Chemically Specified Organic Solute Patents (Class 429/307)
  • Patent number: 8940443
    Abstract: An electrolyte comprising an organic solvent, a lithium salt, and a polymer additive comprised of repeating vinyl units joined to one or more heterocyclic amine moieties is described. The heterocyclic amine contains five to ten ring atoms, inclusive. An electrochemical cell is also disclosed. The preferred cell comprises a negative electrode which intercalates with lithium, a positive electrode comprising an electrode active material which intercalates with lithium, and the electrolyte of the present invention activating the negative and the positive electrodes.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 27, 2015
    Assignee: Greatbatch Ltd.
    Inventor: Chi-Kyun Park
  • Patent number: 8936882
    Abstract: The present invention provides an electrolyte composition for a lithium or lithium-ion battery comprising a lithium salt in a liquid carrier comprising (a) a linear alkyl carbonate solvent, a cyclic alkyl carbonate solvent, or a combination thereof, and (b) a glycerol carbonate derivative compound of Formula (I): wherein X is selected from O, O(CO)O, S, N, P, P(?O), B, and Si; n is 1 when X is O, O(CO)O, or S; n is 2 when x is N, P, P(?O), or B; n is 3 when X is Si; and each R independently is selected from alkyl, alkenyl, alkynyl, aryl, acyl, heteroaryl, a 5-member ring heterocyclic group, a 5-member ring heterocycle-substituted methyl group, trialkylsilyl, and any of the foregoing substituted with one or more fluoro substituents, provided that R is acyl only when X is O, S, or N, and R is not alkyl when X is O(CO)O.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 20, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Daniel P. Abraham, Gang Cheng
  • Patent number: 8927158
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive-electrode active material, a negative electrode having a negative-electrode active material, and a nonaqueous electrolytic solution having a nonaqueous solvent dissolving a solute. The negative-electrode active material includes powdered silicon and/or a silicon alloy, the nonaqueous electrolytic solution includes additives composed of at least one fluorinated lithium phosphate selected from the group consisting of lithium monofluorophosphate, lithium difluorophosphate, and lithium trifluorophosphate and a diisocyanate compound, and the nonaqueous solvent includes a chain carbonate compound.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 6, 2015
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Hidekazu Yamamoto, Kouhei Tuduki, Taizou Sunano, Maruo Kamino, Youichi Ohashi, Minoru Kotato
  • Patent number: 8916297
    Abstract: Provided are a method of preparing a gel polymer electrolyte secondary battery, and a gel polymer electrolyte secondary battery prepared by the method. The gel polymer electrolyte secondary battery includes a cathode, an anode, a separator and a gel polymer electrolyte in a battery case. The method includes (S1) coating a polymerization initiator on a surface of at least one selected from a group consisting of a cathode, an anode, a separator of a non-woven fabric, and a battery case, the surface needed to be contacted with a gel polymer electrolyte; (S2) putting an electrode assembly including the cathode, the anode, the separator of a non-woven fabric into the battery case; and (S3) forming a gel polymer electrolyte by introducing a gel polymer electrolyte composition including an electrolyte solvent, an electrolyte salt and a polymer electrolyte monomer into the battery case, and polymerizing the monomer.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: December 23, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Hoon Yu, Ho-Chun Lee
  • Publication number: 20140349196
    Abstract: The present invention provides an electrolyte component containing one or more salts including lithium bis(oxalate)borate (LiBOB), a solvent, propylene carbonate (PC) and a crystallisable polymer wherein said LiBOB is present as a weight percentage of 0.5% or more, said propylene carbonate is present as a weight percentage of between 5% and 90% and the crystallisable polymer is present at a weight percentage of greater than 1%. It also provides a galvanic cell formed from the above and a process for forming same.
    Type: Application
    Filed: December 7, 2012
    Publication date: November 27, 2014
    Inventors: Ian Ward, Hugh Hubbard, Simon Charles Wellings, Jerry Barker
  • Patent number: 8883356
    Abstract: Electrolyte and lithium secondary batteries containing the same are disclosed. In one instance, the electrolyte includes a lithium salt, a solvent and an additive. In some examples, the additive includes substances A, B and C, wherein substance A is vinylene carbonate, substance B includes at least one of fluorinated or chlorinated ethylene carbonate or diethylene carbonate, and substance C includes at least one of ethylene sulfite, 1,3-propanesultone and propenyl sulfite.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: November 11, 2014
    Assignee: BYD Company Limited
    Inventors: GuiShu Zhou, Lei Si, Yong Wang, YiWei Fan
  • Patent number: 8865353
    Abstract: A nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, containing a hydantoin compound represented by the following general formula (I) in an amount of from 0.01 to 5% by mass of the nonaqueous electrolytic solution, and excellent in battery characteristics such as high-temperature storage property and cycle property. (In the formula, R1 and R2 each represent a methyl group or an ethyl group; R3 and R4 each represent a hydrogen atom, a methyl group or an ethyl group.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Masahide Kondo
  • Patent number: 8846249
    Abstract: The positive electrode of a lithium ion secondary battery includes active material particles represented by LixNi1?yMyMezO2+?, and the active material particles include a lithium composite oxide represented by LixNi1?yMyO2, (where 0.95?x?1.1, 0<y?0.75, 0.001?z?0.05). The element M is selected from the group consisting of alkaline-earth elements, transition elements, rare-earth elements, IIIb group elements and IVb group elements. The element Me is selected from the group consisting of Mn, W. Nb, Ta, In, Mo, Zr and Sn, and the element Me is included in a surface portion of the active material particles. The lithium content x in the lithium composite oxide in an end-of-discharge state when a constant current discharge is performed at a temperature of 25° C. with a current value of 1C and an end-of-discharge voltage of 2.5 V satisfies 0.85?x??0.013Ln(z)+0.871.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventor: Kensuke Nakura
  • Patent number: 8845764
    Abstract: An object is to provide a power storage device with improved cycle characteristics and a method of manufacturing the power storage device. Another object is to provide an application mode of the power storage device for which the above power storage device is used. In the method of manufacturing the power storage device, an active material layer is formed over a current collector, a solid electrolyte layer is formed over the active material layer after a natural oxide film over the active material layer is removed, and a liquid electrolyte is provided so as to be in contact with the solid electrolyte layer. Accordingly, decomposition and deterioration of the electrolyte solution which are caused by the contact between the active material layer and the electrolyte solution can be prevented, and cycle characteristics of the power storage device can be improved.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kazutaka Kuriki
  • Publication number: 20140272601
    Abstract: Salts with formula X?M+ wherein M+ is Li, Na, K, an ammonium, a phosphonium, an imidazolium, a pyridinium, or a pyrazolium and X? is an anion formed from covalent linking of two negative moieties to a positive onium-type core are provided. Also provided are electrolytes and batteries produced from these salts.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 18, 2014
    Inventors: Erlendur Jónsson, Michel Bernard Armand, Jens Patrik Johansson
  • Patent number: 8828579
    Abstract: The invention provides a battery, which can improve battery characteristics such as high temperature storage characteristics. The battery comprises a battery device, wherein a cathode and an anode are wound with a separator in between. The anode contains an anode material capable of inserting and extracting Li as an anode active material. An electrolytic solution is impregnated in the separator. The electrolytic solution contains a solvent, and an electrolyte salt such as Li[B(CF3)4] dissolved in the solvent, which is expressed by a chemical formula of Li[B(RF1)(RF2)(RF3)RF4]RF 1, RF 2, RF 3, and RF 4 represent a perfluoro alkyl group whose number of fluorine or carbon is from 1 to 12, respectively. Consequently, high temperature storage characteristics are improved.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventors: Tadahiko Kubota, Momoe Adachi, Shigeru Fujita
  • Patent number: 8828610
    Abstract: Disclosed is an additive for an electrochemical cell wherein the additive includes an N—O bond. The additive is most preferably included in a nonaqueous electrolyte of the cell. Also disclosed are cells and batteries including the additive, and methods of charging the batteries and cells. An electrochemical cell including the additive preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 9, 2014
    Assignee: Sion Power Corporation
    Inventor: Yuriy V. Mikhaylik
  • Patent number: 8822084
    Abstract: An electrolyte for a non-aqueous electrolyte battery according to the present invention contains a non-aqueous organic solvent; a solute; and both of difluorobis(oxalato)phosphate and tetrafluoro(oxalate)phosphate as additives. A non-aqueous electrolyte battery according to the present invention uses the above electrolyte. By the composite effect of the difluorobis(oxalato)phosphate and tetrafluoro(oxalate)phosphate in the non-aqueous electrolyte and the non-aqueous electrolyte battery, it is possible to improve not only the cycle characteristics and high-temperature storage stability of the battery but also the low-temperature characteristics of the battery at temperatures of 0° C. or lower.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: September 2, 2014
    Assignee: Central Glass Company, Limited
    Inventors: Shoichi Tsujioka, Aiichiro Fujiwara
  • Patent number: 8815116
    Abstract: A composition including a first material and a metal or a metal oxide component for use in an electrochemical redox reaction is described. The first material is represented by a general formula M1xM2yXO4, wherein M1 represents an alkali metal element; M2 represents an transition metal element; X represents phosphorus; O represents oxygen; x is from 0.6 to 1.4; and y is from 0.6 to 1.4. Further, the metal or the metal oxide component includes at least two materials selected from the group consisting of transition metal elements, semimetal elements, group IIA elements, group IIIA elements, group IVA elements, alloys thereof and oxides of the above metal elements and alloys, wherein the two materials include different metal elements. Moreover, the first material and the metal or the metal oxide component are co-crystallized or physically combined, and the metal or the metal oxide component takes less than about 30% of the composition.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventor: Ko-Yu Chiu
  • Patent number: 8815454
    Abstract: A lithium secondary battery includes a positive electrode, a negative electrode, a separator separating the positive electrode and the negative electrode, and an electrolyte. The negative electrode active material of the negative electrode includes a material that is capable of reversibly intercalating and deintercalating lithium ions and a metallic material capable of alloying with lithium. The electrolyte includes a chemical compound containing a nitrile (—CN) radical.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 26, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Shik Kim, Jin-Bum Kim, Jin-Sung Kim, Na-Rae Park
  • Patent number: 8808918
    Abstract: The rechargeable lithium battery of the present invention includes a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte. The positive active material includes a core and a coating layer formed on the core. The core is made of a material such as LiCo0.98M?0.02O2, and the coating layer is made of a material such as MxPyOz. The electrolyte solution includes a nitrile-based additive. The rechargeable lithium battery of the present invention shows higher cycle-life characteristics and longer continuous charging time at high temperature.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jeom-Soo Kim, Jong-Hwa Lee, Yong-Chul Park, Jae-Yul Ryu, So-Hyun Hur
  • Patent number: 8802300
    Abstract: A rechargeable lithium battery including a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte including a non-aqueous organic solvent and a lithium salt. The positive electrode has an active-mass density of about 3.7 to 4.1 g/cc, and the non-aqueous electrolyte includes a nitrile-based compound additive, a non-aqueous organic solvent, and a lithium salt.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: August 12, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Hwa Lee, Duck-Chul Hwang, Jeom-Soo Kim, Yong-Chul Park, Jae-Yul Ryu, Euy-Young Jung, So-Hyun Hur
  • Patent number: 8802301
    Abstract: An electrolyte for a lithium ion battery includes a vitreous eutectic mixture represented by the formula AxBy, where A is a salt chosen from a lithium fluoroalkylsulfonimide or a lithium fluoroarylsulfonimide, B is a solvent chosen from an alkylsulfonamide or an arylsulfonamide, and x and y are the mole fractions of A and B, respectively.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: August 12, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Damon R. Frisch, Olt E. Geiculescu, Darryl D Desmarteau, Stephen E Creager, Changqing Lu
  • Patent number: 8795903
    Abstract: The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 5, 2014
    Assignee: California Institute of Technology
    Inventors: Marshall C. Smart, Kiah A. Smith, Ratnakumar V. Bugga, Surya G. Prakash, Frederick Charles Krause
  • Patent number: 8771881
    Abstract: An electrolyte for a lithium ion secondary battery includes a non-aqueous organic solvent; a lithium salt; and a phosphonitrile fluoride trimer as an additive, and a lithium ion secondary battery comprising the same. The thickness increase rate of a lithium ion secondary battery including the electrolyte is reduced even when the battery is kept at a high temperature. Thus, the thermal stability and durability of the battery are prominently improved. The durability of the battery can be further improved by including a vinylene carbonate or ethylene carbonate group compound in the electrolyte.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 8, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinsung Kim, Narae Park, Jinhyunk Lim, Suhee Han, Jinbum Kim, Jungkang Oh
  • Patent number: 8753776
    Abstract: A primary electrochemical cell and electrolyte incorporating a linear asymmetric ether is disclosed. The ether may include EME, used in combination with DIOX and DME, or have the general structural formula R1—O—CH2—CH2—O—R2 or R1—O—CH2—CH(CH3)—O—R2, where a total of at least 7 carbon atoms must be present in the compound, and R1 and R2 consist alkyl, cyclic, aromatic or halogenated groups but cannot be the same group (i.e., R1?R2).
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Eveready Battery Company, Inc
    Inventor: Weiwei Huang
  • Patent number: 8748043
    Abstract: Disclosed is an electrochemical cell comprising a lithium anode and a sulfur-containing cathode and a non-aqueous electrolyte. The cell exhibits high utilization of the electroactive sulfur-containing material of the cathode and a high charge-discharge efficiency.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: June 10, 2014
    Assignee: Sion Power Corporation
    Inventor: Yuriy V. Mikhaylik
  • Patent number: 8685572
    Abstract: An organic electrolyte including a lithium salt; an organic solvent; and a flavone-based or flavanon-based compound, and a lithium battery including the organic electrolyte.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-joon Lee, Young-gyoon Ryu, Seok-soo Lee, Dong-min Im
  • Patent number: 8685567
    Abstract: A rechargeable lithium battery including: a negative electrode including lithium-vanadium-based oxide, negative active material; a positive electrode including a positive active material to intercalate and deintercalate lithium ions; and an electrolyte including a non-aqueous organic solvent, and a lithium salt. The lithium salt includes 0.7 to 1.2M of a first lithium salt including LiPF6; and 0.3 to 0.8M of a second lithium salt selected from the group consisting of LiBC2O4F2, LiB(C2O4)2, LiN(SO2C2F5)2, LiN(SO2CF3)2, LiBF4, LiClO4, and combinations thereof.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Su-Yeong Park, Nam-Soon Choi, Kyoung-Han Yew, Doo-Kyoung Lee, Sung-Soo Kim
  • Patent number: 8673504
    Abstract: The objective of the present invention is to prevent deterioration and expanding of anode active material and to improve charge-discharge cycle characteristics in a non-aqueous electrolyte secondary battery comprising an anode of which current collector has thereon a thin layer of an anode active material containing a metal. To solve this problem, in a non-aqueous electrolyte secondary battery wherein a thin layer of anode active material containing a metal which absorbs and discharges lithium is formed on a current collector and the thin layer of the anode active material is divided into columns by a gap formed along the thickness thereof, a compound represented by the following formula is contained in the non-aqueous electrolyte. A-N?C?O In the above formula, A represents an element or a group other than hydrogen.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 18, 2014
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Keiji Saisho, Hidekazu Yamamoto, Masahiro Takehara
  • Publication number: 20140011094
    Abstract: The present invention relates to a highly advanced lithium-polymer battery and to a method for manufacturing same, and more particularly, to a highly advanced lithium-polymer battery including silicon nanoparticles substituted with polymers and self-assembling block copolymers. According to the present invention, the lithium-polymer battery is a highly advanced lithium-polymer secondary battery consisting of: an anode including anode active particles, wherein polymers are formed on the surface of the anode; a cathode; and a polymer electrolyte including block copolymers. According to the present invention, a high-capacity lithium-polymer battery, which is stable during charging/discharging cycles, can be provided.
    Type: Application
    Filed: November 30, 2011
    Publication date: January 9, 2014
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Moon Jeong Park, Il Young Choi
  • Publication number: 20130344396
    Abstract: In various embodiments an improved binder composition, electrolyte composition and a separator film composition using discrete carbon nanotubes, their methods of production and utility for energy storage and collection devices, like batteries, capacitors and photovoltaics, is described. The binder, electrolyte, or separator composition can further comprise polymers. The discrete carbon nanotubes further comprise at least a portion of the tubes being open ended and/or functionalized. The utility of the binder, electrolyte or separator film composition includes improved capacity, power or durability in energy storage and collection devices. The utility of the electrolyte and or separator film compositions includes improved ion transport in energy storage and collection devices.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 26, 2013
    Inventors: Clive P. Bosnyak, Kurt W. Swogger, Milos Marinkovic
  • Patent number: 8580429
    Abstract: Disclosed are (1) a nonaqueous electrolytic solution for lithium battery comprising an electrolyte dissolved in a nonaqueous solvent, which contains at least one hydroxy acid derivative compound represented by the formulae (I) and (II) in an amount of from 0.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuyuki Kawabe
  • Patent number: 8574773
    Abstract: A battery electrolyte solution contains from 0.01 to 80% by weight of an aromatic phosphorus compound. The aromatic phosphorus compound provides increased thermal stability for the electrolyte, helping to reduce thermal degradation, thermal runaway reactions and the possibility of burning. The aromatic phosphorus compound has little adverse impact on the electrical properties of the battery, and in some cases actually improves battery performance.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 5, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: David R. Wilson, Ravi B. Shankar, Houxiang Tang, Andrew J. Pasztor, Jr., Peter M. Margl, William J. Kruper, Jr., Mark D. Newsham, Jing Jin, Matthew M. Yonkey, Deidre A. Strand, Thomas D. Gregory, Jamie L. Cohen, Jeremy R. Stajdl
  • Patent number: 8574757
    Abstract: A nonaqueous electrolytic solution that can provide a battery that is low in gas generation, has a large capacity, and is excellent in storage characteristics and cycle characteristics.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 5, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Minoru Kotato, Shinichi Kinoshita
  • Patent number: 8574534
    Abstract: The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X+a)x(Y?b)y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that a·x=b·y, and at least one of X+ and Y? possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 5, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Sheng Dai, Huimin Luo, Je Seung Lee
  • Patent number: 8568920
    Abstract: An organic electrolytic solution including a lithium salt, an organic solvent, and a linear or cyclic polymerizable monomer that is negatively charged due to localization of electrons on the monomer, and a lithium battery employing the same. Since the organic electrolytic solution prevents decomposition of an electrolyte and elution from or precipitation of metal ions, the lithium battery employing the organic electrolytic solution has excellent lifetime characteristics and cycle characteristics.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 29, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-joon Lee, Young-gyoon Ryu, Dong-min Im, Seok-soo Lee
  • Patent number: 8568926
    Abstract: A non-aqueous electrolyte battery includes an electrode group includes a positive electrode and a negative electrode disposed through a separator, and a non-aqueous electrolyte. The negative electrode comprises a current collector and a porous negative electrode layer formed on the current collector and containing a lithium compound. The porous negative electrode layer has a first peak at a pore diameter of 0.04 to 0.15 ?m and a second peak at a pore diameter of 0.8 to 6 ?m in the relation between the pore diameter and log differential intrusion obtained in the mercury press-in method.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidesato Saruwatari, Hideaki Morishima, Hiroki Inagaki, Norio Takami
  • Publication number: 20130266836
    Abstract: Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wei Wang, Wu Xu, Liyu Li, Zhenguo Yang
  • Patent number: 8546021
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and an organic solvent and further includes a solvent having a fluoro group and a specific siloxane compound. A lithium secondary battery having the above non-aqueous electrolyte solution exhibits greatly improved capacity recovery characteristics after high temperature storage and also reduces side effects such as swelling.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: October 1, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Soo-Jin Kim, Jeong-Ju Cho, Su-Jin Yoon, Mi-Young Son, Jong-Ho Jeon
  • Patent number: 8530098
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery including: a first additive having an oxidation potential of 4.1 to 4.6V; a second additive having an oxidation potential of 4.4 to 5.0V; a non-aqueous organic solvent; and a lithium salt.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Jin-Sung Kim
  • Patent number: 8524399
    Abstract: Disclosed is a non-aqueous electrolyte including an electrolyte salt and an electrolyte solvent, the non-aqueous electrolyte further including a compound containing both a carboxy group and a (meth)acrylic group, and a secondary battery including the non-aqueous electrolyte. The use of the compound containing both the carboxy group and the (meth)acrylic group as a component for an electrolyte significantly reduces the increase of battery thickness at high temperature storage.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 3, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Soojin Kim, Jeong-Ju Cho
  • Patent number: 8524400
    Abstract: Disclosed is an electrolyte for a secondary battery comprising an electrolyte salt and an electrolyte solvent, the electrolyte comprising both a lactam-based compound and a sulfinyl group-containing compound. Also, disclosed is an electrode having a solid electrolyte interface (SEI) film partially or totally formed on a surface thereof, the SEI film being formed by electrical reduction of the above compounds. Further, a secondary battery comprising the electrolyte and/or the electrode is disclosed.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: September 3, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Ho-Chun Lee, Jeong-Ju Cho
  • Patent number: 8512900
    Abstract: A nonaqueous electrolytic solution secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolytic solution having an electrolyte salt dissolved in a nonaqueous solvent. The nonaqueous solvent contains 80% by mass or more of a cyclic carbonate which does not have a carbon-carbon multiple bond and which does not contain a halogen and contains a cyclic sulfone compound having any one of structures represented by the following formulae (1) to (4): wherein each of R1 and R2 represents CmH2m where 1?m?4. Also, each of R3 to R10 independently represents CnH2n+1 where 1?n?4.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: August 20, 2013
    Assignee: Sony Corporation
    Inventor: Atsumichi Kawashima
  • Patent number: 8512897
    Abstract: Provided are (1) a novel phenyl sulfonate compound, (2) a nonaqueous electrolytic solution comprising an electrolyte salt dissolved in a nonaqueous solvent and containing a phenyl sulfonate compound of the following general formula (II) in an amount of from 0.01 to 10% by mass of the nonaqueous electrolytic solution, and (3) a lithium battery containing the nonaqueous electrolytic solution and excellent in low-temperature cycle property. (wherein X1 to X5 each independently represents a fluorine atom or a hydrogen atom, and from one to four of these are fluorine atoms; R2 represents a linear or branched alkyl group having from 1 to 6 carbon atoms, a linear or branched alkyl group having from 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, or an aryl group having from 6 to 9 carbon atoms).
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: August 20, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi
  • Patent number: 8501356
    Abstract: An additive typified by tris(trimethylsilyl)phosphate, tris(trimethylsilyl)borate, and tetrakis(trimethylsiloxy)titanium (Chem. 3) are applied to a nonaqueous electrolyte containing a chain carbonate and/or a chain carboxylate as a main solvent (contained at a ratio of 70 volume % or higher). It is preferable that 0?a<30 is satisfied, in which “a” denotes the volume of a cyclic carbonate among carbonates having no carbon-carbon double bond in the entire volume, defined as 100, of the carbonates having no carbon-carbon double bond and chain carboxylates in a nonaqueous solvent contained in the nonaqueous electrolyte (0<a<30 in the case no chain carboxylate is contained).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 6, 2013
    Assignee: GS Yuasa International Ltd.
    Inventors: Kazusa Ohkubo, Koji Sukino, Shigeki Yamate, Suguru Kozono, Yoshihiro Katayama, Toshiyuki Nukuda
  • Patent number: 8460830
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same. The electrolyte includes a lithium salt, trialkylsilyl(meth)acrylate compound represented by the following Chemical Formula 1, a halogenated carbonate compound, and an organic solvent. In the above Chemical Formula 1, R1 is hydrogen or methyl, and R2 to R4 are the same or different and one selected from C1 to C6 alkyl.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 11, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Sung Kim, Na-Rae Park, Su-Hee Han, Jin-Hyunk Lim, Mi-Hyeun Oh
  • Patent number: 8435679
    Abstract: Provide are fluorinated cyclic and acyclic carbonate solvent compositions such as various fluorine substituted 1,3-dioxolane-2-one compounds and fluorine substituted 1,3-dioxane-2-one compounds, which are useful as electrolyte solvents for lithium ion batteries.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 7, 2013
    Assignee: 3M Innovative Properties Counsel
    Inventors: William M. Lamanna, Michael J. Bulinski, Michael G. Costello, Jeffrey R. Dahn, Richard M. Flynn, Yadong Wang, Jing Li, Lee Moshurchak
  • Patent number: 8435680
    Abstract: A rechargeable lithium battery including: a positive electrode including a nickel-based positive active material; a negative electrode including a negative active material; and an electrolyte including a non-aqueous organic solvent, a lithium salt, a first fluoroethylene carbonate additive, a second vinylethylene carbonate additive, and a third alkane sultone additive, wherein when the battery is thicker than about 5mm, a mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 5:1 to about 10:1, or when the battery is thinner than about 5 mm, the mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 1:1 to about 4:1.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Na-Rae Park, Jin-Sung Kim, Su-Hee Han, Jin-Hyunk Lim
  • Patent number: 8427733
    Abstract: This invention relates to a printable composition and in particular to a printable composition for application to an electrochromic and/or electrochemical device. The printable electrolyte composition for the production of electrochemical devices comprises: 20-50% by weight, based on the total amount of the composition, of a thermally-curable base which comprises a resin; 20-70% by weight, based on the total amount of the composition, of a solvent; and 10-50% by weight, based on the total amount of the composition, of an electrolyte, wherein the composition has a viscosity of 0.3 Pas or higher.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: April 23, 2013
    Assignee: Acreo AB
    Inventors: Nigel Paul Gould, Fereidoun Abbasi, Adam Joseph Howard Batting, Mats Olof Sandberg, Anurak Sawatdee, Lars-Olov Bror Hennerdal, Staffan Nordlinder, Tommi Remonen
  • Patent number: 8420265
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery that includes a lithium salt, a phosphine compound having at least one trialkylsilyl group and organic solvent, and a rechargeable lithium battery including the electrolyte. The phosphine compound may be tris(trialkylsilyl)phosphine wherein the alkyl groups are the same or different and are each independently selected from C1 to C6 alkyl.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Mi-Hyeun Oh, Jin-Sung Kim, Na-Rae Park, Su-Hee Han, Jin-Hyunk Lim
  • Patent number: 8399137
    Abstract: The present invention provides an electrolyte containing novel additive for electrochemical device and the electrochemical device thereof. The additive is a compound represented by below formula (I): wherein R1 and R2 are independently hydrogen, methyl, ethyl, or halogen; n and m are independently 1, 2, or 3. The additive of the present invention can protect the surface of the carbonaceous material on the anode and suppress the occurrence of exfoliation, thereby increasing the lifetime of the electrochemical device. Furthermore, the additive of the present invention also slows down the decay of capacity on the cathode during charging-discharging cycles, and hence maintains a better performance.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Taiwan Hopax Chems. Mfg. Co., Ltd.
    Inventors: Li-Jane Her, Chih-Wei Huang, Po-Cheng Chen
  • Patent number: 8394539
    Abstract: Lithium salts with fluorinated chelated orthoborate anions are prepared and used as electrolytes or electrolyte additives in lithium-ion batteries. The lithium salts have two chelate rings formed by the coordination of two bidentate ligands to a single boron atom. In addition, each chelate ring has two oxygen atoms bonded to one boron atom, methylene groups bonded to the two oxygen atoms, and one or more fluorinated carbon atoms bonded to and forming a cyclic bridge between the methylene groups.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Olt E. Geiculescu, Ion C. Halalay, Darryl D. Desmarteau, Stephen E. Creager
  • Patent number: 8389162
    Abstract: An electrolyte for a rechargeable lithium battery that includes a non-aqueous organic solvent, a lithium salt, and an electrolyte additive. The electrolyte additive includes 2 to 6 wt % of succinonitrile, 2 to 6 wt % of alkane sultone, and 1 to 3 wt % of vinylethylene carbonate based on the total weight of the electrolyte.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 5, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duck-Chul Hwang, Sang-Min Lee, Kyoung-Han Yew, Sang-Jin Kim
  • Patent number: RE44264
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: June 4, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Man Kim, Kwang Sun Ryu, Soon Ho Chang