Cadmium Component Is Active Material Patents (Class 429/222)
  • Patent number: 11258058
    Abstract: Systems and methods for generating silicon carbon composite powder that have the electrical properties of thicker, active material silicon carbon composite films or carbon composite electrodes, and may include a cathode, an electrolyte, and an anode, where the electrodes may include silicon carbon composite powder.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 22, 2022
    Assignee: Enevate Corporation
    Inventor: Benjamin Park
  • Patent number: 11233240
    Abstract: The present invention relates to nanostructured materials (including nanowires) for use in batteries. Exemplary materials include carbon-comprising, Si-based nanostructures, nanostructured materials disposed on carbon-based substrates, and nanostructures comprising nanoscale scaffolds. The present invention also provides methods of preparing battery electrodes, and batteries, using the nanostructured materials.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 25, 2022
    Assignee: OneD Material, Inc.
    Inventors: Yimin Zhu, Jay L. Goldman, Jason Hartlove, Hans Jurgen Hofler
  • Patent number: 10673063
    Abstract: Provided is a process for producing prelithiated particles of an anode active material for a lithium battery. The process comprises: (a) providing a lithiating chamber having at least one inlet and at least one outlet; (b) feeding a plurality of particles of an anode active material, lithium metal particles, and an electrolyte solution (containing a lithium salt dissolved in a liquid solvent) into the lithiating chamber through at least one inlet, concurrently or sequentially, to form a reacting mixture; (c) moving this reacting mixture toward the outlet at a rate sufficient for inserting a desired amount of lithium into the anode active material particles to form a slurry of prelithiated particles dispersed in the electrolyte solution; and (d) discharging the slurry out of the lithiating chamber through the at least one outlet.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 2, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10608284
    Abstract: Disclosed are novel electrolytes, and techniques for making and devices using such electrolytes, which are based on compressed gas solvents. Unlike conventional electrolytes, disclosed electrolytes are based on “compressed gas solvents” mixed with various salts, referred to as “compressed gas electrolytes.” Various embodiments of a compressed gas solvent includes a material that is in a gas phase and has a vapor pressure above an atmospheric pressure at a room temperature. The disclosed compressed gas electrolytes can have wide electrochemical potential windows, high conductivity, low temperature capability and/or high pressure solvent properties.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: March 31, 2020
    Assignee: The Regents of the University of California
    Inventors: Cyrus Rustomji, Sungho Jin, Taekyoung Kim, Jungmin You, Joseph Wang, Duyoung Choi
  • Patent number: 10361416
    Abstract: A battery separator for extending the cycle life of a battery has a separator and a conductive layer. The conductive layer is disposed upon the separator. The conductive layer is adapted to be in contact with the positive electrode of the battery thereby providing a new route of current to and from the positive electrode.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: July 23, 2019
    Assignee: Daramic, LLC
    Inventors: Eric Henri Miller, John Randolph Timmons, John Kevin Whear
  • Patent number: 10352839
    Abstract: Provided are a method and device for improving a response speed in a measurement of viscosity of a fluid and obtaining a continuous smooth measurement graph. A viscometer includes a machine part that generates a shear rate in a sample, a machine drive, a shear rate changing means that outputs a target shear rate of the machine part, and a displacement detection sensor that measures displacement of the machine part, and performs feedback control to control a driving force of the machine drive so that an output value of the displacement detection sensor corresponds to the target shear rate and measures a viscosity of a sample, wherein a feedback gain is simply set for each measurement according to an optimum design or target shear rate.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 16, 2019
    Assignee: A&D COMPANY, LIMITED
    Inventors: Masahiro Kanno, Yoshikazu Nagane
  • Patent number: 10243240
    Abstract: A metal hydride battery comprising at least one negative electrode, at least one positive electrode, a casing having said electrodes positioned therein and an electrolyte composition, where the electrolyte composition comprises an ionic compound selected from the group consisting of protic acids, protic ammonium compounds, protic oxonium compounds, aprotic ammonium compounds, aprotic oxonium compounds, aprotic phosphonium compounds and alkali or alkali earth metal salts; or where the electrolyte composition comprises an ionic compound selected from the group consisting of alkali or alkali earth metal hydroxides and alkali or alkali earth metal alkoxides and an organic solvent; or where the electrolyte composition comprises an alkali metal hydroxide, water and one or more further components selected from the group consisting of organic solvents, further ionic compounds and additives; or where the electrolyte composition comprises an ionic compound selected from the group consisting of carboxylate compounds and
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 26, 2019
    Assignee: BASF Corporation
    Inventors: Kwo Young, Jean Nei, Diana Wong, Wentao Li, Lixin Wang
  • Patent number: 10181750
    Abstract: When a microcomputer does not charge an electric storage device, the microcomputer activates at an interval set based on a timer set value and determines whether an electric power voltage generated by a solar cell is equal to or higher than an electric power generation determination threshold. When the generated electric power voltage is lower than the electric power generation determination threshold, the microcomputer turns to a sleep state after increasing the timer set value by an addition set value while prohibiting charging the electric storage device. When the generated electric power voltage is equal to or higher than the electric power generation determination threshold and a generated electric power amount is equal to or larger than an electric power generation determination threshold, the microcomputer starts charging the electric storage device so the electric power device can be appropriately charged with an electric power generated by the solar cell.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: January 15, 2019
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO TEN LIMITED
    Inventors: Seigen Maeno, Takuya Hibino, Yohsuke Ochi
  • Patent number: 9972875
    Abstract: An alkaline storage battery includes a positive electrode, a negative electrode containing, as an active material, at least one of a metal capable of forming dendrites and a metal compound thereof, and an alkaline electrolyte solution, wherein a compound having a primary amino group and having no carboxyl group is contained in the alkaline electrolyte solution in an amount greater than or equal to 7% by volume.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 15, 2018
    Assignees: GS Yuasa International Ltd., KYORO UNIVERSITY
    Inventors: Tadashi Kakeya, Akiyoshi Nakata, Toshiro Hirai, Hajime Arai, Junichi Yamaki, Zempachi Ogumi
  • Patent number: 9865858
    Abstract: A lithium ion secondary battery according to an embodiment of this disclosure includes: a positive electrode mixture layer provided on a main plane of a positive electrode current collector; a negative electrode mixture layer provided on a main plane of a negative electrode current collector; and an insulator covering a region of a part of a surface of a gradually-decreasing portion included in the positive electrode mixture layer. The portion has thickness gradually decreasing toward a terminal of the positive electrode mixture layer; the surface of the portion has a tangent line in contact with the surface in at least two contact points, and has a depressed part between any adjacent two contact points on the tangent line; and an end of the insulator is positioned between the contact points closest to and farthest from the terminal of the positive electrode mixture layer along the tangent line.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 9, 2018
    Assignee: AUTOMOTIVE ENERGY SUPPLY CORPORATION
    Inventors: Tsutomu Oshima, Shinichiro Sakaguchi
  • Patent number: 9761902
    Abstract: A negative electrode active material layer containing at least one selected from silicon and a silicon compound as a negative electrode active material is formed, and an amount of lithium exceeding an amount corresponding to a theoretical capacity of the negative electrode active material layer is brought into contact with the negative electrode active material layer so as to prepare a negative electrode. A positive electrode containing a lithium-absorption material capable of irreversibly absorbing lithium is prepared. The positive electrode, the negative electrode, a separator, and a nonaqueous electrolyte are enclosed inside an outer enclosure. A chemical conversion treatment of the negative electrode active material is performed with the lithium brought into contact with the negative electrode active material layer.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: September 12, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takafumi Tsukagoshi, Nobuhiko Hojo, Yu Otsuka
  • Patent number: 9705134
    Abstract: An organic negative electrode is provided in the present application. The organic negative electrode comprises a first element having conductive material, a second element formed by a high polymer solution and set on the first element, and a third element having chlorophyll and formed on the second element. A battery with said organic negative electrode is also provided.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 11, 2017
    Assignee: iNNOT BioEnergy Holding Co.
    Inventor: Chungpin Liao
  • Patent number: 9608272
    Abstract: Composite electrode material for a rechargeable battery cell includes an electroactive material; and a polymeric binder including pendant carboxyl groups, characterized in that (i) the electroactive material includes one or more components selected from the group including an electroactive metal, an electroactive semi-metal, an electroactive ceramic material, an electroactive metalloid, an electroactive semi-conductor, an electroactive alloy of a metal, an electroactive alloy of a semi metal and an electroactive compound of a metal or a semi-metal, (ii) the polymeric binder has a molecular weight in the range 300,000 to 3,000,000 and (iii) 50 to 90% of the carboxyl groups of the polymeric binder are in the form of a metal ion carboxylate salt. A method of making a composite electrode material, an electrode, cells including electrodes and devices using such cells are also disclosed.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 28, 2017
    Assignee: Nexeon Limited
    Inventors: Melanie J. Loveridge, Michael Jonathan Lain, Fazlil Coowar, Mamdouh Elsayed Abdelsalam
  • Patent number: 9431680
    Abstract: An electric storage device includes: a rolled electrode assembly 10 formed by winding a positive electrode, a negative electrode, and a separator so as to have curved portions and linear portions; current collectors 7; and an electrolyte solution 3. A positive electrode substrate has at one end 10A an unformed portion 11E formed without a positive electrode mixture layer, and a negative electrode substrate has at the other end 10B an unformed portion 13E formed without a negative electrode mixture layer. The current collectors 7 are connected respectively to at least part of the linear portions in the unformed portion of the positive electrode at the one end 10A and that of the negative electrode at the other end 10B. The one end 10A in the positive electrode has a length greater than the winding length, and/or the other end 10B in the negative electrode has such a length.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: August 30, 2016
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Takeshi Sasaki, Taro Yamafuku
  • Patent number: 9299966
    Abstract: Subassemblies for use in an electrochemical device are provided, as are processes for preparing the subassemblies and electrochemical cells incorporating the subassemblies. In some embodiments, the subassemblies include (a) a first electrode and (b) a separator or a first current collector or both. The first electrode is bonded to the separator or the first current collector or both. In some embodiments, the subassemblies further include a second electrode and a second current collector. In some embodiments, the electrodes or separators are sintered. Bipolar cells are also provided, including a plurality of stacked electrochemical cells that are joined in series. The positive electrode and the negative electrode of each stack include a sintered electrode.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: March 29, 2016
    Assignee: A123 Systems LLC
    Inventors: Yet-Ming Chiang, Andrew C. Chu, Young-Il Jang, Michael Wixom
  • Patent number: 9190655
    Abstract: A lithium primary battery includes a positive electrode 1 using iron sulfide as a positive electrode active material, a negative electrode 2 using a lithium alloy as a negative electrode active material, an electrode group 4 formed by winding the positive and negative electrodes 1, 2 with a separator 3 being interposed therebetween, and a non-aqueous electrolytic solution. The lithium alloy contains at least one of magnesium or tin in a range of 0.02-0.2 mol %.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: November 17, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Jun Nunome, Fumio Kato, Futoshi Tanigawa, Yoshiki Fukuhara
  • Patent number: 9048495
    Abstract: Disclosed herein is a cathode active material coated with a fluorine compound for lithium secondary batteries. The cathode active material is structurally stable, and improves the charge-discharge characteristics, cycle characteristics, high-voltage characteristics, high-rate characteristics and thermal stability of batteries.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: June 2, 2015
    Assignee: ENERCERAMIC INC.
    Inventors: Yang Kook Sun, Woo Seong Kim, Jung Min Han
  • Publication number: 20150140359
    Abstract: In an aspect, a negative active material, a negative electrode and a lithium battery including the negative active material, and a method of manufacturing the negative active material is provided. The negative active material includes a silicon-based active material substrate; a metal oxide nanoparticle disposed on a surface of the silicon-based active material substrate. An initial irreversible capacity of the lithium battery may be decreased and lifespan characteristics may be improved by using the negative active material.
    Type: Application
    Filed: April 25, 2014
    Publication date: May 21, 2015
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Sang-Eun Park, Young-Ugk Kim, Hyun-Ki Park, Chang-Su Shin, Ui-Song Do, Sung-Su Kim
  • Publication number: 20150104706
    Abstract: The disclosure provides a Ni—Mn composite oxalate powder, including a plurality of biwedge octahedron particles represented by the general formula: NiqMnxCoyMzC2O4.nH2O, wherein q+x+y+z=1, 0<q, x<1, 0?y<1, 0?z<0.15, 0?n?5, and M is at least one of Mg, Sr, Ba, Cd, Zn, Al, Ga, B, Zr, Ti, Ca, Ce, Y, Nb, Cr, Fe and V. The above powder may be further calcined with a lithium salt to form a lithium transition metal oxide powder for use as a positive electrode material in lithium ion-batteries.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 16, 2015
    Applicants: NATIONAL TAIWAN UNIVERSITY, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hung-Chun WU, Yu-Ting CHEN, Nae-Lih WU, Wen-Chin CHEN, Shih-Chieh LIAO, Yih-Chyng WU
  • Patent number: 8993169
    Abstract: A positive electrode composition is presented. The composition includes at least one electroactive metal; at least one alkali metal halide; and at least one additive including a plurality of nanoparticles, wherein the plurality of nanoparticles includes tungsten carbide. An energy storage device, and a related method for the preparation of an energy storage device, are also presented.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, Jr.
  • Publication number: 20150079471
    Abstract: The present disclosure provides a lithium-ion battery positive electrode material and a preparation method thereof.
    Type: Application
    Filed: August 14, 2014
    Publication date: March 19, 2015
    Inventors: Xiangpeng FANG, Jin CHONG, Quan KUANG, Na LIU
  • Publication number: 20150044513
    Abstract: A secondary battery capable of obtaining superior battery characteristics is provided. The cathode according to the technology includes a lithium-containing compound. The lithium-containing compound is a compound obtained by inserting an element M2 different from an element M1 in a crystal structure of a surface layer region of a composite oxide represented by a general formula of Li1+a(MnbCocNi1?b?c)1?aM1dO2?c (the element M2 is Mg or the like). A mole fraction R1 represented by [R1 (percent)=(a substance amount of the element M2/sum of substance amounts of Mn, Co, Ni, and the element M2)×100] on a central side of the lithium-containing compound is smaller than the mole fraction R1 on a surface layer side of the lithium-containing compound.
    Type: Application
    Filed: February 14, 2013
    Publication date: February 12, 2015
    Inventors: Kazuaki Endoh, Yosuke Hosoya, Hironobu Tsuji, Kazunari Motohashi
  • Publication number: 20150044565
    Abstract: The present invention provides a process for producing a graphene-enhanced anode active material for use in a lithium battery. The process comprises (a) providing a continuous film of a graphene material into a deposition zone; (b) introducing vapor or atoms of a precursor anode active material into the deposition zone, allowing the vapor or atoms to deposit onto a surface of the graphene material film to form a sheet of an anode active material-coated graphene material; and (c) mechanically breaking this sheet into multiple pieces of anode active material-coated graphene; wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight, all based on the total weight of the graphene material and the anode active material combined.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
  • Publication number: 20150044564
    Abstract: The present invention provides an anode electrode of a lithium-ion battery, comprising an anode active material-coated graphene sheet, wherein the graphene sheet has two opposed parallel surfaces and at least 50% area of one of the surfaces is coated with an anode active material and wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight (preferably at least 60%), all based on the total weight of the graphene material and the anode active material combined.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
  • Patent number: 8936874
    Abstract: This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 ?m (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: January 20, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Jinjun Shi, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20150017500
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a conductive layer formed on the electrode active material layer and comprising a conductive material and a binder; and a first porous supporting layer formed on the conductive layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Application
    Filed: September 4, 2014
    Publication date: January 15, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Publication number: 20150010832
    Abstract: The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Applicant: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Prashant N. Kumta, Partha Saha, Moni Kanchan Datta, Ayyakkannu Manivannan
  • Publication number: 20150004471
    Abstract: Ultrafast battery devices having enhanced reliability and power density are provided. Such batteries can include a cathode including a first silicon substrate having a cathode structured surface, an anode including a second silicon substrate having an anode structured surface positioned adjacent to the cathode such that the cathode structured surface faces the anode structured surface, and an electrolyte disposed between the cathode and the anode. The anode structured surface can be coated with an anodic active material and the cathode structured surface can be coated with a cathodic active material.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Zhaohui Chen, Yang Liu, Charles W. Holzwarth, Nicolas Cirigliano, Bum Ki Moon
  • Publication number: 20140370387
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20140370349
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Publication number: 20140349183
    Abstract: A composite particle is provided. The particle comprises a first particle component and a second particle component in which: (a) the first particle component comprises a body portion and a surface portion, the surface portion comprising one or more structural features and one or more voids, whereby the surface portion and body portion define together a structured particle; and (b) the second component comprises a removable filler; characterised in that (i) one or both of the body portion and the surface portion comprise an active material; and (ii) the filler is contained within one or more voids comprised within the surface portion of the first component.
    Type: Application
    Filed: February 27, 2013
    Publication date: November 27, 2014
    Applicant: Nexeon Limited
    Inventors: William James Macklin, Fiona Scott, Christopher Michael Friend
  • Patent number: 8889296
    Abstract: The hydration of cadmium oxide in the presence of nickel acetate gives the possibility of obtaining a compound of general formula Cd1-xNix(OH)2-y(CH3CO2)y with 0<x?0.05 and 0<y?0.10. This compound may be advantageously, used as an electrochemically active material of an anode of the envelope type of a nickel cadmium generator. This anode does not contain any sulfates responsible for the formation of short-circuits. Further, this anode has a high electrochemical yield. A method for preparing this compound and the anode is described.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 18, 2014
    Assignee: Saft Groupe SA
    Inventors: Stéphanie Chevalier, Claudette Audry, Mélanie Dendary, Philippe Desprez, Björn Marlid, Rune Sjövall, Jerry Gottfridsson
  • Publication number: 20140335407
    Abstract: A method for configuring a non-lithium-intercalation electrode includes intercalating an insertion species between multiple layers of a stacked or layered electrode material. The method forms an electrode architecture with increased interlayer spacing for non-lithium metal ion migration. A laminate electrode material is constructed such that pillaring agents are intercalated between multiple layers of the stacked electrode material and installed in a battery.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Yan YAO, Yanliang LIANG
  • Publication number: 20140322606
    Abstract: The present disclosure relates to an anode active material comprising a composite of a core-shell structure, a lithium secondary battery comprising the same, and a method of manufacturing the anode active material. According to an aspect of the present disclosure, there is provided an anode active material of a core-shell structure comprising a core including alloyed (quasi)metal oxide-Li (MOx—Liy) and a shell including a carbon material coated on a surface of the core. According to another aspect of the present disclosure, there is provided a method of manufacturing the anode active material of the core-shell structure. According to an aspect of the present disclosure, an anode active material with high capacity, excellent cycle characteristics and volume expansion control capacity, and high initial efficiency is provided.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Yong-Ju Lee, Yoon-Ah Kang, Mi-Rim Lee, Je-Young Kim, Hye-Ran Jung
  • Publication number: 20140315100
    Abstract: A rechargeable lithium-sulfur cell comprising an anode, a separator and/or electrolyte, a sulfur cathode, an optional anode current collector, and an optional cathode current collector, wherein the cathode comprises (a) exfoliated graphite worms that are interconnected to form a porous, conductive graphite flake network comprising pores having a size smaller than 100 nm; and (b) nano-scaled powder or coating of sulfur, sulfur compound, or lithium polysulfide disposed in the pores or coated on graphite flake surfaces wherein the powder or coating has a dimension less than 100 nm. The exfoliated graphite worm amount is in the range of 1% to 90% by weight and the amount of powder or coating is in the range of 99% to 10% by weight based on the total weight of exfoliated graphite worms and sulfur (sulfur compound or lithium polysulfide) combined. The cell exhibits an exceptionally high specific energy and a long cycle life.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu, Yi-jun Lin
  • Publication number: 20140302392
    Abstract: Stabilization coating that are uniform and penetrating have been found to provide desirable stabilization coatings for lithium rich metal oxide cathode active materials. In particular, the uniform and penetrating coatings can be particularly desirable for improving storage stability of batteries formed with the active material. The stabilization coatings can be inert metal oxides, such as aluminum oxide. The uniform and penetrating stabilization coatings can be formed using atomic layer deposition. The coatings can further effectively stabilize cycling of the batteries, and batteries formed with the stabilization coating can exhibit modest increases in DC electrical resistance.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: Envia Systems, Inc.
    Inventors: Bing Li, Shabab Amiruddin, Swapnil Dalavi
  • Publication number: 20140272589
    Abstract: A negative electrode active material for an electric device according to the present invention includes crystalline metal having a structure in which a size in a perpendicular direction to a crystal slip plane is 500 nm or less. More preferably, the size in the perpendicular direction to the crystal slip plane is controlled to become 100 nm or less. As described above, a thickness in an orientation of the slip plane is controlled to become sufficiently small, and accordingly, micronization of the crystalline metal is suppressed even if breakage occurs from the slip plane taken as a starting point. Hence, a deterioration of a cycle lifetime can be prevented by applying the negative electrode active material for an electric device, which is as described above, or a negative electrode using the same, to an electric device, for example, such as a lithium ion secondary battery.
    Type: Application
    Filed: October 1, 2012
    Publication date: September 18, 2014
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Takashi Sanada, Wataru Ogihara, Manabu Watanabe, Atsushi Ito
  • Publication number: 20140272584
    Abstract: A Li-ion battery is disclosed, the Li-ion battery including an anode, a cathode, a lithium donor formed from a Li-containing material, and an electrolyte in communication with the anode, the cathode, and the lithium donor. The lithium donor may be incorporated into the anode, incorporated into the cathode, a layer formed on either an anode side or a cathode side of a separator of the battery. The lithium donor is formed from Li-containing material insensitive to oxygen and aqueous moisture.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Meng Jiang, Xingcheng Xiao, Mei Cai, Li Yang, Bob R. Powell, JR.
  • Publication number: 20140242474
    Abstract: Disclosed is a high-capacity electrochemical energy storage device in which a conversion reaction proceeds as the oxidation-reduction reaction, and the separation (hysteresis) between the electrode potentials for oxidation and reduction is small. The electrochemical energy storage device includes a first electrode including a first active material, a second electrode including a second active material, and a non-aqueous electrolyte interposed between the first and second electrodes. At least one of the first and second active materials is a metal salt having a polyatomic anion and a metal ion, and the metal salt is capable of oxidation-reduction reaction involving reversible release and acceptance of the polyatomic anion.
    Type: Application
    Filed: March 11, 2013
    Publication date: August 28, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tooru Matsui, Zempachi Ogumi, Toshiro Hirai, Akiyoshi Nakata
  • Patent number: 8815116
    Abstract: A composition including a first material and a metal or a metal oxide component for use in an electrochemical redox reaction is described. The first material is represented by a general formula M1xM2yXO4, wherein M1 represents an alkali metal element; M2 represents an transition metal element; X represents phosphorus; O represents oxygen; x is from 0.6 to 1.4; and y is from 0.6 to 1.4. Further, the metal or the metal oxide component includes at least two materials selected from the group consisting of transition metal elements, semimetal elements, group IIA elements, group IIIA elements, group IVA elements, alloys thereof and oxides of the above metal elements and alloys, wherein the two materials include different metal elements. Moreover, the first material and the metal or the metal oxide component are co-crystallized or physically combined, and the metal or the metal oxide component takes less than about 30% of the composition.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventor: Ko-Yu Chiu
  • Publication number: 20140234716
    Abstract: Lithium rich and manganese rich lithium metal oxides are described that provide for excellent performance in lithium-based batteries. The specific compositions can be engineered within a specified range of compositions to provide desired performance characteristics. Selected compositions can provide high values of specific capacity with a reasonably high average voltage. Compositions of particular interest can be represented by the formula, x Li2MnO3.(1?x) Li Niu+?Mnu??CowAyO2). The compositions undergo significant first cycle irreversible changes, but the compositions cycle stably after the first cycle.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 21, 2014
    Applicant: Envia Systems, Inc.
    Inventors: Herman A. Lopez, Subramanian Venkatachalam, Deepak Kumaar Kandasamy Karthikeyan, Sujeet Kumar
  • Publication number: 20140212694
    Abstract: A composite anode active material, an anode including the composite anode active material, a lithium battery including the anode, and a method of preparing the composite anode active material, the composite anode active material including a core including a ternary alloy, the ternary alloy being capable of intercalating and deintercalating lithium; and a carbonaceous coating layer on the core.
    Type: Application
    Filed: December 16, 2013
    Publication date: July 31, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Yo-Han PARK, Young-Ugk KIM, Seung-Uk KWON, Jae-Hyuk KIM, Soon-Sung SUH, Yury MATULEVICH, Duk-Hyoung YOON, Hee-Young CHU, Chang-Ui JEONG
  • Patent number: 8771543
    Abstract: A conductive reinforcing material used to form a negative electrode material is provided in the present invention. The conductive reinforcing material includes metal shavings containing elements selected from a group consisting of group II elements, group III elements and group VII elements. A negative electrode material and a negative electrode both with the conductive reinforcing material are also provided in the present invention.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 8, 2014
    Assignee: iNNOT BioEnergy Holding Co.
    Inventor: Chungpin Liao
  • Publication number: 20140178760
    Abstract: A positive electrode active material comprising a lithium rich metal oxide active composition coated with aluminum zinc oxide coating composition is disclosed. The aluminum zinc oxide can be represented by the formula AlxZn1-3x/2O, where x is from about 0.01 to about 0.6. In some embodiments, the material can have an average voltage that is very stable with cycling, and a specific capacity of at least about 175 mAh/g and an average voltage of at least about 3.55V discharged at a rate of C/3 from 4.6V to 2V against lithium. The material can further comprise an overcoat of metal halide over the aluminum zinc oxide coating. In some embodiments, the material can have from about 1 mole percent to about 15 mole percent aluminum zinc oxide coating and from about 0.5 mole percent to about 3 mole percent aluminum halide overcoat.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: ENVIA SYSTEMS, INC.
    Inventors: Charles A. Bowling, Subramanian Venkatachalam, Herman A. Lopez, Sujeet Kumar
  • Publication number: 20140154576
    Abstract: Provided are a composite for an anode active material and a method of preparing the same. More particularly, the present invention provides a composite for an anode active material including a (semi) metal oxide and an amorphous carbon layer on a surface of the (semi) metal oxide, wherein the amorphous carbon layer comprises a conductive agent, and a method of preparing the composite.
    Type: Application
    Filed: January 29, 2014
    Publication date: June 5, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Yoon Ah Kang, Yong Ju Lee, Rae Hwan Jo, Je Young Kim
  • Publication number: 20140154571
    Abstract: Provided are a composite and a method of preparing an anode slurry including the same. More particularly, the present invention provides a composite including a (semi) metal oxide, a conductive material on a surface of the (semi) metal oxide, and a binder, and a method of preparing an anode slurry including preparing a composite by dispersing a conductive material in an aqueous binder and then mixing with a (semi) metal oxide, and mixing the composite with a carbon material and a non-aqueous binder.
    Type: Application
    Filed: January 29, 2014
    Publication date: June 5, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Yoon Ah Kang, Yong Ju Lee, Rae Hwan Jo, Je Young Kim
  • Patent number: 8734989
    Abstract: A negative electrode for rechargeable lithium batteries includes a current collector, a porous active material layer having a metal-based active material disposed on the current collector, and a high-strength binder layer on the porous active material layer. The high-strength binder layer has a strength ranging from 5 to 70 MPa. The negative active material for a rechargeable lithium battery according to the present invention can improve cycle-life characteristics by suppressing volume expansion and reactions of an electrolyte at the electrode surface.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: May 27, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Min Lee, Nam-Soon Choi, Goo-Jin Jeong, Yong-Mook Kang, Min-Seok Sung, Wan-Uk Choi, Sung-Soo Kim
  • Publication number: 20140141331
    Abstract: The present invention relates to a cathode active material for a lithium secondary battery, a method for preparing the same, and a lithium secondary battery including the same. Provided is a cathode active material composed of a lithium-excess lithium metal composite compound including Li2MnO3 having a layered structure, and doped with a fluoro compound, wherein an FWHM (half value width) value is within a range from 0.164 degree to 0.185 degree.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD
    Inventors: Misun Lee, Jongseok Moon, Taehyeon Kim, Shin Jung Choi
  • Publication number: 20140141334
    Abstract: Provided are a porous composite expressed by Chemical Formula 1 and having a porosity of 5% to 90%, and a method of preparing the same: MOx??<Chemical Formula 1> where M and x are the same as described in the specification. According to the present invention, since a molar ratio (x) of oxygen to a molar ratio of (semi) metal in the porous composite is controlled, an initial efficiency of a secondary battery may be increased. Also, since the porous composite satisfies the above porosity, a thickness change rate of an electrode generated during charge and discharge of the secondary battery may be decreased and lifetime characteristics may be improved.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Jung Woo Yoo, Yong Ju Lee, Yoon Ah Kang, Mi Rim Lee, Je Young Kim
  • Patent number: 8715862
    Abstract: A lithium secondary battery includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator separating the positive electrode from the negative electrode, and an electrolyte. The negative electrode active material includes a graphite core particle, at least one metal particle located on the graphite core particle, and a polymer film coating the graphite core particle and the at least one metal particle. The polymer includes a polyimide- or polyacrylate-based polymer.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: May 6, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Cheol-Hee Hwang, Bong-Chull Kim, Jong-Chan Kim, Se-Ho Park, Na-Rae Won