, Robert B. Hammond, Timothy W. James, McDonald Robinson
  • Patent number: 5350738
    Abstract: The present invention provides a method of manufacturing a high quality oxide superconductor film capable of controlling the film-forming rate and the film composition easily and forming the superconductor film safely and economically, over a wide region and homogeneously, wherein each of elements of R in which R represents one or more of elements selected from the group consisting of Y and lanthanide series rare earth elements, Ba and Cu is vapor deposited in the state of metal on a substrate under a high vacuum of lower than 10.sup.-8 Torr by a vacuum vapor deposition process to form a precursor comprising an amorphous metal and the precursor is oxidized and crystallized by applying a heat treatment without taking out the same into the atmospheric air.
    Type: Grant
    Filed: November 27, 1992
    Date of Patent: September 27, 1994
    Assignees: International Superconductivity Technology Center, Kabushiki Kaisha Kobe Seiko Sho, Sharp Kabushiki Kaisha
    Inventors: Takashi Hase, Ryusuke Kita, Masato Sasaki, Tadataka Morishita
  • Patent number: 5348937
    Abstract: An article comprises an oriented thick film superconducting coating on a polycrystalline substrate. The coating includes at least two highly oriented platelet components ofBi.sub.a Sr.sub.b Ca.sub.c Cu.sub.d O.sub.x (BSCCO)wherein, in one component, a is 2, b is 2, c is 1, d is 2, and x is 8 and, in another component, a is 2, b is 2, c is 0, d is 1, and x is .apprxeq.6, oriented such that said BSCCO platelets are essentially parallel to said substrate. Suitable polycrystalline substrates are MgO and alumina and mullite.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: September 20, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Louis E. Toth, J. Richard Spann
  • Patent number: 5342828
    Abstract: A superconducting Tl--Pb--Sr--Ca--Cu--O thin film comprised of at least one phase of the formula Tl.sub.0.5 Pb.sub.0.5 Sr.sub.2 Ca.sub.1+n Cu.sub.2+n O.sub.7+2n where n=0, 1 or 2 is disclosed, which is prepared by a process comprising sputtering an oxide film onto a dielectric substrate from an oxide target containing preselected amounts of Tl, Pb, Sr, Ca and Cu, and heating an oxygen-containing atmosphere in the deposited film in the presence of a source of thallium oxide and lead oxide and cooling the film.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: August 30, 1994
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Dennis J. Kountz, Frank M. Pellicone
  • Patent number: 5340792
    Abstract: A method of substantially aligning the superconducting grains of a multi-grained perovskite defect oxide type material, which material includes at least one superconducting phase. In the superconducting phase of such perovskite materials, the unit cells thereof include a plurality of substantially parallel metal oxide planes spacedly disposed along the c axis thereof. The aforementioned alignment of discrete grains of the multi-grained superconducting material occurs along the c axis.
    Type: Grant
    Filed: November 28, 1989
    Date of Patent: August 23, 1994
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa Young
  • Patent number: 5338721
    Abstract: A superconducting composite comprising a compound oxide type superconductor and an outer metal pipe on which said superconductor is supported, characterized in that (i) said outer metal pipe is made of at least one of metals selected from a group comprising gold, silver and platinum metals and their alloys or (ii) an intermediate layer made of these precious metals is interposed between the compound oxide and the metal pipe.The composite may be in a form of a solid pipe or a hollow pipe having a superconducting thin layer deposited on an inner surface of the metal pipe.
    Type: Grant
    Filed: May 18, 1992
    Date of Patent: August 16, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Susumu Yamamoto, Teruyuki Murai, Nozomu Kawabe, Tomoyuki Awazu, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5321003
    Abstract: An autogenous superconducting joint metallurgically bonding a pair of shaped superconducting pieces. Each of the pieces is formed by combining the metallic elements of a superconducting oxide in substantially the stoichiometric proportions needed to form the superconducting oxide, and then forming the combined metallic elements into a shaped piece. The microstructure of the joint is substantially the same as that of the portions of the pieces adjacent the joint.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: June 14, 1994
    Assignee: American Superconductor Corporation
    Inventors: Chandrashekhar H. Joshi, Christopher A. Craven
  • Patent number: 5314871
    Abstract: According to the present invention, when a superconductive thin film is formed on a substrate of a single crystal, a compound having a composition of SrNdGaO.sub.4 and a K.sub.2 NiF.sub.4 type crystal structure is used as a material employable for the substrate. Alternatively, a single crystal composed of an oxide in which Ca, La and Cr are added to the foregoing compound is used as a material employable for the substrate. Then, a superconductive thin film composed of an oxide is formed on the substrate by employing an epitaxial growing method. Thus, the present invention makes it possible to provide a superconductive material having an excellent property of lattice alignment, a stable and high critical superconductivity temperature and a stable critical superconductivity electric current.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: May 24, 1994
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventor: Kozo Nakamura
  • Patent number: 5296456
    Abstract: Disclosed herein is a ceramic superconductor comprising a ceramic superconductive member, and a high-conductivity metal layer covering the ceramic superconductive member. At least one portion of the metal layer having low electrical conductivity or low thermal conductivity. Also disclosed is a method of manufacturing a ceramic superconductor, comprising the steps of filling a ceramic superconductor or a precursor thereof in a high-conductivity metal pipe, thereby forming a composite member, rolling the composite member into a ceramic superconductor element of a desired shape, which comprises a ceramic superconductive member and a high-conductivity metal layer covering the ceramic superconductive member, performing a predetermined heat treatment on the ceramic superconductor element, and alloying a predetermined portion of the high-conductivity metal layer, thereby rendering the portion less conductive either electrically or thermally.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: March 22, 1994
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Shoji Shiga, Naoki Uno, Hiroyuki Kikuchi
  • Patent number: 5290638
    Abstract: A superconducting joint includes a niobium-tin superconducting composite member, a niobium-tin superconducting wire diffusion bonded to the superconducting composite, a spacer diffusion bonded to the superconducting wire, a support diffusion bonded to the spacer and a superconducting member in electrical contact with the superconducting composite. According to the method of the invention, a wire comprising unreacted niobium and tin is machined to form a tapered end having a first tapered surface exposing the wire interior and an opposing surface. A complementary spacer having the taper substantially similar to that of the wire is assembled with the wire so that the tapered wire and the tapered spacer in surface contact with one another such that the spacer occupies the area of the wire removed by machining and the exposed tapered surface remains still exposed.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: March 1, 1994
    Assignee: Massachusetts Institute of Technology
    Inventors: John E. C. Williams, Alexander Zhukovsky, Ronald DeRocher
  • Patent number: 5286713
    Abstract: A superconducting circuit board is provided comprising a sintered alumina board containing more than 99% by weight of alumina and an interconnection pattern of an superconducting ceramics formed on the alumina board. Adhesion of the interconnection pattern to the alumina board is improved by an addition of Ti or Si coupling agent to a paste for forming the interconnection pattern. The use of copper powder in place of copper oxide powder as an ingredient forming a superconducting ceramics in the paste is advantageous for printing and obtaining a uniform superconducting ceramic pattern.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: February 15, 1994
    Assignee: Fujitsu Limited
    Inventors: Hiromitsu Yokoyama, Yoshihiko Imanaka, Kazunori Yamanaka, Nobuo Kamehara, Koichi Niwa, Takuya Uzumaki, Hitoshi Suzuki, Takato Machi
  • Patent number: 5286712
    Abstract: This invention relates to new superconducting material having a composition represented by the general formula:A.sub.u B.sub.v C.sub.w D.sub.x E.sub.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: February 15, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuhiko Fujita, Tadakazu Kobayashi, Hideo Itozaki, Saburo Tanaka, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5284822
    Abstract: Disclosed are an oxide superconductor, and an optimum process for producing the same. The oxide superconductor comprises a base material phase including an oxide superconducting material, the oxide superconducting material including barium (Ba) at least and being free from grain boundaries, and precipitation phases contained in an amount of 1 to 50% by volume in the base material phase and dotted therein in a manner like islands, the precipitation phases being oxides of a metal selected from the group consisting of silicon (Si), aluminum (Al), zirconium (Zr), magnesium (Mg), titanium (Ti), strontium (Sr), tungsten (W), cobalt (Co) and vanadium (V), and being products of decomposition reaction of the base material phase. In the production process, the constituent materials are treated thermally at a partially melting temperature in order to give the above-described novel structure to the oxide superconductor.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: February 8, 1994
    Assignees: International Superconductivity Technology Center, Toyota Jidosha Kabushiki Kaisha, Kawasaki Jukogyo Kabushiki Kaisha, NGK Insulators, Ltd.
    Inventors: Takenobu Sakai, Kozi Nishio, Naoyuki Ogawa, Izumi Hirabayashi, Shoji Tanaka
  • Patent number: 5273959
    Abstract: An alloy having a low reactivity towards certain high temperature superconducting materials at temperatures up to about 10.degree. C. lower than the melting point of the alloy. The alloy is a ternary silver-based alloy consisting, by weight, of 0.5-9% palladium, 20-40% gold, balance silver. Using the alloy and a superconducting material of the type R-Ba-Cu-O, where R is yttrium or a rare earth element, composite conductors can be formed at temperatures equal or higher than the temperature of peritectic decomposition of the superconductor. The alloy may also be used as a buffer layer or cladding material on substrates having unacceptably high reactivity towards the superconducting material.
    Type: Grant
    Filed: November 4, 1992
    Date of Patent: December 28, 1993
    Assignee: National Research Council of Canada
    Inventors: Paul Lambert, Claude Gelinas, Blaise Champagne, Julian Cave
  • Patent number: 5270294
    Abstract: A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layThis invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
    Type: Grant
    Filed: December 27, 1991
    Date of Patent: December 14, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Xin D. Wu, Ross E. Muenchausen
  • Patent number: 5266416
    Abstract: An aluminum-stabilized superconducting wire includes a superconducting wire member obtained by burying a superconducting filament in a copper matrix and an aluminum stabilizing member covered in an outer surface of the superconducting wire member, and the aluminum stabilizing member is constituted by an aluminum alloy having a 0.2 % proof resistivity of 4 kg/mm.sup.2 or more at a very low temperature and a residual resistance ratio of 250 or more. It is preferable that the aluminum alloy contains at least one element selected from 50 to 1,000 ppm of Zn, 50 to 150 ppm of Si, 50 to 400 ppm of Ag, 50 to 300 ppm of Cu, and 30 to 2,000 ppm of Ce, and that a balance is constituted by Al and an inevitable impurity.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: November 30, 1993
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Itaru Inoue, Yoshinori Nagasu, Keizo Kosugi, Takuya Suzuki
  • Patent number: 5262394
    Abstract: A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
    Type: Grant
    Filed: December 27, 1991
    Date of Patent: November 16, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Xin D. Wu, Ross E. Muenchausen
  • Patent number: 5254529
    Abstract: A high temperature superconducting wire or yarn has a first layer thereon yttria, a third layer of barium cuprate, and a second layer of a superconducting YBa.sub.2 Cu.sub.3 O.sub.7-x formed at the interface between the first and third layers. The wire can be yttrium and the yarn can be alumina.
    Type: Grant
    Filed: October 31, 1991
    Date of Patent: October 19, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Amarnath P. Divecha, James M. Kerr
  • Patent number: 5254530
    Abstract: A Bi-Sr-Ca-Cu-O-type superconductive film is formed on an MgO (100) single crystal substrate by the chemical vapor deposition method at a film formation speed of 780.degree. C. or less and a film formation speed of 1.0 nm/min or more, and exhibits an a-axis or b-axis preferential growth with respect to the substrate surface.
    Type: Grant
    Filed: June 18, 1992
    Date of Patent: October 19, 1993
    Assignees: International Superconductivity Technology Center, Ube Industries, Ltd., Sharp Corporatoin, Fujikura Ltd.
    Inventors: Tsunemi Sugimoto, Kazushi Sugawara, Mikio Nakagawa, Yuh Shiohara
  • Patent number: 5252547
    Abstract: An outer surface of a superconducting film of compound oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-.delta. is protected with a protective layer which is composed of any one of (i) oxide of metal such as MgO, CaO, SrO etc, (ii) carbide such as SiC, or (iii) nitride such as BN.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: October 12, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5252545
    Abstract: Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
    Type: Grant
    Filed: July 14, 1987
    Date of Patent: October 12, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard L. Landingham
  • Patent number: 5252390
    Abstract: A laminated film comprising at least two thin films of single crystal LnBa.sub.2 Cu.sub.3 O.sub.7-x wherein Ln is Y or one of lanthanoids except Pr and Tb having the (001) plane in the direction parallel with the film surface and at least one continuous thin film of Y.sub.2 O.sub.3 which has a thickness of not larger than 100 .ANG. and the (001) plane in the direction parallel with the film surface and is interposed between a pair of said thin films of single crystal LnBa.sub.2 Cu.sub.3 O.sub.7-x, wherein the thin films of single crystal LnBa.sub.2 Cu.sub.3 O.sub.7-x has good superconductive properties.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: October 12, 1993
    Assignees: Ube Industries, Ltd., Kanegafuchi Chemical Industry Co., Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Toyo Boseki Kabushiki Kaisha, Nippon Mining Co., Ltd., NEC Corporation, Matsushita Electric Industrial Co., Ltd., Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Toshio Takada, Takahito Terashima, Kenji Iijima, Kazunuki Yamamoto, Kazuto Hirata, Yoshichika Bando
  • Patent number: 5252543
    Abstract: Improvement in a superconducting thin film of compound oxide represented by the formula: LnBa.sub.2 Cu.sub.3 O.sub.7- .delta. (Ln is lanthanide) or (La.sub.1-x .alpha..sub.x).sub.2 CuO.sub.4 (.alpha. is Ba or Sr) deposited on a substrate or core made of MgO, SrTiO.sub.3 or ZrO.sub.2 by physical vapor deposition technique, the surface roughness R.sub.max (datum length=1,000 .mu.m) of the superconducting thin film being less than 0.2 .mu.m.
    Type: Grant
    Filed: January 31, 1991
    Date of Patent: October 12, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Saburo Tanaka, Hideo Itozaki, Kenjiro Higaki, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5246783
    Abstract: Disclosed are electrically conductive and semiconductive devices utilizing polymers having resistance to water treeing and good dielectric properties. The polymer comprises ethylene polymerized with at least one C.sub.3 to C.sub.20 alpha-olefin and optionally at least one C.sub.3 to C.sub.20 polyene. The polymer utilized has a density in the range of about 0.86 g/cm.sup.3 to about 0.96 g/cm.sup.3, a melt index in the range of about 0.2 dg/min to about 100 dg/min, a molecular weight distribution in the range of about 1.5 to about 30, and a composition distribution breadth index greater than about 45 percent. For the polymer utilized, the tree rating is generally less than about 40, the power factor is in the range of about 0.0002 to about 0.0005, and the dielectric constant is in the range of about 1.8 to about 2.4.
    Type: Grant
    Filed: August 15, 1991
    Date of Patent: September 21, 1993
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Lawrence Spenadel, Monica L. Hendewerk, Aspy K. Mehta
  • Patent number: 5242898
    Abstract: A method of forming a superconducting circuit comprises the steps of preparing a ceramics body which is changed from a non-superconductive phase not superconducting at the working temperature into a superconducting phase superconducting at the working temperature by heat treatment and performing the heat treatment on a part of the ceramics body by applying a laser beam to the ceramics body to change the same into the superconductive phase, thereby to form a superconducting circuit consisting of the superconductive phase and the non-superconductive phase on the ceramics body.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: September 7, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Takahashi, Noriyuki Yoshida, Jun Shioya, Yoichi Yamaguchi, Akira Mizoguchi, Noriki Hayashi, Satoshi Takano, Kenji Miyazaki
  • Patent number: 5227365
    Abstract: Process for producing superconducting metal-oxide textiles comprising impregnating a preformed, organic textile material with metal compounds in a desired atomic ratio, heating the material in a weakly oxidizing atmosphere to pyrolize and oxidize the organic material, maintaining the material at temperature in an oxidizing atmosphere, and cooling the material in an oxidizing atmosphere, so as to form a crystalline structure capable of superconducting.
    Type: Grant
    Filed: February 24, 1992
    Date of Patent: July 13, 1993
    Assignee: Praxair Technology, Inc.
    Inventor: Jaak S. Van den Sype
  • Patent number: 5223348
    Abstract: Artifical pinning centers are provided in normal metal layers adjacent to a type II superconductor layer produced by reacting two normal metal layers. The transverse thicknesses of the final superconductor and normal metal layers are less than about 1000 A.degree.. Planar layers of metal which are to provide a multilayer wire whose layers are parallel. A plurality of the multilayer wires are combined to produce a multifilament superconductor, the layers in all the individual wires being parallel to each other.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: June 29, 1993
    Assignee: Composite Materials Technology, Inc.
    Inventors: James Wong, Mark K. Rudziak
  • Patent number: 5212151
    Abstract: An oxide superconducting thin film formed by laser ablation comprises a matrix formed of c-axis oriented superconducting phases and foreign phases which are different in crystal orientation from the matrix. In order to improve critical current density of the oxide superconducting thin film, preferably selected are such conditions that the size of each superconducting phase in its a-b plane is not more than 0.1 .mu.m in diameter, the size of each superconducting phase along its c-axis direction is equal to the thickness of the oxide superconducting thin film, the foreign phases at least partially pass through the oxide superconducting thin film along the direction of thickness, the size of each foreign phase is at least 0.01 .mu.m and not more than 5 .mu.m in diameter, each foreign phase has an a-axis or a c-axis perpendicularly oriented with respect to the major surface of the oxide superconducting thin film, and the like.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: May 18, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Takano, Shigeru Okuda, Noriyuki Yoshida, Tsukushi Hara, Kiyoshi Okaniwa, Takahiko Yamamoto
  • Patent number: 5202305
    Abstract: The superconducting structure for magnetic shielding according to the present invention comprises at least two layers of a superconducting layer and a substrate. This superconducting structure for magnetic shielding can be formed in a plate-like shape or a cylindrical shape. When the structure is prepared in three-layers by providing an intermediate layer between the superconducting layer and the substrate, the three-layered structure has improved superconducting properties. When a protective layer is provided on the superconducting layer to protect the layer, the resulting structure has improved thermal shock resistance. The intermediate layer preferably consists of a ceramic or a noble metal and the ceramic preferably consists of a glass.
    Type: Grant
    Filed: December 3, 1991
    Date of Patent: April 13, 1993
    Assignee: NGK Insulators, Ltd.
    Inventors: Keiichiro Watanabe, Hitoshi Yoshida, Hitoshi Sakai, Shuichiro Oki, Manabu Yoshida
  • Patent number: 5200392
    Abstract: An improved ceramic-plus-metal superconducting composition of YBa.sub.2 Cu.sub.3 O.sub.6+x plus substantially pure aluminum for ultimate use in making superconducting devices such as wires and tapes for utilization in motors, generators, electric circuits, etc.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: April 6, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: A. Srinivasa Rao, Om P. Arora
  • Patent number: 5196379
    Abstract: The present invention provides a method of depositing a passivation layer on the surface of a superconducting ceramic oxide wherein the passivation layer is a layer of an oxide of Al, Bi, Si or Al-W.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: March 23, 1993
    Assignee: Regents of the University of Minneapolis
    Inventors: John H. Weaver, Robert K. Grasselli, David L. Nelson, Harry M. Meyer, III, Donald M. Hill
  • Patent number: 5194420
    Abstract: Disclosed here is a shaped article superconductor comprising platelets of superconducting oxide crystals which are normally anisotropic but in which said anisotropy is reduced by joining together the oxides superconductor crystallites with a normally conductive metal layer interposed therebetween. The separation distances of the platelets are, on the average, less than the coherence length of the normally conductive metal under conditions which render the oxide crystals superconductive.
    Type: Grant
    Filed: May 7, 1990
    Date of Patent: March 16, 1993
    Assignee: Chichibu Cement Co., Ltd.
    Inventor: Ryozo Akihama
  • Patent number: 5182176
    Abstract: A Type II superconducting filament is formed by surrounding a Type II superconducting alloy ingot with layers of a fine grain Type II superconducting alloy sheet, a barrier layer and a copper extrusion can. The composite is then reduced to a filament by hot and cold working.
    Type: Grant
    Filed: October 30, 1990
    Date of Patent: January 26, 1993
    Assignee: Composite Materials Technology, Inc.
    Inventor: James Wong
  • Patent number: 5177056
    Abstract: Compositions of a) thermosetting plastics or thermoplastics, and a mixture of such plastics, and b) a superconducting compound having a transition temperature T.sub.c of at least 20 K are suitable as moulding materials for the production of articles for magnetic screening of static magnetic fields and for transmitting of magnetic and electrical forces.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: January 5, 1993
    Assignee: Ciba-Geigy Corporation
    Inventors: Bruno Hilti, Carl W. Mayer, Jurgen Pfeiffer, Manfred Hofmann, Max Hunziker
  • Patent number: 5175141
    Abstract: Bi-based superconducting ceramic films having high Tc's and high critical current densities are formed. The superconducting film is formed on a non-superconducting saubstrate of Bi.sub.2 Sr.sub.1-x Ca.sub.x O.sub.y. Due to crystalline similarity between the superconducting film and the underlying ceramic substrate, the crystalline structure of the film is improved. There are few impurities which contaminate the superconducting film since the constituent elements of the substrate are also the consitutents of the superconducting film.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: December 29, 1992
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Patent number: 5169831
    Abstract: A superconducting composite comprising a compound oxide type superconductor and an outer metal pipe on which said superconductor is supported, characterized in that (i) said outer metal pipe is made of at least one of metals selected from a group comprising gold, silver and platinum metals and their alloys or (ii) an intermediate layer made of these precious metals is interposed between the compound oxide and the metal pipe.The composite may be in a form of a solid pipe or a hollow pipe having a superconducting thin layer deposited on an inner surface of the metal pipe.
    Type: Grant
    Filed: January 24, 1992
    Date of Patent: December 8, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Susumu Yamamoto, Teruyuki Murai, Nozumu Kawabe, Tomoyuki Awazu, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5164360
    Abstract: A ceramic superconductor comprises a substantially nonmagnetic preannealed nickel-based alloy substrate which supports a ceramic superconductor. The substrate may include aluminum to strengthen the substrate, make it less magnetic and enhance its chemical compatibility with the ceramic superconductor. The ceramic is formed on the substrate by sintering superconductor grains at temperatures above 1000.degree. C. to enhance densification of the ceramic.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: November 17, 1992
    Assignee: General Atomics
    Inventors: Lawrence D. Woolf, Frederick H. Elsner, William A. Raggio
  • Patent number: 5160794
    Abstract: In a preferred form of the invention, a superconductor is produced by the steps of combining a plurality of layers of metal sheets to form a composite structure. The sheets are pure transition metals--niobium, titanium, zirconium, or vanadium, alternate sheets being formed of different transition metals. The resulting composite structure is mechanically reduced sufficiently so that each transition metal sheet is less than 1000 .ANG. thick. In the course of reduction, the composite is subjected to sufficient temperatures for sufficient times such that the transition metal layers are partially reacted to form a ductile superconducting material between the transition metal layers. Approximately one half by volume of the transition metal layers remain unreacted. These unreacted layers afford efficient flux pinning within the composite when the layers are reduced to the <1000.ANG. final size. In other embodiments, powders and filaments can be used instead of initial layers.
    Type: Grant
    Filed: June 19, 1990
    Date of Patent: November 3, 1992
    Assignee: Composite Materials Technology, Inc.
    Inventors: James Wong, Mark K. Rudziak, Donald W. Capone, II.
  • Patent number: 5160550
    Abstract: A method for producing a superconductor includes the steps of combining a plurality of metal bodies to form a composite structure, metal bodies being selected from transition metals such as niobium, tantalum, titanium, zirconium, hafnium and vanadium, alternate bodies being formed of different transition metals to form triplets. The transition metals are reacted to form a ductile superconducting ternary alloy at the interfaces of these triplets of metals. The extent of the reaction is limited so as to maintain areas of pure or nearly pure transition metal along with the superconducting ternary alloy in at least one of each triplet of transition metals.
    Type: Grant
    Filed: July 31, 1990
    Date of Patent: November 3, 1992
    Assignee: Composite Materials Technology, Inc.
    Inventors: James Wong, Mark K. Rudziak
  • Patent number: 5151406
    Abstract: A laminated ceramic superconductor which comprises at least two layers of ceramic superconductor and a stabilizing metal layer interposed between said ceramic superconductor layers, which has improved flexibility and increased critical current density.
    Type: Grant
    Filed: February 25, 1988
    Date of Patent: September 29, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuo Sawada, Kengo Okura, Noriyuki Yoshida, Satoshi Takano, Kenji Miyazaki, Noriki Hayashi
  • Patent number: 5149681
    Abstract: A pre-existing superconductor ceramic which is bonded to a substrate is passed through a relatively short heating zone to melt the ceramic superconductor. As the superconductor is subsequently cooled after it has passed through the heating zone, a temperature gradient is established along the superconductor which causes the melted crystals to renucleate and grow along and parallel to the temperature gradient. The resulting crystalline structure exhibits improved superconducting properties when the superconductor is placed in the presence of a magnetic field. For appropriate applications, the substrate can be formed as a wire.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: September 22, 1992
    Assignee: General Atomics
    Inventors: Tihiro Ohkawa, Richard B. Stephens, Albert J. Lieber
  • Patent number: 5147851
    Abstract: A superconducting thick film circuit board or thick film superconductor obtained by forming a rod-like crystal superconducting composite layer comprising a superconductor made of a compound of M-Ba-Cu-O, M being Y and/or a lanthanide element, and a composite of Ag and Pt on a stabilized zirconia substrate has a high Jc value and good superconducting properties.
    Type: Grant
    Filed: October 30, 1989
    Date of Patent: September 15, 1992
    Assignee: Hitachi Chemical Company Ltd.
    Inventors: Shozo Yamana, Hideji Kuwajima, Minoru Ishihara, Keiji Sumiya, Toranosuke Ashizawa, Shuichiro Shimoda
  • Patent number: 5147849
    Abstract: A metal electrode formed on an oxide superconductor for electric connection to the oxide superconductor, includes a first layer of Ag in direct contact with the oxide superconductor, and a second layer formed on the first layer. The second layer is formed of noble metal excluding Ag.The metal electrode can be formed by forming a first layer of Ag to cover a whole surface of the oxide superconductor layer, and forming a second layer of noble metal excluding Ag, to cover a whole surface of the first layer, thereby to form a double metal layer, and patterning the double metal layer so as to form a metal electrode composed of the double metal layer.
    Type: Grant
    Filed: September 20, 1990
    Date of Patent: September 15, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Saburo Tanaka, Hideo Itozaki, Shuji Yazu
  • Patent number: 5145832
    Abstract: A flexible superconducting wire element comprising a flexible tape of partially stabilized (.about.3 mole % yttria) yttria-stabilized zirconia (YSZ), a buffer layer of fully stabilized (between 8 and 18 mole % yttria, preferably 9 mole %) YSZ deposited on the flexible tape, and a high-temperature, perovskite superconductor such as YBaCuO deposited on the buffer layer. The tape provides the strength while remaining flexible. The buffer layer is flexible because of its thinness (.about.100 nm), but provides a good crystallographic template for the growth of oriented perovskite superconductors. Thereby, the superconducting properties of the wire element approach those of a superconducting film deposited on a rigid substrate.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: September 8, 1992
    Assignee: Bell Communications Research, Inc.
    Inventors: Kolagani S. Harshavardhan, Samuel M. Sampere, Timothy D. Sands, Thirumalai Venkatesan