Sulphate Containing Patents (Class 429/205)
-
Patent number: 11916252Abstract: New or improved lead acid batteries with vapor pressure barriers and/or improved battery separators, as well as systems, vehicles, and/or methods of manufacture and/or use thereof are disclosed herein. In at least select embodiments, the instant disclosure provides new or improved lead acid batteries with a vapor pressure barrier. In at least select embodiments, the instant disclosure provides new or improved lead acid battery vapor pressure barriers along with new or improved battery separators, and/or methods of manufacture and/or use thereof. In at least select embodiments, the instant disclosure provides a new or improved lead acid battery with a vapor pressure barrier that reduces the water loss from the battery. In at least select embodiments, a method of reducing the water loss of a lead acid battery may include providing a vapor pressure barrier, such as a layer of oil, inside the lead acid battery along with an improved battery separator.Type: GrantFiled: October 6, 2020Date of Patent: February 27, 2024Assignee: Daramic, LLCInventors: Margaret R. Roberts, Jeffrey K. Chambers, James Perry, J. Kevin Whear
-
Patent number: 11329574Abstract: A system and a method for an energy harvesting and storage apparatus including a flexible substrate, an energy harvesting device disposed on the flexible substrate, the energy harvesting device is configured to convert mechanical energy into electrical energy, an energy storage device disposed on the flexible substrate and in electrical communication with the energy harvesting device and configured to receive and store the electrical energy from the energy harvesting device.Type: GrantFiled: May 16, 2018Date of Patent: May 10, 2022Assignee: City University of Hong KongInventors: Chunyi Zhi, Zifeng Wang
-
Patent number: 11094963Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.Type: GrantFiled: December 2, 2019Date of Patent: August 17, 2021Assignee: Arizona Board of Regents on behalf of Arizona State UniversityInventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
-
Patent number: 10886561Abstract: A system and a method for an adaptable electrical component including a first electrode and a second electrode; the first electrode being spaced apart from the second electrode; a polymer electrolyte disposed between the first electrode and the second electrode; a housing retaining the first electrode, second electrode and the polymer electrolyte; wherein the polymer electrolyte is a thermoresponsive polymer electrolyte, such that one or more characteristics of the polymer electrolyte changes in response to a temperature exceeding a threshold.Type: GrantFiled: May 16, 2018Date of Patent: January 5, 2021Assignee: City University of Hong KongInventors: Chunyi Zhi, Funian Mo
-
Patent number: 10439186Abstract: A flooded lead-acid battery include a pasting substrate embedded into an active material of at least one surface of either the positive plates or the negative plates of each respective plurality, wherein the pasting substrate has an initial thickness. The pasting substrate thickness has a compressed thickness within the container that is at least 10 to 20% less than the initial thickness.Type: GrantFiled: October 11, 2011Date of Patent: October 8, 2019Assignee: EXIDE TECHNOLOGIESInventors: Jesus Valenciano Martinez, Luca Brisotto, Francisco Trinidad Lopez
-
Patent number: 10297820Abstract: An anode active material and a method for preparing the same, wherein the anode active material has a core-shell structure having formula (MOx-Liy)-C (here, M is a metal (or metalloid), x is greater than 0 and less than 1.5, and y is greater than 0 and less than 4) and including a core part containing an alloy of a metal (or metalloid) oxide-Li (MOx-Liy) and a shell part containing a carbon material coated on a surface of the core part, wherein the shell part contains lithium in an amount less than 5 atm % in the surface and the inner portion thereof. The anode active material can provide high capacity, excellent cycle characteristics, excellent volume expansion control capability, and high initial efficiency.Type: GrantFiled: December 15, 2015Date of Patent: May 21, 2019Assignee: LG Chem, Ltd.Inventors: Yoon-Ah Kang, Yong-Ju Lee, Eun-Kyung Kim
-
Patent number: 9764283Abstract: A scrubbing solution is provided having an absorbent for carbon dioxide based on amines, or ethanolamines, or amino acid salts, or potash, or a combination thereof, and an additive activating the absorption rate, wherein the activating additive is a germanium dioxide. A corresponding method for accelerating the absorption of carbon dioxide is also provided, wherein a carbon dioxide-containing gas is contacted with such a scrubbing solution, wherein the carbon dioxide is physically dissolved in the scrubbing solution and is chemically absorbed with the participation of the absorbent, and wherein the germanium dioxide acts catalytically for at least one reaction step of the chemical absorption of the carbon dioxide.Type: GrantFiled: July 8, 2013Date of Patent: September 19, 2017Assignee: Siemens AktiengesellschaftInventors: Bjorn Fischer, Ralph Joh, Markus Kinzl, Diego Andres Kuettel, Rudiger Schneider
-
Patent number: 9525195Abstract: A remanufactured battery module includes a power assembly having a stack of battery cell assemblies. Each battery cell assembly includes a plurality of layers including a battery cell and a frame supporting the battery cell within the power assembly. The plurality of layers of at least one battery cell assembly includes an internal heat fin having first and second side portions extending beyond respective side edges of the battery cell and the frame. The remanufactured battery module also includes a side assembly in physical contact with the first side portion of the internal heat fin to enable the side assembly to act as a heat sink with respect to the first side portion of the internal heat fin. A layer of the plurality of layers of at least one battery cell assembly is new, and at least a portion of the side assembly is used.Type: GrantFiled: July 30, 2013Date of Patent: December 20, 2016Assignee: Johnson Controls Technology CorporationInventors: Perry M. Wyatt, Thanh T. Nguyen
-
Patent number: 8927143Abstract: A storage battery is provided comprising a positive electrode of lead, a negative electrode of gallium and an aqueous electrolyte containing aluminum sulfate. Upon charging the cell, lead dioxide is formed and aluminum is alloyed with the gallium. During discharge, aluminum goes back into solution and lead dioxide is reduced to lead sulfate.Type: GrantFiled: December 6, 2011Date of Patent: January 6, 2015Inventor: John E. Stauffer
-
Patent number: 8765297Abstract: An Advanced Graphite, with a lower degree of ordered carbon domains and a surface area greater than ten times that of typical battery grade graphites, is used in negative active material (NAM) of valve-regulated lead-acid (VRLA) type Spiral wound 6V/25 Ah lead-acid batteries. A significant and unexpected cycle life was achieved for the Advanced Graphite mix where the battery was able to cycle beyond 145,000 cycles above the failure voltage of 9V in a non-stop, power-assist cycle-life test. Batteries with Advanced Graphite also showed increased charge acceptance power and discharge power compared to control groups.Type: GrantFiled: January 4, 2011Date of Patent: July 1, 2014Assignee: Exide TechnologiesInventors: Sudhakar Jagannathan, Melchor Fernandez Garcia
-
Publication number: 20130143113Abstract: A storage battery is provided comprising a positive electrode of lead, a negative electrode of gallium and an aqueous electrolyte containing aluminum sulfate. Upon charging the cell, lead dioxide is formed and aluminum is alloyed with the gallium. During discharge, aluminum goes back into solution and lead dioxide is reduced to lead sulfate.Type: ApplicationFiled: December 6, 2011Publication date: June 6, 2013Inventor: John E. STAUFFER
-
Publication number: 20130045415Abstract: A rechargeable battery is provided such that the positive electrode comprises lead, the negative electrode zinc, and the electrolyte is an aqueous solution of an alkali metal bisulfate. Upon discharge, lead dioxide is reduced to lead sulfate and zinc is oxidized to zinc oxide. The reactions are reversed when the battery is charged.Type: ApplicationFiled: October 11, 2012Publication date: February 21, 2013Inventor: John E. STAUFFER
-
Publication number: 20130029232Abstract: A lithium ion secondary battery includes a positive electrode, a negative electrode, a separator and an ionic liquid electrolyte. The separator is a polar porous membrane. The ionic liquid electrolyte and the separator made of the polar porous are used in the lithium ion secondary batteries, which can improve the electrochemical performance of the lithium ion secondary batteries.Type: ApplicationFiled: July 25, 2012Publication date: January 31, 2013Applicant: Microvast New Materials (Huzhou) Co., LTD.Inventors: ZHUOQUN ZHENG, Bin Gu, Hong Wang, Liaoying Ke, Yunhua Nie
-
Publication number: 20120270102Abstract: An energy storage device including an anode electrode comprising activated carbon with nitrogen containing surface groups that provide psuedocapacitive properties to the activated carbon, a cathode electrode, a separator, and an electrolyte.Type: ApplicationFiled: October 11, 2011Publication date: October 25, 2012Applicant: Aquion Energy, Inc.Inventors: Jay Whitacre, Sneha Shanbhag
-
Patent number: 8232003Abstract: A storage battery is provided comprising a positive electrode of lead, a negative electrode of palladium, and an electrolyte consisting of an aqueous solution of at least one sulfate salt. Upon charging, lead is converted to lead dioxide and atomic hydrogen is absorbed by the palladium. During discharge, lead dioxide is reduced to the plumbous state and hydrogen is oxidized to hydrogen ions.Type: GrantFiled: April 14, 2009Date of Patent: July 31, 2012Inventor: John E. Stauffer
-
Publication number: 20120171564Abstract: An Advanced Graphite, with a lower degree of ordered carbon domains and a surface area greater than ten times that of typical battery grade graphites, is used in negative active material (NAM) of valve-regulated lead-acid (VRLA) type Spiral wound 6V/25 Ah lead-acid batteries. A significant and unexpected cycle life was achieved for the Advanced Graphite mix where the battery was able to cycle beyond 145,000 cycles above the failure voltage of 9V in a non-stop, power-assist cycle-life test. Batteries with Advanced Graphite also showed increased charge acceptance power and discharge power compared to control groups.Type: ApplicationFiled: January 4, 2011Publication date: July 5, 2012Applicant: Exide TechnologiesInventors: Sudhakar JAGANNATHAN, Fernández Melchor
-
Publication number: 20120082872Abstract: Spiro ammonium salts as an additive for electrolytes in electric current producing cells, in particular electric current producing cells comprising a Li-based anode, are provided. In some embodiments, the electric current producing cell comprises a cathode, a Li-based anode, and at least one electrolyte wherein the electrolyte contains at least one spiro ammonium salt.Type: ApplicationFiled: September 30, 2011Publication date: April 5, 2012Applicants: BASF SE, Sion Power CorporationInventors: Rudiger Schmidt, Daher Michael Badine, Xiao Steimle, Helmut Moehwald, Igor Kovalev, Yuriy V. Mikhaylik
-
Publication number: 20120082901Abstract: Li-based anodes for use in an electric current producing cells having long life time and high capacity are provided. In certain embodiments, the Li-based anode comprises at least one anode active Li-containing compound and a composition comprising at least one polymer, at least one ionic liquid, and optionally at least one lithium salt. The composition may be located between the at least one Li-containing compound and the catholyte used in the electric current producing cell. In some embodiments, the at least one polymer may be incompatible with the catholyte. This configuration of components may lead to separation between the lithium active material of the anode and the catholyte. Processes for preparing the Li-based anode and to electric current producing cells comprising such an anode are also provided.Type: ApplicationFiled: September 30, 2011Publication date: April 5, 2012Applicants: BASF SE, Sion Power CorporationInventors: Rudiger Schmidt, Daher Michael Badine, Helmut Moehwald, Igor Kovalev, Yuriy V. Mikhaylik
-
Publication number: 20110318636Abstract: The hydration of cadmium oxide in the presence of nickel acetate gives the possibility of obtaining a compound of general formula Cd1-xNix(OH)2-y(CH3CO2)y with 0<x?0.05 and 0<y?0.10. This compound may be advantageously, used as an electrochemically active material of an anode of the envelope type of a nickel cadmium generator. This anode does not contain any sulfates responsible for the formation of short-circuits. Further, this anode has a high electrochemical yield. A method for preparing this compound and the anode is described.Type: ApplicationFiled: December 23, 2009Publication date: December 29, 2011Applicant: SAFTInventors: Stéphanie Chevalier, Claudette Audry, Mélanie Dendary, Philippe Desprez, Björn Marlid, Rune Sjövall, Jerry Gottfridsson
-
Patent number: 7879490Abstract: This invention provides a lead battery that becomes usable by injecting an electrolyte thereinto. The battery includes: positive and negative electrode plates each having a grid comprising a Pb—Ca based alloy; separators that separate the positive electrode plates from the negative electrode plates; the electrolyte comprising sulfuric acid; and a battery container accommodating the positive and negative electrode plates, the separators, and the electrolyte. The battery container is sealed, and part of the positive and negative electrode plates is immersed in the electrolyte. The height Y0 of the positive and negative electrode plates and the distance Y1 from the bottom of the positive and negative electrode plates to the level of the electrolyte satisfy the relation: 15?Y1/Y0×100?60.Type: GrantFiled: March 17, 2005Date of Patent: February 1, 2011Assignee: Panasonic CorporationInventors: Hiroshi Yasuda, Tsunenori Yoshimura, Mitsuru Kurokawa, Sadao Furuya
-
Publication number: 20110008674Abstract: A slab lattice of the orthoplumbic acid battery is able to decrease a occurrence rate of sulfation, wherein, the slab lattice of the battery provided multiple skeleton frames which substantially parallel to each other on the inner rim of the outer frame, and each skeleton frame is provided with a reaction chip, the width of the reaction chip is larger than the width of the skeleton frame substantially. As the slab lattice of the battery is soaking in solution, it increased the contact area with the solution and to improved the efficacity of the reaction. And restrainedly generate Non-activated material on the skeleton frame at the same time, therefor accomplished the efficacy of strengthening electric power storage, electrification and electrical discharge.Type: ApplicationFiled: July 9, 2009Publication date: January 13, 2011Inventor: Chun-Yi HONG
-
Publication number: 20100159337Abstract: A secondary battery is provided that is capable of improving the cycle characteristics. The secondary battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution is impregnated into a separator provided between the cathode and the anode. In the anode, an anode active material layer and a compound layer are provided on both faces of an anode current collector. The anode active material layer contains a plurality of anode active material particles. The anode active material particles have a multilayer structure of an anode active material containing silicon as an element. The thickness of each layer in the multilayer structure ranges from 50 nm to 1050 nm. Thus, contact characteristics between each layer, contact characteristics between the anode active material layer and the anode current collector, and current collectivity are improved.Type: ApplicationFiled: December 21, 2009Publication date: June 24, 2010Applicant: SONY CORPORATIONInventors: Koichi Matsumoto, Kenichi Kawase, Isamu Konishiike, Shunsuke Kurasawa, Masayuki Iwama, Takakazu Hirose, Takashi Fujinaga
-
Publication number: 20090311608Abstract: A secondary battery capable of improving the cycle characteristics and the voltage retention characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolyte. The anode includes an anode current collector, an anode active material layer formed on the anode current collector and including an anode active material containing silicon as an element, and a coat formed on the anode active material layer and having an integral structure of three-dimensional network.Type: ApplicationFiled: June 10, 2009Publication date: December 17, 2009Applicant: SONY CORPORATIONInventors: Takakazu Hirose, Kenichi Kawase, Kazunori Noguchi, Takayuki Fujii, Masaki Kawata
-
Publication number: 20090253033Abstract: A secondary battery capable of improving the cycle characteristics and the swollenness characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode includes an anode active material layer having a plurality of fine pores on an anode current collector. The anode active material layer contains an anode active material and an anode binder. A change rate of a mercury intrusion into the plurality of fine pores measured by mercury penetration technique is distributed to show a peak in the pore diameter range from 30 nm to 10000 nm, both inclusive.Type: ApplicationFiled: April 7, 2009Publication date: October 8, 2009Applicant: SONY CORPORATIONInventors: Takakazu Hirose, Kenichi Kawase, Kazunori Noguchi, Takayuki Fujii
-
Patent number: 7585994Abstract: The invention relates to a method for producing perfluoroalkanesulfonic acid esters and for further transforming the same into the salts thereof. The invention also relates to the use of the produced compounds in electrolytes, batteries, capacitors, supercapacitors, and galvanic cells.Type: GrantFiled: May 31, 2006Date of Patent: September 8, 2009Assignee: Merck Patent GmbHInventors: Nikolai Ignatyev, Michael Schmidt, Udo Heider, Peter Sartori, Andry Kucheryna
-
Patent number: 7455936Abstract: An electric cell comprising a positive electrode, a negative electrode containing aluminum or aluminum alloy, and an electrolyte arranged between the positive electrode and the negative electrode, wherein the electrolyte includes: at least one ion selected from a group of a sulfate ion (SO42?) and a nitrate ion (NO3?), the concentration of the ion being in the range of 0.2 to 16 M/L; and an additive selected from a group of an organic acid, a salt of the organic acid, a hydrate of the organic acid, an ester of the organic acid, an ion of the organic acid, and derivatives thereof.Type: GrantFiled: August 27, 2004Date of Patent: November 25, 2008Assignee: Kabushiki Kaisha ToshibaInventors: Haruchika Ishii, Norio Takami, Tomokazu Morita, Mitsuo Kasori
-
Patent number: 7326496Abstract: In an alkaline dry battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, the positive electrode includes manganese dioxide and graphite powder and contains Ti(SO4)2 as an additive.Type: GrantFiled: September 2, 2002Date of Patent: February 5, 2008Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Takayuki Umebayashi, Mitsuji Adachi
-
Patent number: 7078123Abstract: Disclosed is a method for preparing a high energy density (HED) electrolyte solution for use in an all-vanadium redox cell, a high energy density electrolyte solution, in particular an all-vanadium high energy density electrolyte solution, a redox cell, in particular an all-vanadium redox cell, comprising the high energy density electrolyte solution, a redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for recharging a discharged or partially discharged redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for the production of electricity from a charged redox battery, and in particular a charged all-vanadium redox battery, comprising the HED electrolyte, a redox battery/fuel cell and a process for the production of electricity from a redox battery/fuel cell.Type: GrantFiled: August 22, 2002Date of Patent: July 18, 2006Assignee: VRB Power Systems, Inc.Inventors: Michael Kazacos, Maria Skyllas Kazacos
-
Patent number: 7078124Abstract: A positive electrode which has a positive active material layer formed on a conductive substrate and a polymer film coated on the positive active material layer, wherein the positive active material layer includes a positive active material, pores of which are filled with a polymeric material containing a nonaqueous electrolyte, and the polymer film, and the polymer film formed of the polymeric material containing the nonaqueous electrolyte. The polymeric material is formed by polymerization of a composition comprising a monomer and the nonaqueous electrolyte. The monomer includes 1 to 6 functional groups per molecule, and the functional groups are selected from the group consisting of vinyl, allyl, acryl, methacryl and epoxy group.Type: GrantFiled: August 25, 2004Date of Patent: July 18, 2006Assignee: Samsung SDI Co., Ltd.Inventors: Ju-Yup Kim, Myung-Dong Cho, Young-Gyoon Ryu
-
Publication number: 20040202926Abstract: A battery (100) comprises a cell having a cathode compartment (120) that includes an element that is oxidized during charging of the battery (100), wherein the oxidized element forms a salt with an acid and thereby increases the H+ concentration in the cathode compartment (120) sufficient to promote an H+ flux into the anode compartment (110) across the separator (130), wherein the H+ flux across the separator (130) is sufficient to disintegrate a zinc dendrite proximal to the separator (130).Type: ApplicationFiled: May 24, 2004Publication date: October 14, 2004Inventors: Robert Lewis Clarke, Brian Dougherty, Stephen Harrison, Peter J Millington, Samaresh Mohanta
-
Patent number: 6800395Abstract: A secondary battery of a proton conductive polymer, wherein a positive electrode and a negative electrode are arranged facing to each other via a separator in an electrolyte and only a proton or a proton of a hydroxyl group in an indole trimer and a &pgr; conjugated polymer, i.e., an active material of electrode in the positive electrode and in the negative electrode participates in a charge/discharge, and a proton concentration is 5 to 40% and an anion concentration is 30 to 60% in the solution, respectively, and the anion concentration is at least higher than the proton concentration.Type: GrantFiled: November 13, 2001Date of Patent: October 5, 2004Assignee: NEC Tokin CorporationInventors: Tomoki Nobuta, Toshihiko Nishiyama, Hiroyuki Kamisuki, Gaku Harada, Masato Kurosaki, Yuuji Nakagawa, Shinya Yoshida, Masaya Mitani
-
Patent number: 6790563Abstract: An electric cell using aluminum in a negative electrode has a positive electrode, the negative electrode containing aluminum or aluminum alloy, and an electrolyte arranged between the positive electrode and the negative electrode. The electrolyte includes: at least one ion selected from a group of a sulfate ion (SO42−) and a nitrate ion (NO3−); and an additive. The additive is selected from an organic acid, a salt of the organic acid, an hydrate of the organic acid, an ester of the organic acid, an ion of the organic acid, and derivatives thereof. Thus, the electric cell of the present invention using aluminum in a negative electrode allows the improvements in the voltage and the capacity of the cell as the generation of gas depending on the self-discharge can be prevented.Type: GrantFiled: September 28, 2001Date of Patent: September 14, 2004Assignee: Kabushiki Kaisha ToshibaInventors: Haruchika Ishii, Norio Takami, Tomokazu Morita, Mitsuo Kasori
-
Patent number: 6764663Abstract: A process for preparing a reconstituted vanadyl sulphate/vanadous sulphate solution for use as an electrolyte in a vanadium redox battery is disclosed. The process includes preparing a starting material including a vanadyl sulphate/vanadous sulphate solution, evaporating the starting material by applying heat to form vanadyl sulphate/vanadous sulphate crystals, and re-dissolving the vanadyl sulphate/vanadous sulphate crystals with a volume of de-ionized water to form a reconstituted vanadyl sulphate/vanadous sulphate solution having substantially the same chemical composition at the starting material. A process for preparing a vanadyl sulphate/vanadous sulphate starting material from a vanadium bearing ore material, particularly a titaniferous magnetite ore material is also disclosed.Type: GrantFiled: August 10, 2001Date of Patent: July 20, 2004Assignee: Highveld Steel and Vanadium Corporation LimitedInventors: Patrick Albert Monaghan, Ivan Strydom, Andries Gerhardus Dormehl
-
Patent number: 6699615Abstract: An electrical battery has a vessel accommodating an electrolyte, a positive electrode and a negative electrode arranged in the vessel at a distance from one another in contact with the electrolyte, and a partition arranged in the vessel between the electrodes so that positive ions formed by an electrolytic process from a material of the positive electrode in the electrolyte move toward one side of the partition, and negative ions formed by an electrolytic process from a material of the electrolyte move to an opposite side of the partition during charging of the battery, so that the positive ions and the negative ions at both sides of the partition are attracted to one another and accumulate at both sides of the partition in great quantities so as to provide a significant charge in the battery, one of the electrodes being movable toward the partition to be located in a zone of accumulation of the ions of corresponding charge so as to obtain the charge with high voltage, so that a discharge of the battery is peType: GrantFiled: June 18, 2001Date of Patent: March 2, 2004Inventor: Timofei Gutkin
-
Publication number: 20040033422Abstract: A process for prolonging the life of a lead-acid battery by adding an organic polymer and ultra fine lignin to its electrolyte and then discharging the battery at a high current rate and the battery so produced.Type: ApplicationFiled: August 5, 2003Publication date: February 19, 2004Inventors: Akiya Kozawa, Hirofumi Hrada, Giyun Yokoi
-
Publication number: 20040018427Abstract: The present invention relates to chemicals or a combination of chemicals for optimizing the function of a new and already in service lead-acid battery over a long period of time, reducing corrosion on the positive plate, restoring lost capacity due to the accumulation of non-conductive lead sulphate crystals on plates, reducing charging time, and for starting batteries increasing cold crank rating.Type: ApplicationFiled: March 4, 2003Publication date: January 29, 2004Inventor: Robert A. Monconduit
-
Publication number: 20030228525Abstract: A process for prolonging the life of a lead-acid battery by adding an organic polymer and ultra fine lignin to its electrolyte and then charging the battery and the battery so produced.Type: ApplicationFiled: May 15, 2003Publication date: December 11, 2003Inventors: Akiya Kozawa, Hirofumi Harada, Gijun Yokol
-
Patent number: 6652819Abstract: A process for the production of a vanadium compound from carbonaceous residues containing vanadium, which includes the steps of: (a) combusting the carbonaceous residues at a temperature of 500-690° C. in an oxygen-containing gas to form vanadium-containing combustion residues; (b) heating the vanadium-containing combustion residues at a temperature T in ° C. under an oxygen partial pressure of at most T in kPa wherein T and P meet with the following conditions: log10(P)=−3.45×10−3×T+2.21 500≦T≦1300 to obtain a solid product containing less than 5% by weight of carbon and vanadium at least 80% of which is tetravalent vanadium oxide; (c) selectively leach tetravalent vanadium ion with sulfuring acid at pH in the range of 1.5-4; (d) separating a liquid phase from the leached mixture; (e) adding an alkaline substance to the liquid phase to adjust the pH thereof in the range of 4.5-7.Type: GrantFiled: June 5, 2001Date of Patent: November 25, 2003Assignee: Chiyoda CorporationInventors: Yoshimi Shiroto, Ataru Wakabayashi
-
Patent number: 6613298Abstract: The present invention provides method of producing a trivalent and tetravalent mixed vanadium compound having excellent solubility with sulfuric acid directly from a tetravalent or pentavalent vanadium compound by using a reducing agent,and a method of producing a vanadium electrolyte. For example, a vanadium compound mainly containing a pentavalent vanadium compound; sulfur and concentrated sulfuric acid in molar ratios with respect to (one mol of vanadium atom in the pentavalent vanadium compound) 0.35 to 0.4:1.2 to 1.9 are kneaded into paste form, and the paste-form mixture is calcined at a temperature of not less than 150° C. to less than 440° C. so that a trivalent and tetravalent mixed vanadium compound is obtained, and a redox flow battery-use vanadium electrolyte is obtained by dissolving the trivalent and tetravalent mixed vanadium compound in a sulfuric acid solution.Type: GrantFiled: July 2, 2001Date of Patent: September 2, 2003Assignees: Kansai Electric Power Co., Inc., Sumitomo Electric Industries, Ltd., Nippon Chemical Industrial Co., Ltd.Inventors: Yasuyuki Tanaka, Ken Horikawa, Muneo Mita, Nobuyuki Tokuda, Michiru Kubata
-
Publication number: 20030143456Abstract: Disclosed is a method for preparing a high energy density (HED) electrolyte solution for use in an all-vanadium redox cell, a high energy density electrolyte solution, in particular an all-vanadium high energy density electrolyte solution, a redox cell, in particular an all-vanadium redox cell, comprising the high energy density electrolyte solution, a redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for recharging a discharged or partially discharged redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for the production of electricity from a charged redox battery, and in particular a charged all-vanadium redox battery, comprising the HED electrolyte, a redox battery/fuel cell and a process for the production of electricity from a redox battery/fuel cell.Type: ApplicationFiled: August 22, 2002Publication date: July 31, 2003Inventors: Michael Kazacos, Maria Skyllas Kazacos
-
Patent number: 6599661Abstract: The present invention relates to an electrolyte composition for a lead storage battery, which can maintain the performance of a storage battery at low temperature by enhancing the performance and life of a storage battery. It can also be fully charged in a short period of time due to a greater current efficiency. The present invention can extend the life of a storage battery due to its effect of removing white-colored lead sulfate without corrosion at the electrode plates, and may lead to recycling of waste storage batteries ruined by white-colored lead sulfate.Type: GrantFiled: June 12, 2001Date of Patent: July 29, 2003Assignee: Solteko, Inc.Inventor: Kang-Soo Lee
-
Patent number: 6589692Abstract: There is provided an aluminum battery which comprises a positive electrode, a negative electrode containing at least one kind of active material selected from the group consisting of aluminum metal and aluminum alloys, and an electrolyte containing a halogen ion and at least one kind of ion selected from the group consisting of sulfate ion (SO42−) and nitrate ion (NO3−).Type: GrantFiled: February 28, 2001Date of Patent: July 8, 2003Assignee: Kabushiki Kaisha ToshibaInventor: Norio Takami
-
Patent number: 6444360Abstract: An alkali metal, solid cathode, non-aqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one organic sulfate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, 1,2-dimethoxyethane and a sulfate additive having at least one unsaturated hydrocarbon containing a C(sp or sp2)-C(sp3) bond unit having the C(sp3) carbon directly connected to the —OSO3— functional group.Type: GrantFiled: January 30, 2001Date of Patent: September 3, 2002Assignee: Wilson Greatbatch Ltd.Inventors: Hong Gan, Esther S. Takeuchi
-
Publication number: 20020068219Abstract: An active paste for an lead-acid electrochemical cell which in a preferred embodiment includes tin; a method of manufacturing the same; and an electrochemical cell utilizing the same. The tin may be a tin sulfate, tin oxide, or metallic tin. The active paste sandwiches a primarily lead film which may, but need not, also include tin, to form a positive electrode. One or more positive electrodes are interleafed with a number of negative electrodes, separated by a separator material. The assembly is placed in a container and electrolyte is introduced. In alternate embodiments, the paste may include some combination of antimony, arsenic, germanium, indium, selenium, gallium, tellurium or other semiconductor materials with or without tin compounds.Type: ApplicationFiled: May 16, 2001Publication date: June 6, 2002Inventors: Shawn W. Snyder, Leland M. Gillman
-
Publication number: 20020048546Abstract: The present invention provides method of producing a trivalent and tetravalent mixed vanadium compound having excellent solubility with sulfuric acid directly from a tetravalent or pentavalent vanadium compound by using a reducing agent,and a method of producing a vanadium electrolyte. For example, a vanadium compound mainly containing a pentavalent vanadium compound; sulfur and concentrated sulfuric acid in molar ratios with respect to (one mol of vanadium atom in the pentavalent vanadium compound) 0.35 to 0.4:1.2 to 1.9 are kneaded into paste form, and the paste-form mixture is calcined at a temperature of not less than 150° C. to less than 440° C. so that a trivalent and tetravalent mixed vanadium compound is obtained, and a redox flow battery-use vanadium electrolyte is obtained by dissolving the trivalent and tetravalent mixed vanadium compound in a sulfuric acid solution.Type: ApplicationFiled: July 2, 2001Publication date: April 25, 2002Inventors: Yasuyuki Tanaka, Ken Horikawa, Muneo Mita, Nobuyuki Tokuda, Michiru Kubata
-
Patent number: 6350546Abstract: A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one sulfate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is selected from a silyl sulfate, tin sulfate or an organic sulfate.Type: GrantFiled: March 6, 2000Date of Patent: February 26, 2002Assignee: Wilson Greatbatch Ltd.Inventors: Hong Gan, Esther S. Takeuchi
-
Publication number: 20010028977Abstract: Disclosed is a method for preparing a high energy density (HED) electrolyte solution for use in an all-vanadium redox cells, a high energy density electrolyte solution, in particular an all-vanadium high energy density electrolyte solution, a redox cell, in particular an all-vanadium redox cell, comprising the high energy density electrolyte solution, a redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for recharging a discharged or partially discharged redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for the production of electricity from a charged redox battery, and in particular a charged all-vanadium redox battery, comprising the HED electrolyte, a redox battery/fuel cell and a process for the production of electricity from a redox battery/fuel cell.Type: ApplicationFiled: February 24, 1998Publication date: October 11, 2001Inventors: MICHAEL KAZACOS, MARIA SKYLLAS KAZACOS
-
Patent number: 6265106Abstract: An alkali metal, solid cathode, non-aqueous electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by the addition of at least one organic sulfate additive to an electrolyte comprising an alkali metal salt dissolved in a mixture of a low viscosity solvent and a high permittivity solvent. A preferred solvent mixture includes propylene carbonate, dimethoxyethane and a sulfate additive.Type: GrantFiled: January 26, 2000Date of Patent: July 24, 2001Assignee: Wilson Greatbatch Ltd.Inventors: Hong Gan, Esther S. Takeuchi
-
Patent number: 6218052Abstract: The invention provides an electrolyte solution, a producing method thereof, and a method for producing high-capacity lead-acid storage battery. The electrolyte is composed of ET-90 stabilizator (1.5-9.6%), nickel sulphate (0.005-0.04%), cobalt sulphate (0.003-0.025%), aluminium sulphate (2-4.8%), sodium sulphate (1.3-3.7%), aluminium phosphate (2-6.3%), lithium iodide (0.090-0.3%), colloidal silicon dioxide (silica gel) (17.6-24%), lithium chloride (0.09-0.31%), lithium carbonate (1.3-5%), magnesium sulphate (1.2-5.9%), sulfuric acid (analytically pure) (7-11.Type: GrantFiled: July 7, 1999Date of Patent: April 17, 2001Inventor: Wanxi Wang
-
Patent number: 6187475Abstract: A rechargeable cell which is comprised of a cathode material, an anode material and an electrolyte, wherein said cathode material is a mixture of manganese dioxide and electrically conducting material, with said anode material being zinc or a zinc alloy, said electrolyte is 0.5M to 3M aqueous zinc sulfate solution, and manganese (II) salt is added to at least one of the said cathode material, anode material or electrolyte, in total, has an excellent capacity and reversibility.Type: GrantFiled: December 1, 1998Date of Patent: February 13, 2001Assignee: Finecell Co., Ltd.Inventors: Seung-Mo Oh, Sa-Heum Kim