Nitrogen Containing Organic Solvent Compound (e.g., Acetonitrile, Etc.) Patents (Class 429/339)
  • Patent number: 10411251
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 10, 2019
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents of the University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Patent number: 10199688
    Abstract: A one-step method to prepare a magnesium electrolyte salt is provided. According to the method, the magnesium electrolyte is obtained by reacting a Grignard reagent and a fluorinated aryl borane. In addition, formation of monomeric or dimeric magnesium ion is determined by the choice of the Grignard reagent. The magnesium electrolyte may be non-chlorinated and non-corrosive. A magnesium battery containing the magnesium electrolyte is also provided.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 5, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Claudiu B. Bucur, John Muldoon
  • Patent number: 10115959
    Abstract: A method of manufacturing a non-aqueous liquid electrolyte secondary battery is to manufacture a non-aqueous liquid electrolyte secondary battery including a positive electrode mixture layer containing a lithium-containing transition metal oxide as a positive electrode active material. The manufacturing method includes: mixing the positive electrode active material and an aromatic nitrile compound such that a mass ratio of the aromatic nitrile compound to the positive electrode active material is not less than 0.1% by mass and not more than 4% by mass, to prepare a mixture; mixing the mixture, a conductive material, a binder, and a solvent to prepare a granular body; and disposing the granular body on a surface of a positive electrode collector to form at least a part of the positive electrode mixture layer.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 30, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Yukihiro Okada
  • Patent number: 10056651
    Abstract: The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a molten positive electrolyte comprising Na—FSA (sodium-bis(fluorosulonyl)amide), and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. One disclosed example of electrolyte membrane material includes, without limitation, a NaSICON-type membrane. The positive electrode includes a sodium intercalation electrode. Non-limiting examples of the sodium intercalation electrode include NaxMnO2, NaxCrO2, NaxNiO, and NaxFey(PO4)z. The cell is functional at an operating temperature between about 100° C. and about 150° C., and preferably between about 110° C. and about 130° C.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 21, 2018
    Assignee: FIELD UPGRADING USA, INC.
    Inventors: Sai Bhavaraju, Mathew Robins
  • Patent number: 9752245
    Abstract: A non-aqueous Magnesium electrolyte comprising: (a) at least one organic solvent; (b) at least one electrolytically active, soluble, inorganic Magnesium (Mg) salt complex represented by the formula: MgaZbXc wherein a, b, and c are selected to maintain neutral charge of the molecule, and Z and X are selected such that Z and X form a Lewis Acid, and 1?a?10, 1?b?5, and 2?c?30. Further Z is selected from a group consisting of aluminum, boron, phosphorus, titanium, iron, and antimony; X is selected from the group consisting of I, Br, Cl, F and mixtures thereof. Rechargeable, high energy density Magnesium cells containing an cathode, an Mg metal anode, and an electrolyte of the above-described type are also disclosed.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: September 5, 2017
    Assignee: PELLION TECHNOLOGIES, INC.
    Inventors: Robert Ellis Doe, Ruoban Han, Yossef Gofer, Doron Aurbach, Nir Pour, Evgeny Sterenberg
  • Patent number: 9722280
    Abstract: An electrolyte composition (A) containing (i) at least one aprotic organic solvent; (ii) at least one conducting salt; (iii) at least one compound of formula (NC)(A1X1)C?C(X2A2)(CN) wherein X1 and X2 are independently from each other selected from N(R?), P(R1), O, and S, and A1 and A2 are selected from H or organic substituents; and electrochemical cells containing electrolyte composition (A).
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: August 1, 2017
    Assignee: BASF SE
    Inventors: Frederick Francois Chesneau, Zoltan Baan, Boris Gaspar, Michael Schmidt, Arnd Garsuch, Hannes Wolf, Klaus Leitner, Christian Saffert, Wolfgang Klaus, Melanie Kuhl
  • Patent number: 9698415
    Abstract: A nonaqueous electrolyte battery includes a positive electrode containing an active material, a negative electrode, and a nonaqueous electrolyte, the negative electrode including a current collector and a negative electrode active material supported by the current collector, the negative electrode active material having a Li insertion potential not lower than 0.2V (vs. Li/Li+) and an average primary particle diameter not larger than 1 ?m, and a specific surface area of the negative electrode, excluding a weight of the current collector, as determined by the BET method falls within a range of 3 to 50 m2/g.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: July 4, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Hiroki Inagaki
  • Patent number: 9673446
    Abstract: A lithium ion secondary battery containing a negative electrode active material containing Si and O as constituent elements and exhibiting excellent charge-discharge cycle characteristics. The lithium ion secondary battery has a positive electrode having a positive electrode material mixture layer, a negative electrode, a separator and a nonaqueous electrolyte containing at least an electrolyte salt and an organic solvent, where the negative electrode has a negative electrode material mixture layer containing a negative electrode active material containing Si and O as constituent elements (the atomic ratio x of O to Si is 0.5?x?1.5). The nonaqueous electrolyte contains the electrolyte salt at a concentration exceeding a concentration at which conductivity in the nonaqueous electrolyte containing the electrolyte salt and the organic solvent is maximized, and the conductivity at 25° C. is 6.5 to 16 mS/cm.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 6, 2017
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Eri Kojima, Takahiro Furutani, Mitsuhiro Kishimi
  • Patent number: 9583751
    Abstract: A method is provided for fabricating a battery using an anode preloaded with consumable metals. The method forms an ion-permeable membrane immersed in an electrolyte. A preloaded anode is immersed in the electrolyte, comprising MeaX, where X is a material such as carbon, metal capable of being alloyed with Me, intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. Me is a metal such as alkali metals, alkaline earth metals, and combinations of the above-listed metals. A cathode is also immersed in the electrolyte and separated from the preloaded anode by the ion-permeable membrane. The cathode comprises M1YM2Z(CN)N.MH2O. After a plurality of initial charge and discharge operations are preformed, an anode is formed comprising MebX overlying the current collector in a battery discharge state, where 0?b<a.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 28, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Patent number: 9537131
    Abstract: A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N.MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 3, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Patent number: 9455473
    Abstract: An electrolyte composition for a magnesium electrochemical cell includes a magnesium salt dissolved in an ionic liquid. The ionic liquid includes an organic cation and a first boron cluster anion. The magnesium salt has a magnesium cation and a second boron cluster anion. The magnesium electrochemical cell includes an anode that contains elemental magnesium when charged, a cathode suitable for magnesium insertion or deposition, and the aforementioned electrolyte composition that is in ionic communication with the anode, the cathode, or both.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: September 27, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Rana Mohtadi, Oscar Tutusaus, Fuminori Mizuno
  • Patent number: 9379374
    Abstract: In an example method, a transition metal precursor is selected so its transition metal has a diffusion rate that is slower than a diffusion rate of silicon. An aqueous mixture is formed by dissolving the precursor in an aqueous medium, and adding silicon particles to the medium. The mixture is exposed to a hydroxide, which forms a product including the silicon particles and a transition metal hydroxide precipitate. The product is dried. In an inert or reducing environment, silicon atoms of the silicon particles in the dried product are caused to diffuse out of, and form voids in and/or at a surface of, the particles. At least some silicon atoms react with the transition metal hydroxide in the dried product to form i) a SiOx (0<x?2) coating on the silicon particles and ii) the transition metal, which reacts with other silicon atoms to form silicides.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: June 28, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Zhongyi Liu, Xingcheng Xiao, Michael K. Carpenter
  • Patent number: 9306253
    Abstract: Provided is an electrolyte solution capable of further increasing the output of a lithium air battery, the electrolyte solution for a lithium air battery having a total bonding strength between Li2O2 is no less than 0.14.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: April 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hirofumi Nakamoto, Taishi Shiotsuki, Atsushi Shirasawa, Yushi Suzuki
  • Patent number: 9263768
    Abstract: Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: February 16, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn, Joon Sung Bae, Cha Hun Ku, Soo Hyun Ha, Duk Hyun Ryu, Sei Lin Yoon
  • Patent number: 9231277
    Abstract: A nonaqueous electrolyte containing a monofluorophosphate and/or a difluorophosphate and a compound having a specific chemical structure or specific properties. The nonaqueous electrolyte can contain at least one of a saturated chain hydrocarbon, a saturated cyclic hydrocarbon, an aromatic compound having a halogen atom and an ether having a fluorine atom.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 5, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Ryoichi Kato, Hiroyuki Tokuda, Takashi Fujii, Minoru Kotato, Masahiro Takehara, Masamichi Onuki, Youichi Ohashi, Shinichi Kinoshita
  • Patent number: 9183995
    Abstract: A decomposition reaction of an electrolyte solution and the like caused as a side reaction of charge and discharge is minimized in repeated charge and discharge of a lithium ion battery or a lithium ion capacitor, and thus the lithium ion battery or the lithium ion capacitor can have long-term cycle performance. A negative electrode for a power storage device includes a negative electrode current collector and a negative electrode active material layer which includes a plurality of particles of a negative electrode active material. Each of the particles of the negative electrode active material has an inorganic compound film containing a first inorganic compound on part of its surface. The negative electrode active material layer has a film in contact with an exposed part of the negative electrode active material and part of the inorganic compound film. The film contains an organic compound and a second inorganic compound.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: November 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Kai Kimura, Sachiko Kataniwa, Ryota Tajima
  • Patent number: 9111694
    Abstract: The present invention provides an electric double layer capacitor having a high withstanding voltage, less deterioration, and excellent long-term reliability, especially an effect of suppressing expansion. The present invention relates to an electrolyte solution for an electric double layer capacitor. The solution comprises an electrolyte-salt-dissolving solvent (I) and an electrolyte salt (II). The electrolyte-salt-dissolving solvent (I) contains a fluorine-containing chain ether and a nitrile compound.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: August 18, 2015
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kenzou Takahashi, Meiten Koh, Mai Koyama, Emi Yamamoto
  • Patent number: 9065146
    Abstract: The invention relates to a nonaqueous electrolyte which comprises a nonaqueous organic solvent and a lithium salt dissolved therein, wherein the nonaqueous organic solvent contains at least one compound selected from the group consisting of acid anhydrides and carbonic esters having an unsaturated bond, and at least one compound selected from the group consisting of sulfonic compounds and fluorine-containing aromatic compounds having 9 carbon atoms or less; and a lithium secondary battery employing the same.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: June 23, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masamichi Onuki, Minoru Kotato, Isao Konno, Shinichi Kinoshita, Noriko Shima
  • Patent number: 9039919
    Abstract: The present disclosure relates to gel-type polymer electrolyte for a dye-sensitized solar cell, a dye-sensitized solar cell comprising the gel-type polymer electrolyte, and a method for manufacturing the dye-sensitized solar cell.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: May 26, 2015
    Assignee: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Jong Hyeok Park, Kun Seok Lee
  • Publication number: 20150125761
    Abstract: The present invention includes [1] a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, the nonaqueous electrolytic solution containing from 0.001 to 5% by mass of a specified acyclic lithium salt in the nonaqueous electrolytic solution and being capable of improving electrochemical characteristics in a broad temperature range; and [2] an energy storage device including a positive electrode, a negative electrode, and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, the nonaqueous electrolytic solution containing from 0.001 to 5% by mass of a specified acyclic lithium salt in the nonaqueous electrolytic solution.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 7, 2015
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Kei Shimamoto, Yuichi Kotou, Shoji Shikita
  • Patent number: 9012071
    Abstract: There is provided a lithium secondary battery which has excellent characteristics such as energy density and electromotive force and is excellent in cycle life and storage stability. An electrolyte solution for secondary battery comprising at least an aprotic solvent having an electrolyte dissolved therein and a compound represented by the general formula (1).
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: April 21, 2015
    Assignee: NEC Corporation
    Inventors: Koji Utsugi, Yuki Kusachi, Tsuyoshi Katou
  • Patent number: 8993178
    Abstract: A magnesium battery (10) is constituted of a negative electrode (1), a positive electrode (2) and an electrolyte (3). The negative electrode (1) is formed of metallic magnesium and can also be formed of an alloy. The positive electrode (2) is composed of a positive electrode active material, for example, a metal oxide, graphite fluoride ((CF)n) or the like, etc. The electrolytic solution (3) is, for example, a magnesium ion-containing nonaqueous electrolytic solution prepared by dissolving magnesium(II) chloride (MgCl2) and dimethylaluminum chloride ((CH3)2AlCl) in tetrahydrofuran (THF). In the case of dissolving and depositing magnesium by using this electrolytic solution, the following reaction proceeds in the normal direction or reverse direction.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventors: Yuri Nakayama, Kenta Yamamoto, Yoshihiro Kudo, Hideki Oki
  • Publication number: 20150084603
    Abstract: An improved electrolyte including a strontium additive suitable for lithium-sulfur batteries, a battery including the electrolyte, and a battery including a separator containing a strontium additive are disclosed. The presence of the strontium additive reduces sulfur-containing deposits on the battery anode, thereby providing a battery with relatively high energy density and good partial discharge performance.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER
  • Publication number: 20150084604
    Abstract: An improved lithium-sulfur battery containing a surface-functionalized carbonaceous material. The presence of the surface-functionalized carbonaceous material generates weak chemical bonds between the functional groups of the surface-functionalized carbonaceous material and the functional groups of the polysulfides, which prevents the polysulfide migration to the battery anode, thereby providing a battery with relatively high energy density and good partial discharge efficiency.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER, Ernest NDZEBET, Umamaheswari JANAKIRAMAN
  • Publication number: 20150079483
    Abstract: The present disclosure relates to several families of commercially available oxirane compounds that can be used as electrolyte co-solvents, solutes, or additives in non-aqueous electrolyte and their test results in various electrochemical devices. The presence of these compounds can enable rechargeable chemistries at high voltages. These compounds were chosen for their beneficial effect on the interphasial chemistries that occur at high potentials on the classes of 5.0V cathodes used in experimental Li-ion systems.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150079484
    Abstract: The present disclosure relates to additives for electrolytes and preparation of aluminum-based, silicon-based, and bismuth-based additive compounds that can be used as additives or solutes in electrolytes and test results in various electrochemical devices. The inclusion of these aluminum, silicon, and bismuth compounds in electrolyte systems can enable rechargeable chemistries at high voltages that are otherwise unsuitable with current electrolyte technologies. These compounds are so chosen because of their beneficial effect on the interphasial chemistries formed at high potentials, such as 5.0 V class cathodes for Li-ion chemistries. The application of these compounds goes beyond Li-ion battery technology and covers any electrochemical device that employs electrolytes for the benefit of high energy density resultant from high operating voltages.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Patent number: 8968938
    Abstract: Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte. Also disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and an anode having formed thereon a coating layer containing a decomposition product of the compound of Formula 1. Moreover, disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and a non-aqueous electrolyte containing the compound of Formula 1 or its decomposition product.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn, Joon Sung Bae, Cha Hun Ku, Soo Hyun Ha, Duk Hyun Ryu, Sei Lin Yoon
  • Publication number: 20150050565
    Abstract: An electrochemical cell is provided that includes at least one electrode that includes a magnesium intercalation compound. The provided electrochemical cell also includes an electrolyte that includes a fluorinated imide salt or a fluorinated methide salt substantially dissolved in an oxidatively stable solvent. The oxidatively stable solvent comprises a nitrile group and in some embodiments can include acetonitrile or adiponitrile.
    Type: Application
    Filed: February 6, 2013
    Publication date: February 19, 2015
    Inventors: William M Lamanna, Tuan T Tran, Mark N. Obrovac
  • Publication number: 20150050563
    Abstract: A new electrolytic solution system for lithium secondary batteries. Provided is a lithium secondary battery electrolytic solution containing a nonaqueous solvent and a lithium salt. The nonaqueous solvent is mixed at an amount of not more than 3 mol with respect to 1 mol of the lithium salt.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 19, 2015
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Yuki Yamada, Atsuo Yamada, Makoto Yaegashi, Haosheu Zhou, Fujun Li
  • Publication number: 20150050560
    Abstract: The present invention relates to silicone epoxy compositions, methods for making same and uses therefore. In one embodiment, the silicone epoxy ether compositions of the present invention are silane epoxy polyethers that contain at least one epoxy functionality. In another embodiment, the silicone epoxy ether compositions of the present invention are siloxane epoxy polyethers that contain at least one epoxy functionality. In still another embodiment, the present invention relates to silicone epoxy polyether compositions that are suitable for use as an electrolyte solvent in a lithium-based battery, an electrochemical super-capacitors or any other electrochemical device.
    Type: Application
    Filed: January 10, 2013
    Publication date: February 19, 2015
    Inventors: Neeraj Gupta, Karthikeyan Sivasubramanian, Monjit Phukan
  • Publication number: 20150044573
    Abstract: The invention relates to lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate, the use of lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate as electrolyte salt in lithium-based energy stores and also ionic liquids comprising 1-trifluoro-methoxy-1,2,2,2-tetrafluoro-ethanesulphonate as anion.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventors: Gerd-Volker Röschenthaler, Martin Winter, Stefano Passerini, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner Schreiner, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Rene Schmitz, Tanja Schedlbauer, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20150030939
    Abstract: The invention relates to the use of lithium-2-pentafluoroethoxy-1,1,2,2-tetrafluoro-ethanesulfonate as a conductive salt in lithium-based energy stores and to electrolytes containing lithium-2-pentafluoroethoxy-1,1,2,2-tetrafluoro-ethanesulfonate.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 29, 2015
    Inventors: Marius Amereller, René Schmitz, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Martin Winter, Christian Schreiner, Miriam Kunze, Stefano Passerini
  • Patent number: 8940434
    Abstract: Disclosed are an additive for a rechargeable lithium battery electrolyte including an aromatic compound having an isothiocyanate group (—NCS), and an electrolyte and rechargeable lithium battery including the same.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Woo-Cheol Shin, Denis Chernyshov, Alexey Tereshchenko, Vladimir Egorov, Pavel Shatunov
  • Publication number: 20150024121
    Abstract: A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ?the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu
  • Publication number: 20150024267
    Abstract: The present invention relates to an electrolyte having improved high-rate charge and discharge property, and a capacitor comprising the same, and more particularly to an electrolyte having improved high-rate charge and discharge property comprising an aromatic compound, which comprises at least one compound of the following Chemical Formula 1 to Chemical Formula 11 that can induce resonance effect of electron movement, and which is a substituted organic compound in which a functional group is present at a location that can structurally prevent local polarization effect, and the boiling point of which is 80° C. or higher, wherein R in the Chemical Formula 1 to Chemical Formula 11 is at least one functional group selected from the alkyl group consisting of methyl, ethyl, propyl and butyl, and a capacitor comprising the same.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventor: Cheol Soo JUNG
  • Publication number: 20150024282
    Abstract: In an aspect, a lithium secondary battery including a compound as disclosed and described herein; and an electrolyte for a lithium secondary battery including a non-aqueous organic solvent and a lithium salt is provided.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Ha-Rim Lee, Sang-Hoon Kim, In-Haeng Cho
  • Patent number: 8927159
    Abstract: The present invention provides non-aqueous electrolyte solution for a lithium secondary battery, comprising an ester-based compound having a branched-chain alkyl group and an ester-based compound having a straight-chain alkyl group; and a lithium secondary battery using the same.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: January 6, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Hoon Yu, Doo-Kyung Yang, Jong-Ho Jeon, Min-Jung Jou
  • Publication number: 20140377666
    Abstract: A non-aqueous liquid electrolyte for a secondary battery, containing: at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound; an aromatic ketone compound; an organic solvent; and an electrolyte salt, in which, with respect to 100 parts by mass of the organic solvent, the aromatic ketone compound is 0.001 to 10 parts by mass and the at least one selected from a carbonate compound having a halogen atom and a sulfur-containing ring compound is 0.001 to 10 parts by mass, and more than 50% by mass of the whole amount of the organic solvent is composed of a solvent with a melting point of 10° C. or less.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Applicant: FUJIFILM CORPORATION
    Inventors: Kunihiko KODAMA, Michio ONO, Ikuo KINOSHITA
  • Publication number: 20140377667
    Abstract: The invention relates to lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate, to the use thereof as conductive salt in lithium-based energy accumulators, and ionic liquids comprising 2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate as an anion.
    Type: Application
    Filed: July 25, 2012
    Publication date: December 25, 2014
    Applicants: JACOBS UNIVERSITY BREMEN gGMBH, WESTFALISCHE WILHELMS UNIVERSITAT MUNSTER
    Inventors: Gerd-Volker Roschenthaler, Martin Winter, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner, Raphael Wilhelm Schmitz, Romek Ansgar Muller, Rene Schmitz, Alexandra Lex-Balducci, Miriam Kunze
  • Patent number: 8906559
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1: wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jong-Hwa Lee, In-Tae Mun, Sae-Weon Roh, So-Hyun Hur, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu
  • Publication number: 20140356735
    Abstract: Described herein are liquid, organosilicon compounds that including a substituent that is a cyano (—CN), cyanate (—OCN), isocyanate (—NCO), thiocyanate (—SCN) or isothiocyanate (—NCS). The organosilicon compounds are useful in electrolyte compositions and can be used in any electrochemical device where electrolytes are conventionally used.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 4, 2014
    Inventors: Jose Adrian Pena Hueso, David Osmalov, Jian Dong, Monica Usrey, Michael Pollina, Robert C. West
  • Publication number: 20140356733
    Abstract: Provided are an additive for a lithium battery electrolyte, wherein the additive is an ethylene carbonate based compound represented by the following Formula 1 or 2, an organic electrolyte solution including the additive, and a lithium battery including the organic electrolyte solution: in the above Formulae, R1, R2, R3, and R4 are each independently a non-polar functional group or a polar functional group, the polar functional group including a heteroatom belonging to groups 13 to 16 of the periodic table of elements, and one or more of R1, R2, R3, and R4 are the polar functional groups.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 4, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Woo-Cheol Shin, Vladimir Egorov, Pavel Alexandrovich Shatunov, Denis Chernyshov, Sang-Hoon Kim, Ha-Rim Lee, In-Haeng Cho, Alexey Tereshchenko
  • Publication number: 20140356734
    Abstract: An electrolyte for a lithium ion secondary battery and a lithium ion secondary battery including the same are provide. The electrolyte includes a non-aqueous organic solvent, a lithium salt which is dissolved in the non-aqueous solvent and a additive shown as general formula I. Wherein R1, R2 and R3 are each independently selected from H, alkyl group including from 1 to 12 carbon atoms, cycloalkyl group including from 3 to 8 carbon atoms and aromatic group including 6 to 12 carbon atoms; n represents an integer from 0 to 7. This additive in electrolyte can passivate cathode and anode effectively, restrain their reaction with electrolyte, reduce gases generation and battery's expansion in high temperature surrounding, provide as safety lithium ion secondary batteries.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Jianxun Ren, Chenghua Fu, Fenggang Zhao
  • Publication number: 20140342249
    Abstract: A rechargeable lithium metal or lithium-ion cell comprising a cathode having a cathode active material and/or a conductive supporting structure, an anode having an anode active material and/or a conductive supporting nano-structure, a porous separator electronically separating the anode and the cathode, a highly concentrated electrolyte in contact with the cathode active material and the anode active material, wherein the electrolyte contains a lithium salt dissolved in an ionic liquid solvent with a concentration greater than 3 M. The cell exhibits an exceptionally high specific energy, a relatively high power density, a long cycle life, and high safety with no flammability.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Inventors: Hui He, Bor Z Jang, Yanbo Wang, Aruna Zhamu
  • Publication number: 20140335427
    Abstract: An electrolyte for a lithium secondary battery and a lithium secondary battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 below; a nonaqueous organic solvent; and a lithium salt: wherein, in Formula 1, R1, R2, R3, and R4 are each independently a unsubstituted or substituted C1-C20 alkoxy group, a unsubstituted or substituted C1-C20 alkoxyalkyleneoxy group, a unsubstituted or substituted C6-C20 aryloxy group, or R—O—C(?O)— where R is a C1-C20 alkyl group, a C6-C20 aryl group, or a C1-C20 fluoroalkyl group.
    Type: Application
    Filed: September 13, 2013
    Publication date: November 13, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Vladimir Egorov, Pavel Alexandrovich Shatunov, Alexey Tereshchenko, Denis Chernyshov, Jung-Yi Yu, SANG-IL HAN, Sang-Hoon Kim, Duck-Hyun Kim, Myung-Hwan Jeong, Seung-Tae Lee, Tae-Hyun Bae, Mi-Hyun Lee, Eon-Mi Lee, Ha-Rim Lee, Moon-Sung Kim, In-Haeng Cho, E-Rang Cho, Dong-Myung Choi, Woo-Cheol Shin
  • Publication number: 20140315096
    Abstract: In some embodiments, the present disclosure pertains to energy storage compositions that comprise a clay and an ionic liquid. In some embodiments, the clay is a bentonite clay and the ionic liquid is a room temperature ionic liquid (RTIL). In some embodiments, the clay and the ionic liquid are present in the energy storage compositions of the present disclosure in a weight ratio of 1:1. In some embodiments, the ionic liquid further comprises a lithium-containing salt that is dissolved in the ionic liquid. In some embodiments, the energy storage compositions of the present disclosure further comprise a thermoplastic polymer, such as polyurethane. In some embodiments, the thermoplastic polymer constitutes about 10% by weight of the energy storage composition. In some embodiments, the energy storage compositions of the present disclosure are associated with components of energy storage devices, such as electrodes and separators.
    Type: Application
    Filed: February 26, 2014
    Publication date: October 23, 2014
    Applicants: Universidade Federal de Minas Gerais, William Marsh Rice University
    Inventors: Raquel Silveira Borges, Kaushik Kalaga, Marco Tulio Fonseca Rodrigues, Hemtej Gullapalli, Leela Mohana Reddy Arava, Kaushik Balakrishnan, Glaura Goulart Silva, Pulickel M. Ajayan
  • Patent number: 8865353
    Abstract: A nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, containing a hydantoin compound represented by the following general formula (I) in an amount of from 0.01 to 5% by mass of the nonaqueous electrolytic solution, and excellent in battery characteristics such as high-temperature storage property and cycle property. (In the formula, R1 and R2 each represent a methyl group or an ethyl group; R3 and R4 each represent a hydrogen atom, a methyl group or an ethyl group.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Masahide Kondo
  • Publication number: 20140302403
    Abstract: A non-aqueous Magnesium electrolyte comprising: (a) at least one organic solvent; (b) at least one electrolytically active, soluble, inorganic Magnesium (Mg) salt complex represented by the formula: MgaZbXc wherein a, b, and c are selected to maintain neutral charge of the molecule, and Z and X are selected such that Z and X form a Lewis Acid, and 1?a?10, 1?b?5, and 2?c?30. Further Z is selected from a group consisting of aluminum, boron, phosphorus, titanium, iron, and antimony; X is selected from the group consisting of I, Br, Cl, F and mixtures thereof. Rechargeable, high energy density Magnesium cells containing an cathode, an Mg metal anode, and an electrolyte of the above-described type are also disclosed.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Inventors: Robert Ellis Doe, Ruoban HAN, Yossef GOFER, Doron AURBACH, Nir POUR, Evgeny STERENBERG
  • Publication number: 20140272601
    Abstract: Salts with formula X?M+ wherein M+ is Li, Na, K, an ammonium, a phosphonium, an imidazolium, a pyridinium, or a pyrazolium and X? is an anion formed from covalent linking of two negative moieties to a positive onium-type core are provided. Also provided are electrolytes and batteries produced from these salts.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 18, 2014
    Inventors: Erlendur Jónsson, Michel Bernard Armand, Jens Patrik Johansson
  • Publication number: 20140255793
    Abstract: Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine