Silver Component Is Active Material Patents (Class 429/219)
  • Publication number: 20130216901
    Abstract: The present invention provides novel cathodes having a reduced resistivity and other improved electrical properties. Furthermore, this invention also presents methods of manufacturing novel electrochemical cells and novel cathodes.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 22, 2013
    Applicant: zPower, LLC
    Inventors: Jeff Ortega, Hongxia Zhou, George W. Adanson
  • Patent number: 8501338
    Abstract: A system and method for improving electrochemical power sources through the dispensing encapsulation and dispersion into galvanic chambers of an electrochemical cell. Features of the method include the optimization of the concentration levels of chemicals involved in desired energy producing reactions.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Norma A. Alcantar, Xiaoling Ding, Ryan G. Toomey, Lawrence C. Langebrake
  • Publication number: 20130196209
    Abstract: A positive electrode composition is presented. The composition includes at least one electroactive metal; at least one alkali metal halide; and at least one additive including a plurality of nanoparticles, wherein the plurality of nanoparticles includes tungsten carbide. An energy storage device, and a related method for the preparation of an energy storage device, are also presented.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, JR.
  • Publication number: 20130196231
    Abstract: A battery may include a first electrode and a second electrode. In some examples, the first electrode may include a metal substrate including a major surface, where a plurality of tunnels extend into the major surface, and an electrode composition is deposited onto the major surface of the metal substrate, where a portion of the electrode composition is positioned within the plurality of tunnels. The battery may be positioned within a housing of an implantable medical device (IMD).
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: MEDTRONIC, INC.
    Inventor: Christian S. Nielsen
  • Publication number: 20130183579
    Abstract: A positive active material for a rechargeable lithium battery includes a core including a lithium composite metal oxide selected from the group consisting of compounds represented by the following Chemical Formula 1, Chemical Formula 2, and combinations thereof; and a shell on the core, the shell including lithium iron phosphate (LiFePO4), and the lithium iron phosphate being present in an amount in a range of about 5 to about 15 wt % based on the total weight of the positive active material. LixMO2 ??[Chemical Formula 1] (wherein, in the above Chemical Formula 1, M is one or more transition elements, and 1?x?1.1) yLi2MnO3·(1?y)LiM?O2 ??[Chemical Formula 2] (wherein, in the above Chemical Formula 2, M? is one or more transition elements, and 0?x?1).
    Type: Application
    Filed: July 27, 2012
    Publication date: July 18, 2013
    Inventors: Seung-Mo Kim, Jun-Sik Jeoung
  • Patent number: 8486566
    Abstract: A positive electrode for a lithium-ion secondary battery includes a positive-electrode mixture layer, which includes a positive-electrode active material containing lithium composite oxide, a conductive material, and a binder, and a current collector. The positive-electrode mixture layer contains a compound including sulfur and/or phosphorous, a first polymer serving as a main binder, and a second polymer different from the first polymer.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: July 16, 2013
    Assignee: Sony Corporation
    Inventors: Masanori Soma, Kenichi Kawase, Masayuki Ihara, Atsumichi Kawashima, Kazumi Izumitani
  • Publication number: 20130177808
    Abstract: An anode protector of a lithium-ion battery and a method for fabricating the same are provided. A passivation protector (110) is formed on a surface of an anode (102) in advance by film deposition, such as atomic layer deposition (ALD). The passivation protector (110) is composed of a metal oxide having three dimensional structures, such as columnar structures. Accordingly, the present invention is provided with effective protection of the anode electrode structure and maintenance of battery cycle life under high-temperature operation.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 11, 2013
    Applicant: National Taiwan University of Science and Technology
    Inventors: Fu-Ming Wang, Hsin-Yi Wang, Chin-Shu Cheng
  • Patent number: 8475957
    Abstract: The present invention relates to a negative electrode structure for use in a non-aqueous electrolyte secondary battery and a method of making such negative electrode structure. The negative electrode structure comprises: a monolithic anode comprising a semiconductor material, and a uniform ion transport structure disposed at the monolithic anode surface for contacting a non-aqueous electrolyte, wherein the uniform ion transport structure serves as a current collector and the negative electrode structure does not contain another current collector. The present invention also relates to a battery comprising the negative electrode structure of the present invention, a cathode, and a non-aqueous electrolyte.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 2, 2013
    Assignee: Enovix Corporation
    Inventors: Murali Ramasubramanian, Robert M. Spotnitz, Nirav S. Shah, Ashok Lahiri
  • Publication number: 20130164635
    Abstract: The present invention relates to a solid composite for use in the cathode of a lithium- sulphur electric current producing cell wherein the solid composite comprises 1 to 75 wt.-% of expanded graphite, 25 to 99 wt.-% of sulphur, 0 to 50 wt.-% of one or more further conductive agents other than expanded graphite, and 0 to 50 wt.
    Type: Application
    Filed: May 26, 2011
    Publication date: June 27, 2013
    Applicant: Sion Power Corporation
    Inventors: Ruediger Schmidt, Alexander Panchenko, Bastian Ewald, Philip Hanefeld, Sorin Ivanovici, Helmut Moehwald, Igor P. Kovalev
  • Publication number: 20130136984
    Abstract: A composite nitride, a method of preparing the composite nitride, an electrode active material including the composite nitride, an electrode including the electrode active material, and a lithium secondary battery including the electrode, the composite nitride including a core material including a bronze-phase titanium oxide; and a nitrogen atom doped on at least part of the core material.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 30, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Samsung SDI Co., Ltd.
  • Publication number: 20130130109
    Abstract: The present invention relates to nano structures of metal oxides having a nanostructured shell (or wall), and an internal space or void. Nanostructures may be nanoparticles, nanorod/belts/arrays, nanotubes, nanodisks, nanoboxes, hollow nanospheres, and mesoporous structures, among other nanostructures. The nanostructures are composed of polycrystalline metal, oxides such as SnO2. The nanostructures may have concentric walls which surround the internal space of cavity. There may be two or more concentric shells or walls. The internal space may contain a core such ferric oxides or other materials which have functional properties. The invention also provides for a novel, inexpensive, high-yield method for mass production of hollow metal oxide nanostructures. The method may be template free or contain a template such as silica. The nanostructures prepared by the methods of the invention provide for improved cycling performance when tested using rechargeable lithium-ion batteries.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 23, 2013
    Applicant: CORNELL UNIVERSITY
    Inventor: Cornell University
  • Publication number: 20130130101
    Abstract: A negative electrode active material and a secondary battery are provided. The negative electrode active material can be useful in maintaining excellent cell efficiency and lifespan while showing high-capacity properties, and the secondary battery may be manufactured using the negative electrode active material.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 23, 2013
    Inventors: Jae Woong Kim, Seung Chul Lee, Ki Duck Park, Chul Gyu Bae, Jong Goo Kang, Yoon Seong Cho
  • Publication number: 20130122369
    Abstract: A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The negative active material includes a carbon-nanoparticle composite including a crystalline carbon material including pores, and amorphous nanoparticles dispersed either inside the pores, or on the surface of the crystalline carbon material, or both inside the pores and on the surface of the crystalline carbon material. At least one of the amorphous nanoparticles includes a metal oxide layer in a form of a film on the surface, and the amorphous nanoparticles have a full width at half maximum of about 0.35 degree (°) or greater at a crystal plane producing the highest peak as measured by X-ray diffraction analysis.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Samsung SDI Co., Ltd.
  • Publication number: 20130095377
    Abstract: An electrochemical cell including an anode comprising a carbonaceous material, where the carbonaceous material is capable of reversibly incorporating lithium ions therein and lithium metal on the surface thereof, a cathode capable of reversibly incorporating therein lithium ions, and a non-aqueous electrolyte in contact with the anode and the cathode, where the ratio of the capacity to reversibly incorporate lithium ions of the cathode to the capacity to reversibly incorporate lithium ions in the form of LiC6 of the carbonaceous material of the anode is equal to or larger than 4.5:1.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 18, 2013
    Applicant: TADIRAN BATTERIES LTD.
    Inventor: Tadiran Batteries Ltd.
  • Publication number: 20130089792
    Abstract: An electrochemical cell is described. The electrochemical cell includes an anode, a cathode, a separator between said anode and said cathode, and an electrolyte. The electrolyte includes a salt dissolved in an organic solvent. The separator in combination with the electrolyte has an area specific resistance less than 2 ohm-cm2. The electrochemical cell has an interfacial anode to cathode ratio of less than about 1.1.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: THE GILLETTE COMPANY
    Inventor: THE GILLETTE COMPANY
  • Publication number: 20130089784
    Abstract: A negative active material and a lithium battery including the negative active material. The negative active material includes primary particles, each including: a crystalline carbonaceous core having a surface on which silicon-based nanowires are disposed; and an amorphous carbonaceous coating layer that is coated on the crystalline carbonaceous core so as not to expose at least a portion of the silicon-based nanowires. Due to the inclusion of the primary particles, an expansion ratio is controlled and conductivity is provided and thus, a formed lithium battery including the negative active material may have improved charge-discharge efficiency and cycle lifespan characteristics.
    Type: Application
    Filed: July 19, 2012
    Publication date: April 11, 2013
    Inventors: Yu-Jeong Cho, So-Ra Lee, Ha-Na Yoo, Ui-Song Do, Chang-Su Shin, Su-Kyung Lee, Jae-Myung Kim
  • Publication number: 20130089783
    Abstract: A negative active material and a lithium battery including the same are disclosed. Due to the inclusion of silicon nanowires formed on a spherical carbonaceous base material, the negative active material may increase the capacity and cycle lifespan characteristics of the lithium battery.
    Type: Application
    Filed: July 17, 2012
    Publication date: April 11, 2013
    Inventors: Ha-Na Yoo, Jae-Myung Kim, So-Ra Lee, Chang-Su Shin, Ui-Song Do, Yu-Jeong Cho, Su-Kyung Lee, Sang-Eun Park
  • Publication number: 20130084499
    Abstract: In a non-aqueous electrolyte secondary battery, a positive electrode active material includes a carbon-coated lithium vanadium phosphate and a lithium nickel composite oxide. A negative electrode active material includes a carbon-based active material capable of intercalating and deintercalating lithium ions. When a first charge capacity of a negative electrode per unit area is “x” (mAh/cm2), and a first charge capacity of a positive electrode per unit area is “y” (mAh/cm2), a relation of “x” and “y” satisfies 0.6?y/x?0.92.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 4, 2013
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hideo Yanagita, Kazuki Takimoto
  • Patent number: 8410012
    Abstract: The present invention relates to a catalyst composition, a method for fabricating the same and a fuel cell including the same. The catalyst composition provided by the present invention includes: a catalyst carrier; and a metal solid solution, disposed on the surface of the catalyst carrier, in which the metal solid solution includes palladium and a second metal, and the second metal is selected from the group consisting of gold, platinum, ruthenium, nickel, silver and manganese. Accordingly, the catalyst composition provided by the present invention can exhibit excellent catalytic characteristics, and can be applied in a fuel cell to enhance the electrochemical properties and stability of the fuel cell.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 2, 2013
    Assignees: Tatung University, Tatung Company
    Inventors: Hong-Ming Lin, Cheng-Han Chen, Wei-Jen Liou, Wei-Syuan Lin, She-Huang Wu
  • Publication number: 20130071745
    Abstract: An electrode active material, a method of manufacturing the same, and an electrode and a lithium battery utilizing the same. The electrode active material includes a core capable of intercalating and deintercalating lithium and a coating layer formed on at least a portion of a surface of the core, wherein the coating layer includes a composite metal halide having a spinel structure.
    Type: Application
    Filed: July 10, 2012
    Publication date: March 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-young MUN, Won-chang Choi, Jin-hwan Park
  • Publication number: 20130071744
    Abstract: The present invention provides cathodes, methods of making cathodes, and electrochemical cells (e.g., batteries) that employ these cathodes having improved properties over traditional cathodes, methods, or electrochemical cells.
    Type: Application
    Filed: November 3, 2010
    Publication date: March 21, 2013
    Inventors: Hongxia Zhou, George W. Adamson
  • Publication number: 20130059203
    Abstract: Provided are an anode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. An anode active material for a lithium secondary battery according to the present invention includes: active particles by means of which lithium ions may be absorbed/released; and a coating layer coated on the surface of the active particles, wherein the coating layer includes a first material which is a hollow nanofiber and a second material which is a carbon precursor or LTO.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: ROUTE JJ CO., LTD.
    Inventors: Ji Jun Hong, Ki Taek Byun, Hyo Won Kim
  • Publication number: 20130052534
    Abstract: A cathode includes a lithium transition metal complex compound including lithium, one, or two or more transition metals, magnesium, and oxygen as constituent elements. In a standardized X-ray absorption spectrum of the lithium transition metal complex compound measured by an X-ray absorption spectroscopic method, a first absorption edge having absorption edge energy E1 in X-ray absorption intensity of about 0.5 exits in a range where X-ray energy is from about 1303 eV to about 1313 eV both inclusive, in a discharged state in which a discharge voltage is about 3.0 V, and a second absorption edge having absorption edge energy E2 in X-ray absorption intensity of about 0.5 exits, in a charged state in which a charge voltage V is from about 4.3 V to about 4.5 V both inclusive. The absorption edge energies E1 and E2 and the charge voltage V satisfy a relation of E2?E1?(V?4.25)×4.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 28, 2013
    Applicant: SONY CORPORATION
    Inventors: Satoshi Fujiki, Hirotaka Fukudome, Kazunari Motohashi, Yosuke Hosoya, Yoshihiro Kudo
  • Publication number: 20130043843
    Abstract: Battery formation protocols are used to perform initial charging of batteries with lithium rich high capacity positive electrode to result a more stable battery structure. The formation protocol generally comprises three steps, an initial charge step, a rest period under an open circuit and a subsequent charge step to a selected partial activation voltage. The subsequent or second charge voltage is selected to provide for a desired degree of partial activation of the positive electrode active material to achieve a desired specific capacity while providing for excellent stability with cycling. The formation protocol is particularly effective to stabilize cycling for compositions with moderate lithium enrichment.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 21, 2013
    Inventors: Shabab Amiruddin, Bing Li
  • Publication number: 20130029223
    Abstract: The invention relates to materials for use as electrodes in an alkali-ion secondary (rechargeable) battery, particularly a lithium-ion battery. The invention provides transition-metal compounds having the ordered-olivine or the rhombohedral NASICON structure and the polyanion (PO4)3? as at least one constituent for use as electrode material for alkali-ion rechargeable batteries.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 31, 2013
    Inventors: Michel Armand, John B. Goodenough, Akshaya K. Padhi, Kirakodu S. Nanjundaswamy, Christian Masquelier
  • Publication number: 20130022871
    Abstract: A material, in particular an active material, for an electrode of a galvanic element, and a method for the production of the material, a mixture for the production of an electrode for a galvanic element, and a galvanic element, in particular a battery, and a medical implant comprising such a battery.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Applicant: LITRONIK BATTERIETECHNOLOGIE GMBH
    Inventors: Tim Traulsen, Gerd Fehrmann, Thomas Hucke, Andreas Deckert, Joerg Feller, Tom Schuffenhauer
  • Publication number: 20130022869
    Abstract: A positive electrode active material for a lithium secondary battery includes a lithium cobalt complex oxide containing an alkali earth metal and a transition metal in a predetermined mixture ratio. A method of preparing the positive electrode active material includes mixing a lithium salt, a transition metal precursor, and an alkali earth metal salt to form a mixture, and performing at least one thermal treatment on the mixture. A positive electrode for a lithium secondary battery includes the positive electrode active material, and a lithium secondary battery includes the positive electrode.
    Type: Application
    Filed: May 21, 2012
    Publication date: January 24, 2013
    Inventor: Seung-Beob Yi
  • Publication number: 20130022870
    Abstract: An anode active material, an anode including the anode active material, a lithium battery including the anode, and a method of preparing the anode active material. The anode active material includes: a multilayer metal nanotube including: an inner layer; and an outer layer on the inner layer, wherein the inner layer includes a first metal having an atomic number equal to 13 or higher, and the outer layer includes a second metal different from the first metal.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 24, 2013
    Applicants: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-man CHOI, Seung-sik HWANG, Moon-seok KWON, Min-sang SONG, Jeong-kuk SHON, Myung-hoon KIM, Han-su KIM, Un-gyu PAIK, Tae-seup SONG
  • Publication number: 20130017433
    Abstract: A battery includes a first portion including a substrate having formed thereon a current collector and an anode electrode material. A second portion is formed on a substrate and includes a current collector and a cathode electrode material. The first portion is joined to the second portion and a separator is disposed between the first portion and the second portion as joined to separate the anode electrode material from the cathode electrode material. An electrolyte is placed in contact with the anode electrode material, the cathode electrode material and the separator.
    Type: Application
    Filed: June 20, 2012
    Publication date: January 17, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Ann M. SASTRY, Fabio ALBANO
  • Publication number: 20130011737
    Abstract: A process of electroless plating a tin or tin-alloy active material onto a metal substrate for the negative electrode of a rechargeable lithium battery comprising steps of (1) immersing the metal substrate in an aqueous plating solution containing metal ions to be plated, (2) plating tin or tin-alloy active material onto the metal substrate by contacting the metal substrate with a reducing metal by swiping one on the other, and (3) removing the plated metal substrate from the plating bath and rinsing with deionized water. A rechargeable lithium battery using tin or tin-alloy as the anode active material.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventor: SHENGSHUI ZHANG
  • Patent number: 8349492
    Abstract: The negative electrode for a rechargeable lithium battery includes a current collector and a negative active material layer disposed on the current collector. The negative active material layer includes a metal-based negative active material and sheet-shaped graphite and has porosity of 20 to 80 volume %. The negative electrode for a rechargeable lithium battery can improve cell characteristics by inhibiting volume change and stress due to active material particle bombardment during charge and discharge, and by decreasing electrode resistance.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: January 8, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Min Lee, Goo-Jin Jeong, Min-Seok Sung, Yong-Mook Kang, Wan-Uk Choi, Sung-Soo Kim
  • Publication number: 20120328945
    Abstract: A lithium ion secondary battery is provided with a positive electrode, a negative electrode containing an active material, and an electrolytic solution, wherein the active material includes a core portion capable of occluding and releasing lithium ions, an amorphous or low-crystalline coating portion disposed on at least a part of the surface of the core portion, and a fibrous carbon portion disposed on at least a part of the surface of the coating portion, and the coating portion contains Si and O as constituent elements, while the atomic ratio y (O/Si) of O relative to Si satisfies 0.5?y?1.8.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: SONY CORPORATION
    Inventors: Takakazu Hirose, Takashi Fujinaga, Isao Koizumi, Norihiro Shimoi, Kenichi Kawase
  • Publication number: 20120326500
    Abstract: A lithium-ion secondary battery includes a positive electrode, a negative electrode containing an active material, and an electrolytic solution, in which the active material contains, as constituent elements, Si, O, and at least one element Ml selected from Li, C, Mg, Al, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Mo, Ag, Sn, Ba, W, Ta, Na, and K, and the atomic ratio x (O/Si) of O to Si is 0.5?x?1.8.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: SONY CORPORATION
    Inventors: Takakazu Hirose, Kenichi Kawase, Toshio Nishi, Isao Koizumi
  • Publication number: 20120328915
    Abstract: A lithium-ion secondary battery includes a positive electrode, a negative electrode containing an active material, and an electrolytic solution, in which the active material includes a core portion capable of occluding and releasing lithium ions, and a covering portion arranged on at least part of a surface of the core portion, in which the covering portion contains, as constituent elements, Si, O, and at least one element M1 selected from Li, C, Mg, Al, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Mo, Ag, Sn, Ba, W, Ta, Na, and K, and the atomic ratio y (O/Si) of O to Si is 0.5?y?1.8.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 27, 2012
    Applicant: SONY CORPORATION
    Inventors: Takakazu Hirose, Kenichi Kawase, Takashi Fujinaga, Isao Koizumi, Toshio Nishi
  • Publication number: 20120321955
    Abstract: A lithium-ion secondary battery is characterized in that it is equipped with: a positive electrode comprising a positive-electrode active material that includes a lithium-transition metal composite oxide including at least lithium and manganese and possessing a layered rock-salt structure; a negative electrode comprising a negative-electrode active material that includes at least one kind of carbon-based materials, silicon-based materials, and tin-based materials; and a non-aqueous electrolytic solution, wherein: said lithium-transition metal composite oxide exhibits an irreversible capacity; and an actual capacity of said negative electrode at the time of first-round charging up to 0 V with respect to metallic lithium is smaller than an actual capacity of said positive electrode at the time of first-round charging up to 4.7 V with respect to metallic lithium.
    Type: Application
    Filed: April 1, 2011
    Publication date: December 20, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Naoto Yasuda, Toru Abe, Junichi Niwa
  • Publication number: 20120321953
    Abstract: A nano graphene-enabled vanadium oxide composite composition for use as a lithium battery cathode active material, wherein the composite composition is formed of one or a plurality of graphene, graphene oxide, or graphene fluoride sheets or platelets and a plurality of nano-particles, nano-rods, nano-wires, nano-sheets, and/or nano-belts of a vanadium oxide with a size smaller than 100 nm (preferably smaller than 20 nm, further preferably smaller than 10 nm, and most preferably smaller than 5 nm), and wherein the graphene, graphene oxide, or graphene fluoride (having a thickness <20 nm, preferably <10 nm, further preferably <5 nm, and being most preferably of single-layer or less than 5 layers) is in an amount of from 0.01% to 50% (preferably <10%) by weight based on the total weight of graphene, graphene oxide or graphene fluoride and the vanadium oxide combined.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Inventors: Guorong Chen, Aruna Zhamu, Bor Z. Jang, Zhenning Yu
  • Publication number: 20120321954
    Abstract: The present invention is a production process for composite oxide being expressed by a compositional formula: LiMn1-xAxO2 (where “A” is one or more kinds of metallic elements other than Mn; and 0?“x”<1), and the composite oxide is obtained via the following: a raw-material mixture preparation step of preparing a raw-material mixture by mixing a metallic-compound raw material and a molten-salt raw material with each other, the metallic-compound raw material at least including an Mn-containing nitrate that includes one or more kinds of metallic elements in which Mn is essential, the molten-salt raw material including lithium hydroxide and lithium nitrate, and exhibiting a proportion of the lithium nitrate with respect to the lithium hydroxide (i.e., (Lithium Nitrate)/(Lithium Hydroxide)) that falls in a range of from 1 or more to 3 or less by molar ratio; a molten reaction step of reacting the raw-material mixture at 500° C.
    Type: Application
    Filed: February 7, 2011
    Publication date: December 20, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Ryota Isomura, Hitotoshi Murase, Naoto Yasuda
  • Publication number: 20120313587
    Abstract: Several embodiments related to lithium-ion batteries having electrodes with nanostructures, compositions of such nanostructures, and associated methods of making such electrodes are disclosed herein. In one embodiment, a method for producing an anode suitable for a lithium-ion battery comprising preparing a surface of a substrate material and forming a plurality of conductive nanostructures on the surface of the substrate material via electrodeposition without using a template.
    Type: Application
    Filed: February 11, 2011
    Publication date: December 13, 2012
    Applicant: Washington Stat University Research Foundation
    Inventors: M. Grant Norton, Uttara Sahaym
  • Publication number: 20120315543
    Abstract: A coin-type lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The negative electrode includes a negative electrode active material including a silicon alloy material, a conductive agent including a carbon material, and a binder. The silicon alloy material includes a phase A including a lithium-silicon alloy and a phase B including an intermetallic compound of a transition metal element and silicon. In the lithium-silicon alloy, a ratio of lithium atoms relative to silicon atoms is 2.75 to 3.65 in a 100% state-of-charge.
    Type: Application
    Filed: September 15, 2010
    Publication date: December 13, 2012
    Inventors: Toshie Wata, Tadayoshi Takahashi
  • Patent number: 8318340
    Abstract: Electrochemical cells including a casing or cup for direct electrical contact with a negative electrode or counter electrode and serving as the current collector for the electrode. The casing includes a substrate having a plated coating of an alloy including copper, tin and zinc, the coating having a composition gradient between the substrate and the external surface of the coating wherein the copper content is greater adjacent the substrate than at the external surface of the coating and the tin content is greater at the external surface of the coating than adjacent the substrate. Methods for forming a coated casing and an electrochemical cell including a coated casing are disclosed, preferably including providing an electrode casing with a coating utilizing variable current density plating that reduces discoloration of a surface exposed to the ambient atmosphere.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: November 27, 2012
    Assignee: Eveready Battery Company, Inc.
    Inventor: Jason L. Stimits
  • Publication number: 20120282530
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Publication number: 20120282521
    Abstract: An electrode active material, a method of manufacturing the same, and an electrode and a lithium battery adopting the same. The electrode active material includes a core capable of occluding and emitting lithium; and a surface treatment layer formed on at least a portion of a surface of the core, wherein the surface treatment layer includes a lithium-free oxide having a spinel structure.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 8, 2012
    Applicant: Samsung Electronics Co. Ltd.
    Inventors: Won-chang CHOI, Jin-hwan Park
  • Publication number: 20120282522
    Abstract: A lithium metal oxide positive electrode material useful in making lithium-ion batteries that is produced using spray pyrolysis. The material comprises a plurality of metal oxide secondary particles that comprise metal oxide primary particles, wherein the primary particles have a size that is in the range of about 1 nm to about 10 ?m, and the secondary particles have a size that is in the range of about 10 nm to about 100 ?m and are uniformly mesoporous.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: Washington University
    Inventors: Richard L. Axelbaum, Xiaofeng Zhang
  • Publication number: 20120270105
    Abstract: A nonaqueous electrolyte secondary battery disclosed in the present application includes: a positive electrode capable of absorbing and releasing lithium, containing a positive electrode active material composed of a lithium-containing transition metal oxide having a layered crystalline structure; and a negative electrode capable of absorbing and releasing lithium, containing a negative electrode active material composed of a lithium-containing transition metal oxide obtained by substituting some of Ti element of a lithium-containing titanium oxide having a spinel crystalline structure with one or more element different from Ti, wherein a retention of the negative electrode is set to be greater than a retention of the positive electrode, and an irreversible capacity rate of the negative electrode is set to be greater than an irreversible capacity rate of the positive electrode, whereby a discharge ends by negative electrode limitation.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Inventors: Natsumi Goto, Takashi Takeuchi, Masaki Hasegawa
  • Publication number: 20120251882
    Abstract: A composite includes a compound selected from the group consisting of a lithium lanthanum zirconium oxide and a lithium lanthanum tantalum oxide; a lanthanum oxide; and an oxide selected from the group consisting of a lanthanum zirconium oxide and a lanthanum tantalum oxide. An electrode active material for a secondary lithium battery may include such composite. Methods of preparing the composite, an electrode for a secondary lithium battery including the electrode active material, and a secondary lithium battery including the electrode are disclosed.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 4, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Sung-Hwan Moon, Yury Matulevich, Jae-Hyuk Kim, Hee-Young Chu, Myung-Hwan Jeong, Chang-Ui Jeong, Jong-Seo Choi
  • Patent number: 8277683
    Abstract: Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li1+?(NixCoyMnz)1?tMtO2?dRd, where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0???0.50; 0<x?1; 0?y?1; 0<z?1; 0?t?1; and 0?d?0.5. Methods of preparing such materials and their use in electrochemical devices are also described.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 2, 2012
    Assignee: Uchicago Argonne, LLC
    Inventors: Haixia Deng, Ilias Belharouak, Khalil Amine
  • Publication number: 20120231338
    Abstract: A support for carrying a catalyst is obtained by carbonizing raw materials containing a nitrogen-containing organic substance and a metal. The support for carrying a catalyst may have a peak at a diffraction angle of around 26° in an X-ray diffraction pattern, the peak including 20 to 45% of a graphite-like structure component and 55 to 80% of an amorphous component. In addition, the support for carrying a catalyst may have an intensity ratio of a band at 1,360 cm?1 to a band at 1,580 cm?1 (I1,360/I1,580) in a Raman spectrum of 0.3 or more and 1.0 or less. In addition, the support for carrying a catalyst may be obtained by carbonizing the raw materials to obtain a carbonized material, subjecting the carbonized material to a metal removal treatment, and subjecting the resultant to a heat treatment.
    Type: Application
    Filed: December 3, 2010
    Publication date: September 13, 2012
    Applicants: NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY, NISSHINBO HOLDINGS INC.
    Inventors: Erina Matsuzaka, Takeaki Kishimoto, Jun-ichi Ozaki
  • Publication number: 20120223681
    Abstract: Electrodes as well as electrode production methods are provided that can include a substrate with the substrate comprising non-conductive material. Batteries including electrodes of the disclosure are provided. Electricity storage methods are provided that can utilize the electrodes and/or batteries of the disclosure.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Inventors: Bradley W. Stone, Alfred T. Volberding
  • Publication number: 20120219859
    Abstract: A compound of formula Ab?MgaMbXy or Ab?MgaMb(XOz)y for use as electrode material in a magnesium battery is disclosed, wherein A, M, X, b?, a, b, y, and z are defined herein.
    Type: Application
    Filed: March 2, 2012
    Publication date: August 30, 2012
    Applicant: PELLION TECHNOLOGIES, INC.
    Inventors: Robert E. DOE, Timothy K. MUELLER, Gerbrand CEDER, Jeremy BARKER, Kristin A. PERSSON
  • Publication number: 20120219858
    Abstract: The object of the present invention is to inhibit occurrence of structural collapse caused by volumetric change of primary particles of negative electrode active material and to improve adhesion between negative electrode active material and electrically conductive agent and between negative electrode mix layer and collector, whereby improvement of life is attained in negative electrode for non-aqueous secondary battery and non-aqueous secondary battery. In the negative electrode for non-aqueous secondary battery of the present invention, the negative electrode active material comprises silicon and/or tin, and at least one element selected from elements which do not react with lithium and has pores in both of the inner core portion and the outer peripheral portion of primary particles and a material which cures by a heat treatment is used as a binder.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 30, 2012
    Inventors: Takashi NAKABAYASHI, Shin TAKAHASHI